1932

Abstract

Interferometric scattering microscopy (iSCAT) is an extremely sensitive imaging method based on the efficient detection of light scattered by nanoscopic objects. The ability to, at least in principle, maintain high imaging contrast independent of the exposure time or the scattering cross section of the object allows for unique applications in single-particle tracking, label-free imaging of nanoscopic (dis)assembly, and quantitative single-molecule characterization. We illustrate these capabilities in areas as diverse as mechanistic studies of motor protein function, viral capsid assembly, and single-molecule mass measurement in solution. We anticipate that iSCAT will become a widely used approach to unravel previously hidden details of biomolecular dynamics and interactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-050317-021247
2019-06-14
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/70/1/annurev-physchem-050317-021247.html?itemId=/content/journals/10.1146/annurev-physchem-050317-021247&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hooke R 1665. Micrographia, or, Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses: With Observations and Inquiries Thereupon London: J Martyn, J Allestry
  2. 2.
    Jiang Y, Chen Z, Han Y, Deb P, Gao H et al. 2018. Electron ptychography of 2D materials to deep sub-angstrom resolution. Nature 559:343–49
    [Google Scholar]
  3. 3.
    Neuhauser W, Hohenstatt M, Toschek P, Dehmelt H 1980. Localized visible Ba+ mono-ion oscillator. Phys. Rev. A 22:1137
    [Google Scholar]
  4. 4.
    Moerner WE, Kador L 1989. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62:2535–38Demonstrates the first optical detection of single molecules in a condensed phase.
    [Google Scholar]
  5. 5.
    Orrit M, Bernard J 1990. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65:2716–19
    [Google Scholar]
  6. 6.
    Siedentopf H, Zsigmondy R 1902. Über Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann. Phys. 315:1–39
    [Google Scholar]
  7. 7.
    Straube A 2011. How to measure microtubule dynamics?. Methods Mol. Biol. 777:1–14
    [Google Scholar]
  8. 8.
    Streed EW, Jechow A, Norton BG, Kielpinski D 2012. Absorption imaging of a single atom. Nat. Commun. 3:933
    [Google Scholar]
  9. 9.
    Bohren CF, Huffman DR 1983. Absorption and Scattering of Light by Small Particles New York: Wiley
  10. 10.
    Zernike F 1935. Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung. Z. Tech. Phys. 16:454
    [Google Scholar]
  11. 11.
    Nomarski G 1955. Microinterféromètre différentiel à ondes polarisées. J. Phys. Radium 16:9
    [Google Scholar]
  12. 12.
    Allen R, David G 1969. The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z. Wiss. Mikrosk. Mikrosk. Tech. 69:193–221
    [Google Scholar]
  13. 13.
    Kandel ME, Teng KW, Selvin PR, Popescu G 2017. Label-free imaging of single microtubule dynamics using spatial light interference microscopy. ACS Nano 11:647–55
    [Google Scholar]
  14. 14.
    Cotte Y, Toy F, Jourdain P, Pavillon N, Boss D et al. 2013. Marker-free phase nanoscopy. Nat. Photonics 7:113–17
    [Google Scholar]
  15. 15.
    Kim T, Zhou RJ, Mir M, Babacan SD, Carney PS et al. 2014. White-light diffraction tomography of unlabelled live cells. Nat. Photonics 8:256–63
    [Google Scholar]
  16. 16.
    Ortega-Arroyo J, Kukura P 2012. Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys. Chem. Chem. Phys. 14:15625–36
    [Google Scholar]
  17. 17.
    Curtis AS 1964. The mechanism of adhesion of cells to glass: a study by interference reflection microscopy. J. Cell Biol. 20:199–215This early work describes interference reflection microscopy and its first application in a biological context.
    [Google Scholar]
  18. 18.
    Ploem J 1975. Reflection-Contrast Microscopy as a Tool for Investigation of the Attachment of Living Cells to a Glass Surface Oxford: Blackwell
  19. 19.
    Gingell D, Todd I 1979. Interference reflection microscopy. A quantitative theory for image interpretation and its application to cell-substratum separation measurement. Biophys. J. 26:507–26
    [Google Scholar]
  20. 20.
    Limozin L, Sengupta K 2009. Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion. ChemPhysChem 10:2752–68
    [Google Scholar]
  21. 21.
    Rädler J, Sackmann E 1993. Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces. J. Phys. II 3:727–48
    [Google Scholar]
  22. 22.
    Rädler J, Strey H, Sackmann E 1995. Phenomenology and kinetics of lipid bilayer spreading on hydrophilic surfaces. Langmuir 11:4539–48
    [Google Scholar]
  23. 23.
    Amos LA, Amos WB 1991. The bending of sliding microtubules imaged by confocal light microscopy and negative stain electron microscopy. J. Cell Sci. 1991:Suppl. 1495–101Describes the use of a confocal microscope in reflection mode to image microtubules, filaments of only 25-nm diameter.
    [Google Scholar]
  24. 24.
    Tsien RY 1998. The green fluorescent protein. Annu. Rev. Biochem. 67:509–44
    [Google Scholar]
  25. 25.
    Boyer D, Tamarat P, Maali A, Lounis B, Orrit M 2002. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–63
    [Google Scholar]
  26. 26.
    Lindfors K, Kalkbrenner T, Stoller P, Sandoghdar V 2004. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93:037401Demonstrates detection and spectroscopy of gold nanoparticles down to 5-nm diameter in a confocal reflection arrangement.
    [Google Scholar]
  27. 27.
    Jacobsen V, Stoller P, Brunner C, Vogel V, Sandoghdar V 2006. Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface. Opt. Express 14:405–14
    [Google Scholar]
  28. 28.
    Ewers H, Jacobsen V, Klotzsch E, Smith AE, Helenius A, Sandoghdar V 2007. Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers. Nano Lett 7:2263–66
    [Google Scholar]
  29. 29.
    Kukura P, Ewers H, Muller C, Renn A, Helenius A, Sandoghdar V 2009. High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 6:923–27Introduces the term iSCAT and concepts enabling shot noise–limited detection sensitivity below the limit imposed by background scattering.
    [Google Scholar]
  30. 30.
    Shen H, Tauzin LJ, Baiyasi R, Wang W, Moringo N et al. 2017. Single particle tracking: from theory to biophysical applications. Chem. Rev. 117:7331–76
    [Google Scholar]
  31. 31.
    Thompson RE, Larson DR, Webb WW 2002. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82:2775–83
    [Google Scholar]
  32. 32.
    Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR 2003. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–65
    [Google Scholar]
  33. 33.
    English BP, Hauryliuk V, Sanamrad A, Tankov S, Dekker NH, Elf J 2011. Single-molecule investigations of the stringent response machinery in living bacterial cells. PNAS 108:E365–73
    [Google Scholar]
  34. 34.
    Uphoff S, Reyes-Lamothe R, Garza de Leon F, Sherratt DJ, Kapanidis AN 2013. Single-molecule DNA repair in live bacteria. PNAS 110:8063–68
    [Google Scholar]
  35. 35.
    Balzarotti F, Eilers Y, Gwosch KC, Gynna AH, Westphal V et al. 2017. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355:606–12
    [Google Scholar]
  36. 36.
    Kues T, Peters R, Kubitscheck U 2001. Visualization and tracking of single protein molecules in the cell nucleus. Biophys. J. 80:2954–67
    [Google Scholar]
  37. 37.
    Kubitscheck U, Kuckmann O, Kues T, Peters R 2000. Imaging and tracking of single GFP molecules in solution. Biophys. J. 78:2170–79
    [Google Scholar]
  38. 38.
    Seisenberger G, Ried MU, Endress T, Buning H, Hallek M, Brauchle C 2001. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294:1929–32
    [Google Scholar]
  39. 39.
    Yildiz A, Selvin PR 2005. Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc. Chem. Res. 38:574–82
    [Google Scholar]
  40. 40.
    Pierobon P, Achouri S, Courty S, Dunn AR, Spudich JA et al. 2009. Velocity, processivity, and individual steps of single myosin V molecules in live cells. Biophys. J. 96:4268–75
    [Google Scholar]
  41. 41.
    Trybus KM 2008. Myosin V from head to tail. Cell. Mol. Life Sci. 65:1378–89
    [Google Scholar]
  42. 42.
    Warshaw DM, Kennedy GG, Work SS, Krementsova EB, Beck S, Trybus KM 2005. Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys. J. 88:L30–32
    [Google Scholar]
  43. 43.
    Sakamoto T, Webb MR, Forgacs E, White HD, Sellers JR 2008. Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature 455:128–32
    [Google Scholar]
  44. 44.
    Dunn AR, Spudich JA 2007. Dynamics of the unbound head during myosin V processive translocation. Nat. Struct. Mol. Biol. 14:246–48
    [Google Scholar]
  45. 45.
    Andrecka J, Ortega Arroyo J, Takagi Y, de Wit G, Fineberg A et al. 2015. Structural dynamics of myosin 5 during processive motion revealed by interferometric scattering microscopy. eLife 4:e05413Provides an example of highly precise single-particle tracking of gold-labeled motor proteins at speeds up to 1 kHz.
    [Google Scholar]
  46. 46.
    Mickolajczyk KJ, Deffenbaugh NC, Arroyo JO, Andrecka J, Kukura P, Hancock WO 2015. Kinetics of nucleotide-dependent structural transitions in the kinesin-1 hydrolysis cycle. PNAS 112:E7186–93
    [Google Scholar]
  47. 47.
    Andrecka J, Takagi Y, Mickolajczyk KJ, Lippert LG, Sellers JR et al. 2016. Interferometric scattering microscopy for the study of molecular motors. Methods Enzymol 581:517–39
    [Google Scholar]
  48. 48.
    Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A 2002. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157:1071–81
    [Google Scholar]
  49. 49.
    Lin YH, Chang WL, Hsieh CL 2014. Shot-noise limited localization of single 20 nm gold particles with nanometer spatial precision within microseconds. Opt. Express 22:9159–70Demonstrates high-speed tracking of 20-nm gold nanoparticles at 500 kHz with a localization precision of 2 nm.
    [Google Scholar]
  50. 50.
    Spillane KM, Ortega-Arroyo J, de Wit G, Eggeling C, Ewers H et al. 2014. High-speed single-particle tracking of GM1 in model membranes reveals anomalous diffusion due to interleaflet coupling and molecular pinning. Nano Lett 14:5390–97
    [Google Scholar]
  51. 51.
    Spindler S, Ehrig J, Konig K, Nowak T, Piliarik M et al. 2016. Visualization of lipids and proteins at high spatial and temporal resolution via interferometric scattering (iSCAT) microscopy. J. Phys. D 49:349601
    [Google Scholar]
  52. 52.
    Wu HM, Lin YH, Yen TC, Hsieh CL 2016. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking. Sci. Rep. 6:20542
    [Google Scholar]
  53. 53.
    Isojima H, Iino R, Niitani Y, Noji H, Tomishige M 2016. Direct observation of intermediate states during the stepping motion of kinesin-1. Nat. Chem. Biol. 12:290–97
    [Google Scholar]
  54. 54.
    de Wit G, Albrecht D, Ewers H, Kukura P 2018. Revealing compartmentalized diffusion in living cells with interferometric scattering microscopy. Biophys. J. 114:2945–50
    [Google Scholar]
  55. 55.
    Xu K, Zhong G, Zhuang X 2013. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452–56
    [Google Scholar]
  56. 56.
    Taylor RW, Mahmoodabadi RG, Rauschenberger V, Giessl A, Schambony A, Sandoghdar V 2018. Interferometric scattering microscopy reveals microsecond nanoscopic protein motion on a live cell membrane. bioRxiv 401133. https://doi.org/10.1101/401133
    [Crossref]
  57. 57.
    Huang YF, Zhuo GY, Chou CY, Lin CH, Chang W, Hsieh CL 2017. Coherent brightfield microscopy provides the spatiotemporal resolution to study early stage viral infection in live cells. ACS Nano 11:2575–85
    [Google Scholar]
  58. 58.
    Huang YF, Zhuo GY, Chou CY, Lin CH, Hsieh CL 2017. Label-free, ultrahigh-speed, 3D observation of bidirectional and correlated intracellular cargo transport by coherent brightfield microscopy. Nanoscale 9:6567–74
    [Google Scholar]
  59. 59.
    Cheng C-Y, Hsieh C-L 2017. Background estimation and correction for high-precision localization microscopy. ACS Photonics 4:1730–39
    [Google Scholar]
  60. 60.
    Andrecka J, Ortega-Arroyo J, Cross R, Kukura P 2016. Label-free imaging of microtubules with subnanometer precision using interferometric scattering microscopy. Biophys. J. 110:1214–17
    [Google Scholar]
  61. 61.
    Andrecka J, Spillane KM, Ortega-Arroyo J, Kukura P 2013. Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy. ACS Nano 7:10662–70
    [Google Scholar]
  62. 62.
    Veatch SL, Keller SL 2005. Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. Acta 1746:172–85
    [Google Scholar]
  63. 63.
    Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M et al. 2001. Lipid rafts reconstituted in model membranes. Biophys. J. 80:1417–28
    [Google Scholar]
  64. 64.
    Baumgart T, Hammond AT, Sengupta P, Hess ST, Holowka DA et al. 2007. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. PNAS 104:3165–70
    [Google Scholar]
  65. 65.
    de Wit G, Danial JS, Kukura P, Wallace MI 2015. Dynamic label-free imaging of lipid nanodomains. PNAS 112:12299–303
    [Google Scholar]
  66. 66.
    de Frutos M, Letellier L, Raspaud E 2005. DNA ejection from bacteriophage T5: analysis of the kinetics and energetics. Biophys. J. 88:1364–70
    [Google Scholar]
  67. 67.
    Goldfain AM, Garmann RF, Jin Y, Lahini Y, Manoharan VN 2016. Dynamic measurements of the position, orientation, and DNA content of individual unlabeled bacteriophages. J. Phys. Chem. B 120:6130–38
    [Google Scholar]
  68. 68.
    Grayson P, Han L, Winther T, Phillips R 2007. Real-time observations of single bacteriophage λ DNA ejections in vitro. PNAS 104:14652–57
    [Google Scholar]
  69. 69.
    Garmann RF, Goldfain AM, Manoharan VN 2018. Measuring the self-assembly kinetics of individual viral capsids. bioRxiv 265330. https://doi.org/10.1101/265330
    [Crossref]
  70. 70.
    Celebrano M, Kukura P, Renn A, Sandoghdar V 2011. Single-molecule imaging by optical absorption. Nat. Photonics 5:95
    [Google Scholar]
  71. 71.
    Kukura P, Celebrano M, Renn A, Sandoghdar V 2010. Single-molecule sensitivity in optical absorption at room temperature. J. Phys. Chem. Lett. 1:3323–27
    [Google Scholar]
  72. 72.
    Gaiduk A, Yorulmaz M, Ruijgrok PV, Orrit M 2010. Room-temperature detection of a single molecule's absorption by photothermal contrast. Science 330:353–56
    [Google Scholar]
  73. 73.
    Chong S, Min W, Xie XS 2010. Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1:3316–22
    [Google Scholar]
  74. 74.
    Ortega Arroyo J, Andrecka J, Spillane KM, Billington N, Takagi Y et al. 2014. Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett 14:2065–70Demonstrates the first all-optical nonresonant detection of individual, unlabeled proteins.
    [Google Scholar]
  75. 75.
    Piliarik M, Sandoghdar V 2014. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 5:4495
    [Google Scholar]
  76. 76.
    Cole D, Young G, Weigel A, Sebesta A, Kukura P 2017. Label-free single-molecule imaging with numerical-aperture-shaped interferometric scattering microscopy. ACS Photonics 4:211–16Explains the concept and implementation of numerical aperture filtering for enhanced interferometric contrast.
    [Google Scholar]
  77. 77.
    Liebel M, Hugall JT, van Hulst NF 2017. Ultrasensitive label-free nanosensing and high-speed tracking of single proteins. Nano Lett 17:1277–81
    [Google Scholar]
  78. 78.
    Young G, Hundt N, Cole D, Fineberg A, Andrecka J et al. 2018. Quantitative mass imaging of single biological macromolecules. Science 360:423–27Demonstrates the concept of using interferometric contrast of single biomolecules for quantitative measurements of their mass.
    [Google Scholar]
  79. 79.
    Swanson MD, Winter HC, Goldstein IJ, Markovitz DM 2010. A lectin isolated from bananas is a potent inhibitor of HIV replication. J. Biol. Chem. 285:8646–55
    [Google Scholar]
  80. 80.
    Hopper JTS, Ambrose S, Grant OC, Krumm SA, Allison TM et al. 2017. The tetrameric plant lectin BanLec neutralizes HIV through bidentate binding to specific viral glycans. Structure 25:773–82.e5
    [Google Scholar]
  81. 81.
    Lusvarghi S, Lohith K, Morin-Leisk J, Ghirlando R, Hinshaw JE, Bewley CA 2016. Binding site geometry and subdomain valency control effects of neutralizing lectins on HIV-1 viral particles. ACS Infect. Dis. 2:882–91
    [Google Scholar]
  82. 82.
    Tobacman LS, Korn ED 1983. The kinetics of actin nucleation and polymerization. J. Biol. Chem. 258:3207–14
    [Google Scholar]
  83. 83.
    Carlier MF, Pantaloni D 1986. Direct evidence for ADP-Pi-F-actin as the major intermediate in ATP-actin polymerization. Rate of dissociation of Pi from actin filaments. Biochemistry 25:7789–92
    [Google Scholar]
  84. 84.
    Wegner A, Engel J 1975. Kinetics of the cooperative association of actin to actin filaments. Biophys. Chem. 3:215–25
    [Google Scholar]
  85. 85.
    Pollard TD 1986. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol. 103:2747–54
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-050317-021247
Loading
/content/journals/10.1146/annurev-physchem-050317-021247
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error