1932

Abstract

This review article focuses on the understanding of intersystem crossing (ISC) in molecules. It addresses readers who are interested in the phenomenon of intercombination transitions between states of different electron spin multiplicities but are not familiar with relativistic quantum chemistry. Among the spin-dependent interaction terms that enable a crossover between states of different electron spin multiplicities, spin–orbit coupling (SOC) is by far the most important. If SOC is small or vanishes by symmetry, ISC can proceed by electronic spin–spin coupling (SSC) or hyperfine interaction (HFI). Although this review discusses SSC- and HFI-based ISC, the emphasis is on SOC-based ISC. In addition to laying the theoretical foundations for the understanding of ISC, the review elaborates on the qualitative rules for estimating transition probabilities. Research on the mechanisms of ISC has experienced a major revival in recent years owing to its importance in organic light-emitting diodes (OLEDs). Exemplified by challenging case studies, chemical substitution and solvent environment effects are discussed with the aim of helping the reader to understand and thereby get a handle on the factors that steer the efficiency of ISC.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-061020-053433
2021-04-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-061020-053433.html?itemId=/content/journals/10.1146/annurev-physchem-061020-053433&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Tang CW, VanSlyke SA. 1987. Organic electroluminescent diodes. Appl. Phys. Lett. 51:913–15
    [Google Scholar]
  2. 2. 
    Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S et al. 1998. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–54
    [Google Scholar]
  3. 3. 
    Kappaun S, Slugovc C, List EJW. 2008. Phosphorescent organic light-emitting devices: working principle and iridium based emitter materials. Int. J. Mol. Sci. 9:1527–47
    [Google Scholar]
  4. 4. 
    Yersin H, Rausch AF, Czerwieniec R, Hofbeck T, Fischer T. 2011. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord. Chem. Rev. 255:2622–52
    [Google Scholar]
  5. 5. 
    Choy WCH, Chan WK, Yuan Y. 2014. Recent advances in transition metal complexes and light-management engineering in organic optoelectronic devices. Adv. Mater. 26:5368–99
    [Google Scholar]
  6. 6. 
    Hack M. 2015. Current status of phosphorescent organic light-emitting devices. SPIE News June 30. https://spie.org/news/5856-current-status-of-phosphorescent-organic-light-emitting-devices?SSO=1
    [Google Scholar]
  7. 7. 
    Lee JH, Chen CH, Lee PH, Lin HY, Leung MK et al. 2019. Blue organic light-emitting diodes: current status, challenges, and future outlook. J. Mater. Chem. C 7:5874–88
    [Google Scholar]
  8. 8. 
    Strassner T. 2016. Phosphorescent platinum(II) complexes with C∧C* cyclometalated NHC ligands. Acc. Chem. Res. 49:2680–89
    [Google Scholar]
  9. 9. 
    Pinter P, Soellner J, Strassner T. 2019. Sky-blue triplet emitters with cyclometalated imidazopyrazine-based NHC ligands and aromatic bulky acetylacetonates. Chem. Eur. J. 25:14495–99
    [Google Scholar]
  10. 10. 
    Lee J, Chen HF, Batagoda T, Coburn C, Djurovich PI et al. 2016. Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. Nat. Mater. 15:92–98
    [Google Scholar]
  11. 11. 
    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. 2012. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234–38
    [Google Scholar]
  12. 12. 
    Dias FB, Bourdakos KN, Jankus V, Moss KC, Kamtekar KT et al. 2013. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv. Mater. 25:3707–14
    [Google Scholar]
  13. 13. 
    Yang Z, Mao Z, Xie Z, Zhang Y, Liu S et al. 2017. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 46:915–1016
    [Google Scholar]
  14. 14. 
    Shi S, Jung MC, Coburn C, Tadle A, Sylvinson MRD et al. 2019. Highly efficient photo- and electroluminescence from two-coordinate Cu(I) complexes featuring nonconventional N-heterocyclic carbenes. J. Am. Chem. Soc. 141:3576–88
    [Google Scholar]
  15. 15. 
    Hamze R, Peltier JL, Sylvinson MRD, Jung M, Cardenas J et al. 2019. Eliminating nonradiative decay in Cu(I) emitters: >99% quantum efficiency and microsecond lifetime. Science 363:601–6
    [Google Scholar]
  16. 16. 
    Gernert M, Balles-Wolf L, Kerner F, Müller U, Schmiedel A et al. 2020. Cyclic (amino)(aryl)carbenes enter the field of chromophore ligands: Expanded π system leads to unusually deep red emitting CuI compounds. J. Am. Chem. Soc. 142:8897–909
    [Google Scholar]
  17. 17. 
    Dias FB, Santos J, Graves DR, Data P, Nobuyasu RS et al. 2016. The role of local triplet excited states and D-A relative orientation in thermally activated delayed fluorescence: photophysics and devices. Adv. Sci. 3:1600080
    [Google Scholar]
  18. 18. 
    Penfold TJ, Gindensperger E, Daniel C, Marian CM. 2018. Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 118:6975–7025
    [Google Scholar]
  19. 19. 
    Xu S, Yang Q, Wan Y, Chen R, Wang S et al. 2019. Predicting intersystem crossing efficiencies of organic molecules for efficient thermally activated delayed fluorescence. J. Mater. Chem. C 7:9523–30
    [Google Scholar]
  20. 20. 
    Nakanotani H, Higuchi T, Furukawa T, Masui K, Morimoto K et al. 2014. High-efficiency organic light-emitting diodes with fluorescent emitters. Nat. Commun. 5:4016–22
    [Google Scholar]
  21. 21. 
    Furukawa T, Nakanotani H, Inoue M, Adachi C. 2015. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs. Sci. Rep. 5:8429
    [Google Scholar]
  22. 22. 
    Baldo MA, Thompson ME, Forrest SR. 2000. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature 403:750–53
    [Google Scholar]
  23. 23. 
    D'Andrade BW, Baldo MA, Adachi C, Brooks J, Thompson ME, Forrest SR. 2001. High-efficiency yellow double-doped organic light-emitting devices based on phosphor-sensitized fluorescence. Appl. Phys. Lett. 79:1045–47
    [Google Scholar]
  24. 24. 
    Heimel P, Mondal A, May F, Kowalsky W, Lennartz C et al. 2018. Unicolored phosphor-sensitized fluorescence for efficient and stable blue OLEDs. Nat. Commun. 9:4990
    [Google Scholar]
  25. 25. 
    Yao J, Chen Y, Wu Y, Qiao X, Yang D et al. 2020. High efficiency and low efficiency roll-off all fluorescent white organic light-emitting diodes based on phosphor sensitization. J. Mater. Chem. C 8:1666–72
    [Google Scholar]
  26. 26. 
    Pauli W. 1927. Zur Quantenmechanik des magnetischen Elektrons. Z. Phys. 43:601–28
    [Google Scholar]
  27. 27. 
    Marian CM 2001. Spin-orbit coupling in molecules. Reviews in Computational Chemistry, Vol. 17 KB Lipkowitz, DB Boyd 99–204 New York: Wiley
    [Google Scholar]
  28. 28. 
    Moss R. 1997. Advanced Molecular Quantum Mechanics Dordrecht, Neth: Springer
  29. 29. 
    Sakurai JJ. 1993. Modern Quantum Mechanics New York: Addison-Wesley
  30. 30. 
    Dyall KG, Fægri K Jr. 2007. Introduction to Relativistic Quantum Chemistry Oxford, UK: Oxford Univ. Press
  31. 31. 
    Reiher M, Wolf A 2009. Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science New York: Wiley
  32. 32. 
    Hess BA, Marian CM, Wahlgren U, Gropen O. 1996. A mean-field spin-orbit method applicable to correlated wavefunctions. Chem. Phys. Lett. 251:365–71
    [Google Scholar]
  33. 33. 
    Berning A, Werner HJ, Schweizer M, Knowles PJ, Palmieri P. 2000. Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions. Mol. Phys. 98:1823–33
    [Google Scholar]
  34. 34. 
    Neese F. 2005. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J. Chem. Phys. 122:034107
    [Google Scholar]
  35. 35. 
    Samzow R, Hess BA. 1991. Spin-orbit effects in the Br atom in the framework of the no-pair theory. Chem. Phys. Lett. 184:491–96
    [Google Scholar]
  36. 36. 
    van Lenthe E, Snijders JG, Baerends EJ. 1996. The zero-order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. J. Chem. Phys. 105:6505–16
    [Google Scholar]
  37. 37. 
    Koseki S, Gordon MS, Schmidt MW, Matsunaga N. 1995. Main group effective nuclear charges for spin-orbit calculations. J. Phys. Chem. 99:12764–72
    [Google Scholar]
  38. 38. 
    Koseki S, Schmidt MW, Gordon MS. 1998. Effective nuclear charges for the first- through third-row transition metal elements in spin–orbit calculations. J. Phys. Chem. A 102:10430–35
    [Google Scholar]
  39. 39. 
    Christiansen PA, Ermler WC, Pitzer KS. 1985. Relativistic effects in chemical systems. Annu. Rev. Phys. Chem. 36:407–32
    [Google Scholar]
  40. 40. 
    Cundari TR, Benson MT, Lutz ML, Sommerer SO. 1996. Effective core potential approaches to the chemistry of the heavier elements. Reviews in Computational Chemistry, Vol. 8 KB Lipkowitz, DB Boyd 145–202 New York: Wiley
    [Google Scholar]
  41. 41. 
    Dolg M. 2000. Effective core potentials. Modern Methods and Algorithms of Quantum Chemistry J Grotendorst 479–508 NIC Ser . Vol. 1 Jülich, Ger: John von Neumann Inst. Comput.
    [Google Scholar]
  42. 42. 
    Pitzer RM, Winter NW. 1988. Electronic-structure methods for heavy-atom molecules. J. Phys. Chem. 92:3061–63
    [Google Scholar]
  43. 43. 
    Kleinschmidt M, van Wüllen C, Marian CM 2015. Intersystem-crossing and phosphorescence rates in fac-IrIII (ppy)3: a theoretical study involving multi-reference configuration interaction wavefunctions. J. Chem. Phys. 142:094301
    [Google Scholar]
  44. 44. 
    Cheng YY, Fückel B, Khoury T, Clady RGCR, Tayebjee MJY et al. 2010. Kinetic analysis of photochemical upconversion by triplet-triplet annihilation: beyond any spin statistical limit. J. Phys. Chem. Lett. 1:1795–99
    [Google Scholar]
  45. 45. 
    Schmidt TW, Castellano FN. 2014. Photochemical upconversion: the primacy of kinetics. J. Phys. Chem. Lett. 5:4062–72
    [Google Scholar]
  46. 46. 
    Tayebjee MJY, Sanders SN, Kumarasamy E, Campos LM, Sfeir MY, McCamey DR. 2017. Quintet multiexciton dynamics in singlet fission. Nat. Phys. 13:182–88
    [Google Scholar]
  47. 47. 
    Sakai H, Inaya R, Nagashima H, Nakamura S, Kobori Y et al. 2018. Multiexciton dynamics depending on intramolecular orientations in pentacene dimers: recombination and dissociation of correlated triplet pairs. J. Phys. Chem. Lett. 9:3354–60
    [Google Scholar]
  48. 48. 
    Musser AJ, Clark J. 2019. Triplet-pair states in organic semiconductors. Annu. Rev. Phys. Chem. 70:323–51
    [Google Scholar]
  49. 49. 
    Ogiwara T, Wakikawa Y, Ikoma T. 2015. Mechanism of intersystem crossing of thermally activated delayed fluorescence molecules. J. Phys. Chem. A 119:3415–18
    [Google Scholar]
  50. 50. 
    Etherington MK, Gibson J, Higginbotham HF, Penfold TJ, Monkman AP. 2016. Revealing the spin-vibronic coupling mechanism of thermally activated delayed fluorescence. Nat. Commun. 7:13680
    [Google Scholar]
  51. 51. 
    Gibson J, Monkman AP, Penfold TJ. 2016. The importance of vibronic coupling for efficient reverse intersystem crossing in thermally activated delayed fluorescence molecules. Chem. Phys. Chem. 17:2956–61
    [Google Scholar]
  52. 52. 
    Eng J, Penfold TJ. 2020. Understanding and designing thermally activated delayed fluorescence emitters: beyond the energy gap approximation. Chem. Rec. 20:1–27
    [Google Scholar]
  53. 53. 
    Capano G, Chergui M, Rothlisberger U, Tavernelli I, Penfold TJ. 2014. A quantum dynamics study of the ultrafast relaxation in a prototypical Cu(I)–phenanthroline. J. Phys. Chem. A 118:9861–69
    [Google Scholar]
  54. 54. 
    Cui G, Thiel W. 2014. Generalized trajectory surface-hopping method for internal conversion and intersystem crossing. J. Chem. Phys. 141:124101
    [Google Scholar]
  55. 55. 
    Mai S, Marquetand P, González L. 2015. A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int. J. Quantum Chem. 115:1215–31
    [Google Scholar]
  56. 56. 
    Marazzi M, Mai S, Roca-Sanjuán D, Delcey MG, Lindh R et al. 2016. Benzophenone ultrafast triplet population: revisiting the kinetic model by surface-hopping dynamics. J. Phys. Chem. Lett. 7:622–26
    [Google Scholar]
  57. 57. 
    Favero L, Granucci G, Persico M. 2016. Surface hopping investigation of benzophenone excited state dynamics. Phys. Chem. Chem. Phys. 18:10499–506
    [Google Scholar]
  58. 58. 
    Fumanal M, Plasser F, Mai S, Daniel C, Gindensperger E. 2018. Interstate vibronic coupling constants between electronic excited states for complex molecules. J. Chem. Phys. 148:124119
    [Google Scholar]
  59. 59. 
    van Veenendaal M. 2020. Dissipation and dynamics in ultrafast intersystem crossings. J. Chem. Phys. 152:024104
    [Google Scholar]
  60. 60. 
    Etinski M, Tatchen J, Marian CM. 2014. Thermal and solvent effects on the triplet formation in cinnoline. Phys. Chem. Chem. Phys. 16:4740–51
    [Google Scholar]
  61. 61. 
    Henry BR, Siebrand W. 1971. Spin-orbit coupling in aromatic hydrocarbons. Analysis of nonradiative transitions between singlet and triplet states in benzene and naphthalene. J. Chem. Phys. 54:1072–85
    [Google Scholar]
  62. 62. 
    Peng Q, Niu Y, Shi Q, Gao X, Shuai Z. 2013. Correlation function formalism for triplet excited state decay: combined spin–orbit and nonadiabatic couplings. J. Chem. Theory Comput. 9:1132–43
    [Google Scholar]
  63. 63. 
    Etinski M, Rai-Constapel V, Marian CM 2014. Time-dependent approach to spin-vibronic coupling: implementation and assessment. J. Chem. Phys. 140:114104
    [Google Scholar]
  64. 64. 
    de Souza B, Farias G, Neese F, Izsák R. 2019. Predicting phosphorescence rates of light organic molecules using time-dependent density functional theory and the path integral approach to dynamics. J. Chem. Theory Comput. 15:1896–904
    [Google Scholar]
  65. 65. 
    Lawetz V, Orlandi G, Siebrand W. 1972. Theory of intersystem crossing in aromatic hydrocarbons. J. Chem. Phys. 56:4058–72
    [Google Scholar]
  66. 66. 
    Marian CM. 2016. Mechanism of the triplet-to-singlet upconversion in the assistant dopant ACRXTN. J. Phys. Chem. C 120:3715–21
    [Google Scholar]
  67. 67. 
    El-Sayed MA. 1962. The radiationless processes involving change of multiplicity in the diazenes. J. Chem. Phys. 36:573–74
    [Google Scholar]
  68. 68. 
    El-Sayed MA. 1963. Spin-orbit coupling and the radiationless processes in nitrogen heterocyclics. J. Chem. Phys. 38:2834–38
    [Google Scholar]
  69. 69. 
    McNaught AD, Wilkinson A. 1997. Compendium of Chemical Terminology New York: Blackwell Sci. , 2nd ed..
  70. 70. 
    Kobayashi T, Nagakura S. 1976. Picosecond time-resolved spectroscopy and the intersystem crossing rates of anthrone and fluorenone. Chem. Phys. Lett. 43:429–34
    [Google Scholar]
  71. 71. 
    Spighi G, Gaveau MA, Mestdagh JM, Poisson L, Soep B. 2014. Gas phase dynamics of triplet formation in benzophenone. Phys. Chem. Chem. Phys. 16:9610–18
    [Google Scholar]
  72. 72. 
    Englman R, Jortner J. 1970. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18:145–64
    [Google Scholar]
  73. 73. 
    Lin SH, Bersohn R. 1968. Effect of partial deuteration and temperature on triplet-state lifetimes. J. Chem. Phys. 48:2732–36
    [Google Scholar]
  74. 74. 
    Duschinsky F. 1937. The importance of the electron spectrum in multi atomic molecules concerning the Frank–Condon principle. Acta Physicochim 7:551–66
    [Google Scholar]
  75. 75. 
    Reimers JR. 2001. A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules. J. Chem. Phys. 115:9103–9
    [Google Scholar]
  76. 76. 
    Yuster P, Weissman SI. 1949. Effects of perturbations on phosphorescence: luminescence of metal organic complexes. J. Chem. Phys. 17:1182–88
    [Google Scholar]
  77. 77. 
    McClure DS. 1949. Triplet–singlet transitions in organic molecules. Lifetime measurements of the triplet state. J. Chem. Phys. 17:905–13
    [Google Scholar]
  78. 78. 
    Kasha M. 1950. Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 9:14–19
    [Google Scholar]
  79. 79. 
    McGlynn SP, Sunseri R, Christodouleas N. 1962. External heavy-atom spin–orbital coupling effect. I. The nature of the interaction. J. Chem. Phys. 37:1818–24
    [Google Scholar]
  80. 80. 
    Hsu CW, Lin CC, Chung MW, Chi Y, Lee GH et al. 2011. Systematic investigation of the metal-structure–photophysics relationship of emissive d10-complexes of group 11 elements: the prospect of application in organic light emitting devices. J. Am. Chem. Soc. 133:12085–99
    [Google Scholar]
  81. 81. 
    Föller J. 2018. Quantum chemical investigation of coinage metal complexes with regard to their application in OLEDs PhD Thesis, Heinrich Heine Univ. Düsseldorf, Ger:.
  82. 82. 
    Kasha M. 1952. Collisional perturbation of spin-orbital coupling and the mechanism of fluorescence quenching. A visual demonstration of the perturbation. J. Chem. Phys. 20:71–74
    [Google Scholar]
  83. 83. 
    Giachino GG, Kearns DR. 1970. Nature of the external heavy-atom effect on radiative and nonradiative singlet-triplet transitions. J. Chem. Phys. 52:2964–74
    [Google Scholar]
  84. 84. 
    Komada Y, Yamauchi S, Hirota N. 1985. Mechanisms of external heavy atom effects on the lowest excited triplet states: naphthalene and biphenyl X traps. J. Chem. Phys. 82:1651–60
    [Google Scholar]
  85. 85. 
    McGlynn SP, Daigre J, Smith FJ. 1963. External heavy-atom spin–orbital coupling effect. IV. Intersystem crossing. J. Chem. Phys. 39:675–79
    [Google Scholar]
  86. 86. 
    Chandra AK, Turro NJ, Lyons AL, Stone P. 1978. The intramolecular external heavy atom effect in bromo-, benzo-, and naphthonorbornenes. J. Am. Chem. Soc. 100:4964–68
    [Google Scholar]
  87. 87. 
    Minaev BF, Knuts S, Ågren H. 1994. On the interpretation of the external heavy atom effect on singlet–triplet transitions. Chem. Phys. 181:15–28
    [Google Scholar]
  88. 88. 
    Shimizu Y, Azumi T. 1982. Mechanism of external heavy atom effect on intersystem crossing in fluid solutions. Analysis based on fluorescence decay data. J. Phys. Chem. 86:22–26
    [Google Scholar]
  89. 89. 
    Mennucci B, Cancès E, Tomasi J. 1997. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J. Phys. Chem. B 101:10506
    [Google Scholar]
  90. 90. 
    Tomasi J, Mennucci B, Cammi R 2005. Quantum mechanical continuum solvation models. Chem. Rev. 105:2999–3094
    [Google Scholar]
  91. 91. 
    Klamt A, Schüürmann G. 1993. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2:799–805
    [Google Scholar]
  92. 92. 
    Caricato M, Mennucci B, Tomasi J, Ingrosso F, Cammi R et al. 2006. Formation and relaxation of excited states in solution: a new time dependent polarizable continuum model based on time dependent density functional theory. J. Chem. Phys. 124:124520
    [Google Scholar]
  93. 93. 
    Cammi R, Corni S, Mennucci B, Tomasi J. 2005. Electronic excitation energies of molecules in solution: state specific and linear response methods for nonequilibrium continuum solvation models. J. Chem. Phys. 122:104513
    [Google Scholar]
  94. 94. 
    Mewes JM, Herbert JM, Dreuw A. 2017. On the accuracy of the general, state-specific polarizable-continuum model for the description of correlated ground- and excited states in solution. Phys. Chem. Chem. Phys. 19:1644–54
    [Google Scholar]
  95. 95. 
    Di D, Romanov AS, Yang L, Richter JM, Rivett JPH et al. 2017. High-performance light-emitting diodes based on carbene–metal–amides. Science 356:159–63
    [Google Scholar]
  96. 96. 
    Föller J, Marian CM. 2017. Rotationally assisted spin-state inversion in carbene–metal–amides is an artifact. J. Phys. Chem. Lett. 8:5643–47
    [Google Scholar]
  97. 97. 
    Thompson S, Eng J, Penfold TJ. 2018. The intersystem crossing of a cyclic (alkyl)(amino) carbene gold(I) complex. J. Chem. Phys. 149:014304
    [Google Scholar]
  98. 98. 
    Eng J, Thompson S, Goodwin H, Credgington D, Penfold TJ. 2020. Competition between the heavy atom effect and vibronic coupling in donor–bridge–acceptor organometallics. Phys. Chem. Chem. Phys. 22:4659–67
    [Google Scholar]
  99. 99. 
    Lüdtke N, Föller J, Marian CM. 2020. Understanding the luminescence properties of Cu(I) complexes: a quantum chemical perusal. Phys. Chem. Chem. Phys. 22:23530–44
    [Google Scholar]
  100. 100. 
    Salzmann S, Tatchen J, Marian CM. 2008. The photophysics of flavins: What makes the difference between gas phase and aqueous solution?. J. Photochem. Photobiol. A 198:221–31
    [Google Scholar]
  101. 101. 
    Villnow T, Ryseck G, Rai-Constapel V, Marian CM, Gilch P. 2014. Chimeric behavior of excited thioxanthone in protic solvents. I. Experiments. J. Phys. Chem. A 118:11696–707
    [Google Scholar]
  102. 102. 
    Rai-Constapel V, Villnow T, Ryseck G, Gilch P, Marian CM. 2014. Chimeric behavior of excited thioxanthone in protic solvents. II. Theory. J. Phys. Chem. A 118:11708–17
    [Google Scholar]
  103. 103. 
    Heinz B, Schmidt B, Root C, Satzger H, Milota F et al. 2006. On the unusual fluorescence properties of xanthone in water. Phys. Chem. Chem. Phys. 8:3432–39
    [Google Scholar]
  104. 104. 
    Rai-Constapel V, Etinski M, Marian CM. 2013. Photophysics of xanthone: a quantum chemical perusal. J. Phys. Chem. A 117:3935–44
    [Google Scholar]
  105. 105. 
    Torres Ziegenbein C, Fröbel S, Glöß M, Nobuyasu RS, Data P et al. 2017. Triplet harvesting with a simple aromatic carbonyl. Chem. Phys. Chem. 18:2314–17
    [Google Scholar]
  106. 106. 
    Mundt R, Villnow T, Ziegenbein CT, Gilch P, Marian C, Rai-Constapel V. 2016. Thioxanthone in apolar solvents: Ultrafast internal conversion precedes fast intersystem crossing. Phys. Chem. Chem. Phys. 18:6637–47
    [Google Scholar]
  107. 107. 
    Soep B, Mestdagh JM, Briant M, Gaveau MA, Poisson L. 2016. Direct observation of slow intersystem crossing in an aromatic ketone, fluorenone. Phys. Chem. Chem. Phys. 18:22914–20
    [Google Scholar]
  108. 108. 
    McMorrow D, Wyche MI, Chou PT, Kasha M. 2015. On the dual phosphorescence of xanthone and chromone in glassy hydrocarbon hosts. Photochem. Photobiol. 91:576–85
    [Google Scholar]
  109. 109. 
    Dalton JC, Montgomery FC. 1974. Solvent effects on thioxanthone fluorescence. J. Am. Chem. Soc. 96:6230–32
    [Google Scholar]
  110. 110. 
    Cavaleri JJ, Prater K, Bowman RM. 1996. An investigation of the solvent dependence on the ultrafast intersystem crossing kinetics of xanthone. Chem. Phys. Lett. 259:495–502
    [Google Scholar]
  111. 111. 
    Udagawa Y, Azumi T, Ito M, Nagakura S. 1968. Phosphorescence and triplet←singlet absorption spectra of benzophenone crystal at 4.2°K. J. Chem. Phys. 49:3764–71
    [Google Scholar]
  112. 112. 
    Mitsui M, Ohshima Y, Kajimoto O. 2000. Structure and dynamics of 9(10H)-acridone and its hydrated clusters. III. Microscopic solvation effects on nonradiative dynamics. J. Phys. Chem. A 104:8660–70
    [Google Scholar]
  113. 113. 
    Hochstrasser RM, Lutz H, Scott GW. 1974. The dynamics of populating the lowest triplet state of benzophenone following singlet excitation. Chem. Phys. Lett. 24:162–67
    [Google Scholar]
  114. 114. 
    Anderson R, Hochstrasser R, Lutz H, Scott G. 1974. Measurements of intersystem crossing kinetics using 3545 Å picosecond pulses: nitronaphthalenes and benzophenone. Chem. Phys. Lett. 28:153–57
    [Google Scholar]
  115. 115. 
    Hagiwara Y, Hasegawa T, Shoji A, Kuwahara M, Ozaki H, Sawai H. 2008. Acridone-tagged DNA as a new probe for DNA detection by fluorescence resonance energy transfer and for mismatch DNA recognition. Bioorg. Med. Chem. 16:7013–20
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-061020-053433
Loading
/content/journals/10.1146/annurev-physchem-061020-053433
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error