1932

Abstract

The size- and shape-controlled enhanced optical response of metal nanoparticles (NPs) is referred to as a localized surface plasmon resonance (LSPR). LSPRs result in amplified surface and interparticle electric fields, which then enhance light absorption of the molecules or other materials coupled to the metallic NPs and/or generate hot carriers within the NPs themselves. When mediated by metallic NPs, photocatalysis can take advantage of this unique optical phenomenon. This review highlights the contributions of quantum mechanical modeling in understanding and guiding current attempts to incorporate plasmonic excitations to improve the kinetics of heterogeneously catalyzed reactions. A range of first-principles quantum mechanics techniques has offered insights, from ground-state density functional theory (DFT) to excited-state theories such as multireference correlated wavefunction methods. Here we discuss the advantages and limitations of these methods in the context of accurately capturing plasmonic effects, with accompanying examples.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-061020-053501
2021-04-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-061020-053501.html?itemId=/content/journals/10.1146/annurev-physchem-061020-053501&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kelly KL, Coronado E, Zhao LL, Schatz GC 2003. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107:668–77
    [Google Scholar]
  2. 2. 
    Blaber MG, Arnold MD, Ford MJ 2010. A review of the optical properties of alloys and intermetallics for plasmonics. J. Phys. Condens. Matter 22:143201
    [Google Scholar]
  3. 3. 
    McClain MJ, Schlather AE, Ringe E, King NS, Liu LF et al. 2015. Aluminum nanocrystals. Nano Lett 15:2751–55
    [Google Scholar]
  4. 4. 
    Link S, El-Sayed MA. 1999. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103:8410–26
    [Google Scholar]
  5. 5. 
    Biggins JS, Yazdi S, Ringe E 2018. Magnesium nanoparticle plasmonics. Nano Lett 18:3752–58
    [Google Scholar]
  6. 6. 
    Moskovits M. 1985. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57:783–826
    [Google Scholar]
  7. 7. 
    Moskovits M. 2013. Persistent misconceptions regarding SERS. Phys. Chem. Chem. Phys. 15:5301–11
    [Google Scholar]
  8. 8. 
    Web Sci. 2020. Web of Knowledge Clarivate Analytics Philadelphia, PA: accessed May 24, 2020. https://apps.webofknowledge.com
  9. 9. 
    Mukherjee S, Libisch F, Large N, Neumann O, Brown LV et al. 2013. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett 13:240–47
    [Google Scholar]
  10. 10. 
    Libisch F, Cheng J, Carter EA 2013. Electron-transfer-induced dissociation of H2 on gold nanoparticles: excited-state potential energy surfaces via embedded correlated wavefunction theory. Z. Phys. Chem 227:1455–66 Corrigendum. 2016. Z. Phys. Chem. 230:131–32
    [Google Scholar]
  11. 11. 
    Zhou L, Zhang C, McClain MJ, Manavacas A, Krauter CM et al. 2016. Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation. Nano Lett 16:1478–84
    [Google Scholar]
  12. 12. 
    Christopher P, Xin HL, Linic S 2011. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3:467–72
    [Google Scholar]
  13. 13. 
    Zhang X, Li XQ, Zhang D, Su NQ, Yang WT et al. 2017. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8:14542
    [Google Scholar]
  14. 14. 
    Xiao Q, Sarina S, Bo AX, Jia JF, Liu HW et al. 2014. Visible light-driven cross-coupling reactions at lower temperatures using a photocatalyst of palladium and gold alloy nanoparticles. ACS Catal 4:1725–34
    [Google Scholar]
  15. 15. 
    Yu SJ, Wilson AJ, Heo J, Jain PK 2018. Plasmonic control of multi-electron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett 18:2189–94
    [Google Scholar]
  16. 16. 
    Ferrando R, Jellinek J, Johnston RL 2008. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108:845–910
    [Google Scholar]
  17. 17. 
    Yi CY, Dongare PD, Su MN, Wang WX, Chakraborty D et al. 2017. Vibrational coupling in plasmonic molecules. PNAS 114:11621–26
    [Google Scholar]
  18. 18. 
    Yorulmaz M, Hoggard A, Zhao HQ, Wen FF, Chang WS et al. 2016. Absorption spectroscopy of an individual Fano cluster. Nano Lett 16:6497–503
    [Google Scholar]
  19. 19. 
    King NS, Liu LF, Yang X, Cerjan B, Everitt HO et al. 2015. Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing. ACS Nano 9:10628–36
    [Google Scholar]
  20. 20. 
    Amendola V, Scaramuzza S, Agnoli S, Polizzi S, Meneghetti M 2014. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au–Fe nanoalloys. Nanoscale 6:1423–33
    [Google Scholar]
  21. 21. 
    Alexander DTL, Forrer D, Ross E, Lidorikis E, Agnoli S et al. 2019. Electronic structure-dependent surface plasmon resonance in single Au–Fe nanoalloys. Nano Lett 19:5754–61
    [Google Scholar]
  22. 22. 
    Cable RE, Schaak RE. 2007. Solution synthesis of nanocrystalline M–Zn (M = Pd, Au, Cu) intermetallic compounds via chemical conversion of metal nanoparticle precursors. Chem. Mater. 19:4098–104
    [Google Scholar]
  23. 23. 
    Sarina S, Zhu HY, Jaatinen E, Xiao Q, Liu HW et al. 2013. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J. Am. Chem. Soc. 135:5793–801
    [Google Scholar]
  24. 24. 
    Zhou L, Swearer DF, Robatjazi H, Alabastri A, Christopher P et al. 2018. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362:69–72
    [Google Scholar]
  25. 25. 
    Zhou LA, Swearer DF, Robatjazi H, Alabastri A, Christopher P et al. 2019. Response to comment on “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis.”. Science 364:eaaw9545
    [Google Scholar]
  26. 26. 
    Zhou L, Martirez JMP, Finzel J, Zhang C, Swearer DF et al. 2020. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 5:61–70
    [Google Scholar]
  27. 27. 
    Swearer DF, Zhao H, Zhou L, Zhang C, Robatjazi H et al. 2016. Heterometallic antenna–reactor complexes for photocatalysis. PNAS 113:8916–20
    [Google Scholar]
  28. 28. 
    Aslam U, Chavez S, Linic S 2017. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 12:1000–5
    [Google Scholar]
  29. 29. 
    Wang L, Clavero C, Huba Z, Carroll KJ, Carpenter EE et al. 2011. Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles. Nano Lett 11:1237–40
    [Google Scholar]
  30. 30. 
    Zheng ZK, Tachikawa T, Majima T 2015. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd–Au nanorods studied at the single-particle level. J. Am. Chem. Soc. 137:948–57
    [Google Scholar]
  31. 31. 
    Wang F, Li CH, Chen HJ, Jiang RB, Sun LD et al. 2013. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 135:5588–601
    [Google Scholar]
  32. 32. 
    Swearer DF, Leary RK, Newell R, Yazdi S, Robatjazi H et al. 2017. Transition-metal decorated aluminum nanocrystals. ACS Nano 11:10281–88
    [Google Scholar]
  33. 33. 
    Swearer DF, Robatjazi H, Martirez JMP, Zhang M, Zhou L et al. 2019. Plasmonic photocatalysis of nitrous oxide into N2 and O2 using aluminum–iridium antenna–reactor nanoparticles. ACS Nano 13:8076–86
    [Google Scholar]
  34. 34. 
    Rej S, Mascaretti L, Santiago EY, Tomanec O, Kment S et al. 2020. Determining plasmonic hot electrons and photothermal effects during H2 evolution with TiN–Pt nanohybrids. ACS Catal 10:5261–71
    [Google Scholar]
  35. 35. 
    Cortie MB, McDonagh AM. 2011. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 111:3713–35
    [Google Scholar]
  36. 36. 
    Link S, El-Sayed MA. 2003. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54:331–66
    [Google Scholar]
  37. 37. 
    Brongersma ML, Halas NJ, Nordlander P 2015. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10:25–34
    [Google Scholar]
  38. 38. 
    Narang P, Sundararaman R, Atwater HA 2016. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 5:96–111
    [Google Scholar]
  39. 39. 
    Morton SM, Silverstein DW, Jensen L 2011. Theoretical studies of plasmonics using electronic structure methods. Chem. Rev. 111:3962–94
    [Google Scholar]
  40. 40. 
    Moskovits M. 2015. The case for plasmon-derived hot carrier devices. Nat. Nanotechnol. 10:6–8
    [Google Scholar]
  41. 41. 
    Deleted in proof
  42. 42. 
    Christopher P, Xin HL, Marimuthu A, Linic S 2012. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11:1044–50
    [Google Scholar]
  43. 43. 
    Manjavacas A, Liu JG, Kulkarni V, Nordlander P 2014. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8:7630–38
    [Google Scholar]
  44. 44. 
    Sundararaman R, Narang P, Jermyn AS, Goddard WAIII, Atwater HA 2014. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5:5788
    [Google Scholar]
  45. 45. 
    Zheng BY, Zhao HQ, Manjavacas A, McClain M, Nordlander P, Halas NJ 2015. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat. Commun. 6:7797
    [Google Scholar]
  46. 46. 
    Tolk NH, Traum MM, Tully JC, Madey TE 1982. Desorption Induced by Electronic Transitions DIET I: Proceedings of the First International Workshop, Williamsburg, Virginia, USA, May 12–14 Berlin: Springer
    [Google Scholar]
  47. 47. 
    Misewich JA, Heinz TF, Newns DM 1992. Desorption induced by multiple electronic transitions. Phys. Rev. Lett. 68:3737–40
    [Google Scholar]
  48. 48. 
    Watanabe K, Menzel D, Nilius N, Freund HJ 2006. Photochemistry on metal nanoparticles. Chem. Rev. 106:4301–20
    [Google Scholar]
  49. 49. 
    Frischkorn C, Wolf M. 2006. Femtochemistry at metal surfaces: nonadiabatic reaction dynamics. Chem. Rev. 106:4207–33
    [Google Scholar]
  50. 50. 
    Jain PK. 2019. Taking the heat off of plasmonic chemistry. J. Phys. Chem. C 123:24347–51
    [Google Scholar]
  51. 51. 
    Adleman JR, Boyd DA, Goodwin DG, Psaltis D 2009. Heterogenous catalysis mediated by plasmon heating. Nano Lett 9:4417–23
    [Google Scholar]
  52. 52. 
    Cushing SK, Li JT, Meng FK, Senty TR, Suri S et al. 2012. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134:15033–41
    [Google Scholar]
  53. 53. 
    Hsu L-Y, Ding W, Schatz GC 2017. Plasmon-coupled resonance energy transfer. J. Phys. Chem. Lett. 8:2357–67
    [Google Scholar]
  54. 54. 
    Martirez JMP, Carter EA. 2017. Prediction of a low-temperature N2 dissociation catalyst exploiting near-IR–to–visible light nanoplasmonics. Sci. Adv. 3:eaao4710
    [Google Scholar]
  55. 55. 
    Scholes GD. 2003. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54:57–87
    [Google Scholar]
  56. 56. 
    Kim Y, Torres DD, Jain PK 2016. Activation energies of plasmonic catalysts. Nano Lett 16:3399–407
    [Google Scholar]
  57. 57. 
    Seemala B, Therrien AJ, Lou M, Li K, Finzel JP et al. 2019. Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: hot electrons or near fields. ? ACS Energy Lett 4:1803–9
    [Google Scholar]
  58. 58. 
    Linic S, Aslam U, Boerigter C, Morabito M 2015. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14:567–76
    [Google Scholar]
  59. 59. 
    Zhang X, Li XQ, Reish ME, Zhang D, Su NQ et al. 2018. Plasmon-enhanced catalysis: distinguishing thermal and nonthermal effects. Nano Lett 18:1714–23
    [Google Scholar]
  60. 60. 
    Bredas J-L. 2014. Mind the gap. ! Mater. Horiz. 1:17–19
    [Google Scholar]
  61. 61. 
    Cohen AJ, Mori-Sánchez P, Yang W 2008. Insights into current limitations of density functional theory. Science 321:792–94
    [Google Scholar]
  62. 62. 
    Kohn W, Sham LJ. 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140:1133
    [Google Scholar]
  63. 63. 
    Perdew JP, Burke K, Ernzerhof M 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–68
    [Google Scholar]
  64. 64. 
    Hammer B, Hansen LB, Nørskov JK 1999. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59:7413–21
    [Google Scholar]
  65. 65. 
    Becke AD, Johnson ER. 2005. A density-functional model of the dispersion interaction. J. Chem. Phys. 123:154101
    [Google Scholar]
  66. 66. 
    Tkatchenko A, Scheffler M. 2009. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102:073005
    [Google Scholar]
  67. 67. 
    Lee K, Murray ED, Kong LZ, Lundqvist BI, Langreth DC 2010. Higher-accuracy van der Waals density functional. Phys. Rev. B 82:081101
    [Google Scholar]
  68. 68. 
    Grimme S, Antony J, Ehrlich S, Krieg H 2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132:154104
    [Google Scholar]
  69. 69. 
    Grimme S, Ehrlich S, Goerigk L 2011. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32:1456–65
    [Google Scholar]
  70. 70. 
    Steinmann SN, Corminboeuf C. 2011. A generalized-gradient approximation exchange hole model for dispersion coefficients. J. Chem. Phys. 134:044117
    [Google Scholar]
  71. 71. 
    Truhlar DG. 2019. Dispersion forces: neither fluctuating nor dispersing. J. Chem. Educ. 96:1671–75
    [Google Scholar]
  72. 72. 
    Sheppard D, Terrell R, Henkelman G 2008. Optimization methods for finding minimum energy paths. J. Chem. Phys. 128:134106
    [Google Scholar]
  73. 73. 
    Henkelman G, Uberuaga BP, Jonsson H 2000. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113:9901–4
    [Google Scholar]
  74. 74. 
    Dronskowski R, Blochl PE. 1993. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97:8617–24
    [Google Scholar]
  75. 75. 
    Martirez JMP, Carter EA. 2016. Thermodynamic constraints in using AuM (M = Fe, Co, Ni, and Mo) alloys as N2 dissociation catalysts: functionalizing a plasmon-active metal. ACS Nano 10:2940–49
    [Google Scholar]
  76. 76. 
    Huang P, Carter EA. 2008. Advances in correlated electronic structure methods for solids, surfaces, and nanostructures. Annu. Rev. Phys. Chem. 59:261–90
    [Google Scholar]
  77. 77. 
    Huang C, Pavone M, Carter EA 2011. Quantum mechanical embedding theory based on a unique embedding potential. J. Chem. Phys. 134:154110
    [Google Scholar]
  78. 78. 
    Yu K, Libisch F, Carter EA 2015. Implementation of density functional embedding theory within the projector-augmented-wave method and applications to semiconductor defect states. J. Chem. Phys. 143:102806
    [Google Scholar]
  79. 79. 
    Yu K, Krauter CM, Dieterich JM, Carter EA 2017. Density and potential functional embedding: theory and practice. Fragmentation: Toward Accurate Calculations on Complex Molecular Systems MS Gordon 81–111 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  80. 80. 
    Krauter CM, Carter EA. 2017. Embedding integral generator. GitHub https://github.com/EACcodes/EmbeddingIntegralGenerator
    [Google Scholar]
  81. 81. 
    Sherrill CD, Schaefer HF. 1999. The configuration interaction method: advances in highly correlated approaches. Adv. Quantum Chem. 34:143–269
    [Google Scholar]
  82. 82. 
    Roos BO, Siegbahn PEM. 1980. Direct CI method with a multiconfigurational reference state. Int. J. Quantum Chem. 17:485–500
    [Google Scholar]
  83. 83. 
    Roos BO. 1980. The complete active space SCF method in a fock-matrix-based super-CI formulation. Int. J. Quantum Chem. 18:175–89
    [Google Scholar]
  84. 84. 
    Roos BO, Taylor PR, Siegbahn PEM 1980. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 48:157–73
    [Google Scholar]
  85. 85. 
    Siegbahn PEM, Almlöf J, Heiberg A, Roos BO 1981. The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule. J. Chem. Phys. 74:2384–96
    [Google Scholar]
  86. 86. 
    Helgaker T, Jørgensen P, Olsen J 2000. Molecular Electronic-Structure Theory Chichester, UK: John Wiley & Sons
  87. 87. 
    Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K 1990. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 94:5483–88
    [Google Scholar]
  88. 88. 
    Andersson K, Malmqvist PA, Roos BO 1992. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 96:1218–26
    [Google Scholar]
  89. 89. 
    Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP 2001. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 114:10252–64
    [Google Scholar]
  90. 90. 
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M 1989. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157:479–83
    [Google Scholar]
  91. 91. 
    Libisch F, Huang C, Carter EA 2014. Embedded correlated wavefunction schemes: theory and applications. Acc. Chem. Res. 47:2768–75
    [Google Scholar]
  92. 92. 
    Foerster B, Spata VA, Carter EA, Sönnichsen C, Link S 2019. Plasmon damping depends on the chemical nature of the nanoparticle interface. Sci. Adv. 5:eaav074
    [Google Scholar]
  93. 93. 
    Spata VA, Carter EA. 2018. Mechanistic insights into photocatalyzed hydrogen desorption from palladium surfaces assisted by localized surface plasmon resonances. ACS Nano 12:3512–22
    [Google Scholar]
  94. 94. 
    Appl M. 2000. Ammonia, 2. Production processes. Ullmann's Encyclopedia of Industrial Chemistry F Ullmann, M Bohnet 139–225 Weinheim, Ger: Wiley-VCH
    [Google Scholar]
  95. 95. 
    Kandemir T, Schuster ME, Senyshyn A, Behrens M, Schlogl R 2013. The Haber-Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions. Angew. Chem. Int. Ed. 52:12723–26
    [Google Scholar]
  96. 96. 
    Turro NJ. 1991. Modern Molecular Photochemistry Sausalito, CA: Univ. Sci. Books
  97. 97. 
    Martirez JMP, Carter EA. 2017. Excited-state N2 dissociation pathway on Fe-functionalized Au. J. Am. Chem. Soc. 139:4390–98
    [Google Scholar]
  98. 98. 
    Bao JL, Carter EA. 2019. Rationalizing the hot-carrier-mediated reaction mechanisms and kinetics for ammonia decomposition on ruthenium-doped copper nanoparticles. J. Am. Chem. Soc. 141:13320–23
    [Google Scholar]
  99. 99. 
    Bao JL, Carter EA. 2019. Surface-plasmon-induced ammonia decomposition on copper: excited-state reaction pathways revealed by embedded correlated wavefunction theory. ACS Nano 13:9944–57
    [Google Scholar]
  100. 100. 
    Aramouni NAK, Touma JG, Abu Tarboush B, Zeaiter J, Ahmad MN 2018. Catalyst design for dry reforming of methane: analysis review. Renew. Sustain. Energy Rev. 82:2570–85
    [Google Scholar]
  101. 101. 
    Pakhare D, Spivey J. 2014. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43:7813–37
    [Google Scholar]
  102. 102. 
    Hickman DA, Schmidt LD. 1993. Production of syngas by direct catalytic oxidation of methane. Science 259:343–46
    [Google Scholar]
  103. 103. 
    Chase MW, Davies CA, Downey JR, Frurip DJ, McDonald RA, Syverud AN 1986. NIST JANAF Thermochemical Tables 1985 Gaithersburg, MD: Natl. Inst. Stand. Technol.
  104. 104. 
    Robatjazi H, Bao JL, Zhou L, Zhang M, Christopher P et al. 2020. Plasmon-driven carbon-fluorine (C(sp3)-F) bond activation with mechanistic insights into hot-carrier-mediated pathways. Nat. Catal. 3:564–73
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-061020-053501
Loading
/content/journals/10.1146/annurev-physchem-061020-053501
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error