1932

Abstract

Free superfluid helium droplets constitute a versatile medium for a diverse range of experiments in physics and chemistry that extend from studies of the fundamental laws of superfluid motion to the synthesis of novel nanomaterials. In particular, the emergence of quantum vortices in rotating helium droplets is one of the most dramatic hallmarks of superfluidity and gives detailed access to the wave function describing the quantum liquid. This review provides an introduction to quantum vorticity in helium droplets, followed by a historical account of experiments on vortex visualization in bulk superfluid helium and a more detailed discussion of recent advances in the study of the rotational motion of isolated, nano- to micrometer-scale superfluid helium droplets. Ultrafast X-ray and extreme ultraviolet scattering techniques enabled by X-ray free-electron lasers and high-order harmonic generation in particular have facilitated the in situ detection of droplet shapes and the imaging of vortex structures inside individual, isolated droplets. New applications of helium droplets ranging from studies of quantum phase separations to mechanisms of low-temperature aggregation are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-042018-052744
2019-06-14
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/physchem/70/1/annurev-physchem-042018-052744.html?itemId=/content/journals/10.1146/annurev-physchem-042018-052744&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Toennies JP, Vilesov AF 1998. Spectroscopy of atoms and molecules in liquid helium. Annu. Rev. Phys. Chem. 49:1–41
    [Google Scholar]
  2. 2.
    Callegari C, Lehmann KK, Schmied R, Scoles G 2001. Helium nanodroplet isolation rovibrational spectroscopy: methods and recent results. J. Chem. Phys. 115:10090–110
    [Google Scholar]
  3. 3.
    Northby JA 2001. Experimental studies of helium droplets. J. Chem. Phys. 115:10065–77
    [Google Scholar]
  4. 4.
    Stienkemeier F, Vilesov AF 2001. Electronic spectroscopy in He droplets. J. Chem. Phys. 115:10119–37
    [Google Scholar]
  5. 5.
    Toennies JP, Vilesov AF, Whaley KB 2001. Superfluid helium droplets: an ultracold nanolaboratory. Phys. Today 54:31–37
    [Google Scholar]
  6. 6.
    Toennies JP, Vilesov AF 2004. Superfluid helium droplets: a uniquely cold nanomatrix for molecules and molecular complexes. Angew. Chem. 43:2622–48
    [Google Scholar]
  7. 7.
    Barranco M, Guardiola R, Hernandez ES, Mayol R, Navarro J, Pi M 2006. Helium nanodroplets: an overview. J. Low Temp. Phys. 142:1–81
    [Google Scholar]
  8. 8.
    Choi MY, Douberly GE, Falconer TM, Lewis WK, Lindsay CM et al. 2006. Infrared spectroscopy of helium nanodroplets: novel methods for physics and chemistry. Int. Rev. Phys. Chem. 25:15–75
    [Google Scholar]
  9. 9.
    Stienkemeier F, Lehmann KK 2006. Spectroscopy and dynamics in helium nanodroplets. J. Phys. B 39:R127–66
    [Google Scholar]
  10. 10.
    Tiggesbäumker J, Stienkemeier F 2007. Formation and properties of metal clusters isolated in helium droplets. Phys. Chem. Chem. Phys. 9:4748–70
    [Google Scholar]
  11. 11.
    Callegari C, Ernst WE 2011. Helium droplets as nanocryostats for molecular spectroscopy—from the vacuum ultraviolet to the microwave regime. Handbook of High-Resolution Spectroscopy M Quack, F Merkt 1551–94 Chichester, UK: Wiley
    [Google Scholar]
  12. 12.
    Kuyanov-Prozument K, Skvortsov D, Slipchenko M, Sartakov BG, Vilesov AF, eds. 2011. Matrix Isolation Spectroscopy in Helium Droplets Singapore: Pan Stanford
  13. 13.
    Yang SF, Ellis AM 2013. Helium droplets: a chemistry perspective. Chem. Soc. Rev. 42:472–84
    [Google Scholar]
  14. 14.
    Mudrich M, Stienkemeier F 2014. Photoionisaton of pure and doped helium nanodroplets. Int. Rev. Phys. Chem. 33:301–39
    [Google Scholar]
  15. 15.
    Tanyag RM, Jones CF, Bernando C, O'Connell SMO, Verma D, Vilesov AF 2018. Experiments with large superfluid helium nanodroplets. Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero A Osterwalder, O Dulieu 389–443 Cambridge, UK: R. Soc. Chem.
    [Google Scholar]
  16. 16.
    Ancilotto F, Barranco M, Coppens F, Eloranta J, Halberstadt N et al. 2017. Density functional theory of doped superfluid liquid helium and nanodroplets. Int. Rev. Phys. Chem. 36:621–707
    [Google Scholar]
  17. 17.
    Ziemkiewicz MP, Neumark DM, Gessner O 2015. Ultrafast electronic dynamics in helium nanodroplets. Int. Rev. Phys. Chem. 34:239–67
    [Google Scholar]
  18. 18.
    Lemeshko M, Schmidt R 2017. Molecular impurities interacting with many-particle environment: from ultracold gases to helium nanodroplets. Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero A Osterwalder, O Dulieu 444–95 Cambridge, UK: R. Soc. Chem.
    [Google Scholar]
  19. 19.
    Mauracher A, Echt O, Ellis AM, Yang S, Bohme DK et al. 2018. Cold physics and chemistry: collisions, ionization and reactions inside helium nanodroplets close to zero K. Phys. Rep. 751:1–90
    [Google Scholar]
  20. 20.
    Verma D, Tanyag RMP, O'Connell SMO, Vilesov AF 2019. Infrared spectroscopy in superfluid helium droplets. Adv. Phys. 4:1553569 https://doi.org/10.1080/23746149.2018.1553569
    [Crossref] [Google Scholar]
  21. 21.
    Hartmann M, Miller RE, Toennies JP, Vilesov A 1995. Rotationally resolved spectroscopy of SF6 in liquid-helium clusters—a molecular probe of cluster temperature. Phys. Rev. Lett. 75:1566–69
    [Google Scholar]
  22. 22.
    Grebenev S, Hartmann M, Havenith M, Sartakov B, Toennies JP, Vilesov AF 2000. The rotational spectrum of single OCS molecules in liquid 4He droplets. J. Chem. Phys. 112:4485–95
    [Google Scholar]
  23. 23.
    Grebenev S, Toennies JP, Vilesov AF 1998. Superfluidity within a small helium-4 cluster: the microscopic Andronikashvili experiment. Science 279:2083–86
    [Google Scholar]
  24. 24.
    McKellar ARW, Xu YJ, Jäger W 2006. Spectroscopic exploration of atomic scale superfluidity in doped helium nanoclusters. Phys. Rev. Lett. 97:183401
    [Google Scholar]
  25. 25.
    Pentlehner D, Nielsen JH, Slenczka A, Mølmer K, Stapelfeldt H 2013. Impulsive laser induced alignment of molecules dissolved in helium nanodroplets. Phys. Rev. Lett. 110:093002
    [Google Scholar]
  26. 26.
    Christiansen L, Nielsen JH, Pentlehner D, Underwood JG, Stapelfeldt H 2015. Alignment enhancement of molecules embedded in helium nanodroplets by multiple laser pulses. Phys. Rev. A 92:053415
    [Google Scholar]
  27. 27.
    Lemeshko M 2017. Quasiparticle approach to molecules interacting with quantum solvents. Phys. Rev. Lett. 118:095301
    [Google Scholar]
  28. 28.
    Chatterley AS, Shepperson B, Stapelfeldt H 2017. Three-dimensional molecular alignment inside helium nanodroplets. Phys. Rev. Lett. 119:073202
    [Google Scholar]
  29. 29.
    Landau LD 1941. The theory of superfluidity of helium II. J. Phys. 5:185–204
    [Google Scholar]
  30. 30.
    Feynman RP 1955. Application of quantum mechanics to liquid helium. Progress in Low Temperature Physics, Vol. 1 CJ Gorter 1–53 Amsterdam: North-Holland
    [Google Scholar]
  31. 31.
    Tilley DR, Tilley J 1990. Superfluidity and Superconductivity Bristol, UK: Inst. Phys. Publ.
  32. 32.
    Donnelly RJ 1991. Quantized Vortices in Helium II Cambridge, UK: Cambridge Univ. Press
  33. 33.
    Pitaevskii L, Stringari S 2016. Bose-Einstein Condensation and Superfluididty Oxford, UK: Oxford Univ. Press
  34. 34.
    Yarmchuk EJ, Gordon MJV, Packard RE 1979. Observation of stationary vortex arrays in rotating superfluid-helium. Phys. Rev. Lett. 43:214–17
    [Google Scholar]
  35. 35.
    Bewley GP, Lathrop DP, Sreenivasan KR 2006. Superfluid helium—visualization of quantized vortices. Nature 441:588
    [Google Scholar]
  36. 36.
    Paoletti MS, Fiorito RB, Sreenivasan KR, Lathrop DP 2008. Visualization of superfluid helium flow. J. Phys. Soc. Jpn. 77:111007
    [Google Scholar]
  37. 37.
    Vinen WF 1961. Detection of single quanta of circulation in liquid helium II. Proc. R. Soc. A 260:218–36
    [Google Scholar]
  38. 38.
    Bauer GH, Donnelly RJ, Vinen WF 1995. Vortex configurations in a freely rotating superfluid drop. J. Low Temp. Phys. 98:47–65
    [Google Scholar]
  39. 39.
    Lehmann KK, Schmied R 2003. Energetics and possible formation and decay mechanisms of vortices in helium nanodroplets. Phys. Rev. B 68:224520
    [Google Scholar]
  40. 40.
    Hess GB 1967. Angular momentum of superfluid helium in a rotating cylinder. Phys. Rev. 161:189–93
    [Google Scholar]
  41. 41.
    Dalfovo F, Mayol R, Pi M, Barranco M 2000. Pinning of quantized vortices in helium drops by dopant atoms and molecules. Phys. Rev. Lett. 85:1028–31
    [Google Scholar]
  42. 42.
    Sadd M, Chester GV, Reatto L 1997. Structure of a vortex in superfluid He-4. Phys. Rev. Lett. 79:2490–93
    [Google Scholar]
  43. 43.
    Reif F, Meyer L 1960. Study of superfluidity in liquid He by ion motion. Phys. Rev. 119:1164–73
    [Google Scholar]
  44. 44.
    Donnelly RJ, Barenghi CF 1998. The observed properties of liquid helium at the saturated vapor pressure. J. Phys. Chem. Ref. Data 27:1217–74
    [Google Scholar]
  45. 45.
    Ancilotto F, Pi M, Barranco M 2015. Vortex arrays in nanoscopic superfluid helium droplets. Phys. Rev. B 91:100503(R)
    [Google Scholar]
  46. 46.
    Mateo D, Eloranta J, Williams GA 2015. Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid 4He. J. Chem. Phys. 142:064510
    [Google Scholar]
  47. 47.
    Ancilotto F, Pi M, Barranco M 2014. Vortex arrays in a rotating superfluid 4He nanocylinder. Phys. Rev. B 90:174512
    [Google Scholar]
  48. 48.
    Pshenichnyuk IA, Berloff NA 2016. Inelastic scattering of xenon atoms by quantized vortices in superfluids. Phys. Rev. B 94:184505
    [Google Scholar]
  49. 49.
    Coppens F, Ancilotto F, Barranco M, Halberstadt N, Pi M 2017. Capture of Xe and Ar atoms by quantized vortices in 4He nanodroplets. Phys. Chem. Chem. Phys. 19:24805–18
    [Google Scholar]
  50. 50.
    Campbell LJ, Ziff RM 1979. Vortex patterns and energies in a rotating superfluid. Phys. Rev. B 20:1886–902
    [Google Scholar]
  51. 51.
    Nam ST, Bauer GH, Donnelly RJ 1996. Vortex patterns in a freely rotating superfluid. J. Korean Phys. Soc. 29:755–64
    [Google Scholar]
  52. 52.
    Schwarz KW 1985. Three-dimensional vortex dynamics in superfluid 4He: line-line and line-boundary interactions. Phys. Rev. B 31:5782–804
    [Google Scholar]
  53. 53.
    Hanninen R, Baggaley AW 2014. Vortex filament method as a tool for computational visualization of quantum turbulence. PNAS 111:4667–74
    [Google Scholar]
  54. 54.
    Adachi H, Fujiyama S, Tsubota M 2010. Steady-state counterflow quantum turbulence: simulation of vortex filaments using the full Biot-Savart law. Phys. Rev. B 81:104511
    [Google Scholar]
  55. 55.
    Yui S, Tsubota M 2015. Counterflow quantum turbulence of He-II in a square channel: numerical analysis with nonuniform flows of the normal fluid. Phys. Rev. B 91:184504
    [Google Scholar]
  56. 56.
    Ancilotto F, Barranco M, Pi M 2018. Spinning superfluid 4He droplets. Phys. Rev. B 97:184515
    [Google Scholar]
  57. 57.
    Karn PW, Starks DR, Zimmermann W 1980. Observation of quantization of circulation in rotating superfluid He-4. Phys. Rev. B 21:1797–805
    [Google Scholar]
  58. 58.
    Rayfield GW, Reif F 1963. Evidence for the creation and motion of quantized vortex rings in superfluid helium. Phys. Rev. Lett. 11:305–8
    [Google Scholar]
  59. 59.
    Rayfield GW, Reif F 1964. Quantized vortex rings in superfluid helium. Phys. Rev. A 136:1194–208
    [Google Scholar]
  60. 60.
    Careri G, McCormick WD, Scaramuzzi F 1962. Ions in rotating liquid helium II. Phys. Lett. 1:61–63
    [Google Scholar]
  61. 61.
    Douglass RL 1964. Ion trapping in rotating helium II. Phys. Rev. Lett. 13:791–94
    [Google Scholar]
  62. 62.
    Packard RE, Sanders TM 1969. Detection of single quantized vortex lines in rotating He II. Phys. Rev. Lett. 22:823–26
    [Google Scholar]
  63. 63.
    Packard RE, Sanders TM 1972. Observations on single vortex lines in rotating superfluid helium. Phys. Rev. A 6:799–807
    [Google Scholar]
  64. 64.
    Williams GA, Packard RE 1974. Photographs of quantized vortex lines in rotating He II. Phys. Rev. Lett. 33:280–83
    [Google Scholar]
  65. 65.
    Grimes CC, Adams G 1992. Infrared-absorption spectrum of the electron bubble in liquid helium. Phys. Rev. B 45:2305–10
    [Google Scholar]
  66. 66.
    Rosenblit M, Jortner J 1995. Dynamics of the formation of an electron bubble in liquid helium. Phys. Rev. Lett. 75:4079–82
    [Google Scholar]
  67. 67.
    Abo-Shaeer JR, Raman C, Vogels JM, Ketterle W 2001. Observation of vortex lattices in Bose-Einstein condensates. Science 292:476–79
    [Google Scholar]
  68. 68.
    Abrikosov AA 1957. On the magnetic properties of superconductors of the second group. J. Exp. Theor. Phys. 5:1174
    [Google Scholar]
  69. 69.
    Tkachenko VK 1966. Stability of vortex lattices. J. Exp. Theor. Phys. 23:1049–56
    [Google Scholar]
  70. 70.
    Matthews MR, Anderson BP, Haljan PC, Hall DS, Wieman CE, Cornell EA 1999. Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83:2498–501
    [Google Scholar]
  71. 71.
    Fetter AL 2009. Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys. 81:647–91
    [Google Scholar]
  72. 72.
    Chopra KL, Brown JB 1957. Suspension of particles in liquid helium. Phys. Rev. 108:157
    [Google Scholar]
  73. 73.
    Craig PP, Pellam JR 1957. Observation of perfect potential flow in superfluid. Phys. Rev. 108:1109–12
    [Google Scholar]
  74. 74.
    Koehler TR, Pellam JR 1962. Observation of torque exerted by pure superflow. Phys. Rev. 125:791–94
    [Google Scholar]
  75. 75.
    Chung DY, Critchlow PR 1965. Motion of suspended particles in turbulent superflow of liquid helium II. Phys. Rev. Lett. 14:892–94
    [Google Scholar]
  76. 76.
    Kitchens TA, Steyert WA, Taylor RD, Craig PP 1965. Flow visualization in He II: direct observation of Helmholtz flow. Phys. Rev. Lett. 14:942–45
    [Google Scholar]
  77. 77.
    Bewley GP 2006. Using frozen hydrogen particles to observe rotating and quantized flows in liquid helium PhD diss., Yale Univ New Haven, CT:
  78. 78.
    Bewley GP, Sreenivasan KR 2009. The decay of a quantized vortex ring and the influence of tracer particles. J. Low Temp. Phys. 156:84–94
    [Google Scholar]
  79. 79.
    Paoletti MS, Fisher ME, Sreenivasan KR, Lathrop DP 2008. Velocity statistics distinguish quantum turbulence from classical turbulence. Phys. Rev. Lett. 101:154501
    [Google Scholar]
  80. 80.
    Barenghi CF, Skrbek L, Sreenivasan KR 2014. Introduction to quantum turbulence. PNAS 111:4647–52
    [Google Scholar]
  81. 81.
    Fonda E, Meichle DP, Ouellette NT, Hormoz S, Lathrop DP 2014. Direct observation of Kelvin waves excited by quantized vortex reconnection. PNAS 111:4707–10
    [Google Scholar]
  82. 82.
    Bewley GP, Paoletti MS, Sreenivasan KR, Lathrop DP 2008. Characterization of reconnecting vortices in superfluid helium. PNAS 105:13707–10
    [Google Scholar]
  83. 83.
    Paoletti MS, Fisher ME, Lathrop DP 2010. Reconnection dynamics for quantized vortices. Physica D 239:1367–77
    [Google Scholar]
  84. 84.
    Zhang T, Sciver SWV 2005. Large-scale turbulent flow around a cylinder in counterflow superfluid 4He. Nat. Phys. 1:36–38
    [Google Scholar]
  85. 85.
    Guo W, Mantia ML, Lathrop DP, Sciver SWV 2014. Visualization of two-fluid flows of superfluid helium-4. PNAS 111:4653–58
    [Google Scholar]
  86. 86.
    Mastracci B, Guo W 2018. Exploration of thermal counterflow in He II using particle tracking velocimetry. Phys. Rev. Fluids 3:063304
    [Google Scholar]
  87. 87.
    Guo W, Wright JD, Cahn SB, Nikkel JA, McKinsey DN 2009. Metastable helium molecules as tracers in superfluid 4He. Phys. Rev. Lett. 102:235301
    [Google Scholar]
  88. 88.
    Gao J, Guo W, Yui S, Tsubota M, Vinen WF 2018. Dissipation in quantum turbulence in superfluid 4He above 1 K. Phys. Rev. B 97:184518
    [Google Scholar]
  89. 89.
    Mastracci B, Guo W 2019. Characterizing vortex tangle properties in steady-state He II counterflow using particle tracking velocimetry. Phys. Rev. Fluids 4:023301
  90. 90.
    Gordon EB, Karabulin AV, Matyushenko VI, Sizov VD, Khodos II 2012. The role of vortices in the process of impurity nanoparticles coalescence in liquid helium. Chem. Phys. Lett. 519–20:64–68
    [Google Scholar]
  91. 91.
    Lebedev V, Moroshkin P, Grobety B, Gordon E, Weis A 2011. Formation of metallic nanowires by laser ablation in liquid helium. J. Low Temp. Phys. 165:166–76
    [Google Scholar]
  92. 92.
    Gordon EB, Karabulin AV, Matyushenko VI, Sizov VD, Khodos II 2012. The electrical conductivity of bundles of superconducting nanowires produced by laser ablation of metals in superfluid helium. Appl. Phys. Lett. 101:052605
    [Google Scholar]
  93. 93.
    Gordon EB, Karabulin AV, Matyushenko VI, Sizov VD, Khodos II 2010. Electric properties of metallic nanowires obtained in quantum vortices of superfluid helium. Low Temp. Phys. 36:590–95
    [Google Scholar]
  94. 94.
    Gordon EB, Kulish MI, Karabulin AV, Matyushenko VI 2017. Non-isothermal physical and chemical processes in superfluid helium. Low Temp. Phys. 43:1086–93
    [Google Scholar]
  95. 95.
    Yang GW 2007. Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog. Mater. Sci. 52:648–98
    [Google Scholar]
  96. 96.
    Gordon EB, Karabulin AV, Morozov AA, Matyushenko VI, Sizov VD, Khodos II 2014. Structure and properties of platinum, gold and mercury nanowires grown in superfluid helium. J. Phys. Chem. Lett. 5:1072–76
    [Google Scholar]
  97. 97.
    Chandrasekhar S 1967. Ellipsoidal figures of equilibrium—an historical account. Commun. Pure Appl. Math. 20:251–67
    [Google Scholar]
  98. 98.
    Cohen S, Plasil F, Swiatecki WJ 1974. Equilibrium configurations of rotating charged or gravitating liquid masses with surface-tension. Part II. Ann. Phys. 82:557–96
    [Google Scholar]
  99. 99.
    Chandrasekhar S 1965. The stability of a rotating liquid drop. Proc. R. Soc. A 286:1–26
    [Google Scholar]
  100. 100.
    Brown RA, Scriven LE 1980. The shape and stability of rotating liquid-drops. Proc. R. Soc. A 371:331–57
    [Google Scholar]
  101. 101.
    Butler SL, Stauffer MR, Sinha G, Lilly A, Spiteri RJ 2011. The shape distribution of splash-form tektites predicted by numerical simulations of rotating fluid drops. J. Fluid Mech. 667:358–68
    [Google Scholar]
  102. 102.
    Baldwin KA, Butler SL, Hill RJA 2015. Artificial tektites: an experimental technique for capturing the shapes of spinning drops. Sci. Rep. 5:7660
    [Google Scholar]
  103. 103.
    Hill RJA, Eaves L 2008. Nonaxisymmetric shapes of a magnetically levitated and spinning water droplet. Phys. Rev. Lett. 101:234501
    [Google Scholar]
  104. 104.
    Bernando C, Tanyag RM, Jones C, Bacellar C, Bucher M et al. 2017. Shapes of rotating superfluid helium nano-droplets. Phys. Rev. B 95:064510
    [Google Scholar]
  105. 105.
    Seidel GM, Maris HJ 1994. Morphology of superfluid drops with angular-momentum. Physica B 194:577–78
    [Google Scholar]
  106. 106.
    Whitaker DL, Weilert MA, Vicente CL, Maris HJ, Seidel GM 1998. Oscillations of charged helium II drops. J. Low Temp. Phys. 110:173–78
    [Google Scholar]
  107. 107.
    Fetter AL 1974. Vortex nucleation in deformed rotating cylinders. J. Low Temp. Phys. 16:532–55
    [Google Scholar]
  108. 108.
    Andronikashvili EL, Mamaladze YG 1967. Rotation of helium II. Progress in Low Temperature Physics, Vol. 5 CJ Gorter 79–160 Amsterdam: Elsevier
    [Google Scholar]
  109. 109.
    Becker EW, Klingelhöfer R, Lohse P 1961. Strahlen aus kondensiertem Helium im Hochvakuum. Z. Naturforsch. 16a:1259
    [Google Scholar]
  110. 110.
    Gomez LF, Loginov E, Sliter R, Vilesov AF 2011. Sizes of large He droplets. J. Chem. Phys. 135:154201
    [Google Scholar]
  111. 111.
    Gomez LF, Ferguson KR, Cryan JP, Bacellar C, Tanyag RMP et al. 2014. Shapes and vorticities of superfluid helium nanodroplets. Science 345:906–9
    [Google Scholar]
  112. 112.
    Weilert MA, Whitaker DL, Maris HJ, Seidel GM 1995. Laser levitation of superfluid helium. J. Low Temp. Phys. 98:17–35
    [Google Scholar]
  113. 113.
    Weilert MA, Whitaker DL, Maris HJ, Seidel GM 1996. Magnetic levitation and noncoalescence of liquid helium. Phys. Rev. Lett. 77:4840–43
    [Google Scholar]
  114. 114.
    Close JD, Federmann F, Hoffmann K, Quaas N 1998. Helium droplets: a nanoscale cryostat for high resolution spectroscopy and studies of quantized vorticity. J. Low Temp. Phys. 111:661–76
    [Google Scholar]
  115. 115.
    Gomez LF, Loginov E, Vilesov AF 2012. Traces of vortices in superfluid helium droplets. Phys. Rev. Lett. 108:155302
    [Google Scholar]
  116. 116.
    Spence D, Latimer E, Feng C, Boatwright A, Ellis AM, Yang S 2014. Vortex-induced aggregation in superfluid helium droplets. Phys. Chem. Chem. Phys. 16:6903–6
    [Google Scholar]
  117. 117.
    Volk A, Knez D, Thaler P, Hauser AW, Grogger W et al. 2015. Thermal instabilities and Rayleigh breakup of ultrathin silver nanowires grown in helium nanodroplets. Phys. Chem. Chem. Phys. 17:24570–75
    [Google Scholar]
  118. 118.
    Schnedlitz M, Lasserus M, Knez D, Hauser AW, Hofer F, Ernst WE 2017. Thermally induced breakup of metallic nanowires: experiment and theory. Phys. Chem. Chem. Phys. 19:9402–8
    [Google Scholar]
  119. 119.
    Thaler P, Volk A, Ratschek M, Koch M, Ernst WE 2014. Molecular dynamics simulation of the deposition process of cold Ag-clusters under different landing conditions. J. Chem. Phys. 140:044326
    [Google Scholar]
  120. 120.
    Hauser AW, Schnedlitz M, Ernst WE 2017. A coarse-grained Monte Carlo approach to diffusion processes in metallic nanoparticles. Eur. Phys. J. D 71:150
    [Google Scholar]
  121. 121.
    Aguirre NF, Mateo D, Mitrushchenkov AO, Pi M, de Lara-Castells MP 2012. Helium mediated deposition: modeling the He−TiO2(110)-(1×1) interaction potential and application to the collision of a helium droplet from density functional calculations. J. Chem. Phys. 136:124703
    [Google Scholar]
  122. 122.
    de Lara-Castells MP, Stoll H, Civalleri B, Causà M, Voloshina E et al. 2014. Communication: a combined periodic density functional and incremental wave-function-based approach for the dispersion-accounting time-resolved dynamics of 4He nanodroplets on surfaces: 4He/graphene. J. Chem. Phys. 141:151102
    [Google Scholar]
  123. 123.
    de Lara-Castells MP, Aguirre NF, Stoll H, Mitrushchenkov AO, Mateo D, Pi M 2015. Communication: unraveling the 4He droplet-mediated soft-landing from ab initio-assisted and time-resolved density functional simulations: Au@4He300/TiO2(110). J. Chem. Phys. 142:131101
    [Google Scholar]
  124. 124.
    Fernández-Perea R, Gómez LF, Cabrillo C, Pi M, Mitrushchenkov AO et al. 2017. Helium droplet-mediated deposition and aggregation of nanoscale silver clusters on carbon surfaces. J. Phys. Chem. C 121:22248–57
    [Google Scholar]
  125. 125.
    Mozhayskiy V, Slipchenko MN, Adamchuk VK, Vilesov AF 2007. Use of helium nanodroplets for assembly, transport, and surface deposition of large molecular and atomic clusters. J. Chem. Phys. 127:094701
    [Google Scholar]
  126. 126.
    Wu Q, Ridge CJ, Zhao S, Zakharov D, Cen J et al. 2016. Development of a new generation of stable, tunable, and catalytically active nanoparticles produced by the helium nanodroplet deposition method. J. Phys. Chem. Lett. 7:2910–14
    [Google Scholar]
  127. 127.
    Boatwright A, Feng C, Spence D, Latimer E, Binns C et al. 2013. Helium droplets: a new route to nanoparticles. Faraday Discuss 162:113–24
    [Google Scholar]
  128. 128.
    Thaler P, Volk A, Lackner F, Steurer J, Knez D et al. 2014. Formation of bimetallic core-shell nanowires along vortices in superfluid He nanodroplets. Phys. Rev. B 90:155442
    [Google Scholar]
  129. 129.
    Haberfehlner G, Thaler P, Knez D, Volk A, Hofer F et al. 2015. Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography. Nat. Commun. 6:9779
    [Google Scholar]
  130. 130.
    Emery SB, Rider KB, Little BK, Schrand AM, Lindsay CM 2013. Magnesium cluster film synthesis by helium nanodroplets. J. Chem. Phys. 139:054307
    [Google Scholar]
  131. 131.
    Emery SB, Rider KB, Lindsay CM 2014. Stabilized magnesium/perfluoropolyether nanocomposite films by helium droplet cluster assembly. Propellants Explos. Pyrotech. 39:161–65
    [Google Scholar]
  132. 132.
    Emery SB, Xin Y, Ridge CJ, Buszek RJ, Boatz JA et al. 2015. Unusual behavior in magnesium-copper cluster matter produced by helium droplet mediated deposition. J. Chem. Phys. 142:084307
    [Google Scholar]
  133. 133.
    Tanyag RMP, Bernando C, Jones CF, Bacellar C, Ferguson KR et al. 2015. Communication: X-ray coherent diffractive imaging by immersion in nanodroplets. Struct. Dyn. 2:051102
    [Google Scholar]
  134. 134.
    Jones CF, Bernando C, Tanyag RMP, Bacellar C, Ferguson KR et al. 2016. Coupled motion of Xe clusters and quantum vortices in He nanodroplets. Phys. Rev. B 93:180510(R)
    [Google Scholar]
  135. 135.
    Rupp D, Monserud N, Langbehn B, Sauppe M, Zimmermann J et al. 2017. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source. Nat. Commun. 8:493
    [Google Scholar]
  136. 136.
    Langbehn B, Sander K, Ovcharenko Y, Peltz C, Clark A et al. 2018. Three-dimensional shapes of spinning helium nanodroplets. Phys. Rev. Lett. 121:25255301
    [Google Scholar]
  137. 137.
    Fienup JR 1982. Phase retrieval algorithms: a comparison. Appl. Opt. 21:2758–69
    [Google Scholar]
  138. 138.
    Miao J, Sayre D, Chapman HN 1998. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A 15:1662–69
    [Google Scholar]
  139. 139.
    Miao J, Charalambous P, Kirz J, Sayre D 1999. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400:342–44
    [Google Scholar]
  140. 140.
    Marchesini S, He H, Chapman HN, Hau-Riege SP, Noy A et al. 2003. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68:140101(R)
    [Google Scholar]
  141. 141.
    Chapman HN, Barty A, Marchesini S, Noy A, Hau-Riege SP et al. 2006. High-resolution ab initio three-dimensional x-ray diffraction microscopy. J. Opt. Soc. Am. A 23:1179–200
    [Google Scholar]
  142. 142.
    Marchesini S 2007. A unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum. 78:011301
    [Google Scholar]
  143. 143.
    Barty A, Küpper J, Chapman HN 2013. Molecular imaging using X-ray free-electron lasers. Annu. Rev. Phys. Chem. 64:415–35
    [Google Scholar]
  144. 144.
    Chapman HN, Nugent KA 2010. Coherent lensless X-ray imaging. Nat. Photon. 4:833–39
    [Google Scholar]
  145. 145.
    Miao J, Ishikawa T, Robinson IK, Murnane MM 2015. Beyond crystallography: diffractive imaging using coherent x-ray light sources. Science 348:530–35
    [Google Scholar]
  146. 146.
    Lehmann KK 1999. Potential of a neutral impurity in a large 4He cluster. Mol. Phys. 97:645–66
    [Google Scholar]
  147. 147.
    Bernando C, Vilesov AF 2018. Kinematics of the doped quantum vortices in superfluid helium droplets. J. Low Temp. Phys. 191:242–56
    [Google Scholar]
  148. 148.
    Dobbs ER 2001. Helium Three Oxford, UK: Oxford Univ. Press
  149. 149.
    Barranco M, Guilleumas M, Jezek DM, Lombard RJ, Navarro J, Pi M 1999. Nucleation in dilute 3He-4He liquid mixtures at low temperatures. J. Low Temp. Phys. 117:81–100
    [Google Scholar]
  150. 150.
    Alves SG, Vilesov AF, Ferreira SC 2009. Effects of the mean free path and relaxation in a model for the aggregation of particles in superfluid media. J. Chem. Phys. 130:244506
    [Google Scholar]
  151. 151.
    Nauta K, Miller RE 1999. Nonequilibrium self-assembly of long chains of polar molecules in superfluid helium. Science 283:1895–97
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-042018-052744
Loading
/content/journals/10.1146/annurev-physchem-042018-052744
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error