1932

Abstract

Maintenance of a homeostatic body core temperature is a critical brain function accomplished by a central neural network. This orchestrates a complex behavioral and autonomic repertoire in response to environmental temperature challenges or declining energy homeostasis and in support of immune responses and many behavioral states. This review summarizes the anatomical, neurotransmitter, and functional relationships within the central neural network that controls the principal thermoeffectors: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for heat production. The core thermoregulatory network regulating these thermoeffectors consists of parallel but distinct central efferent pathways that share a common peripheral thermal sensory input. Delineating the neural circuit mechanism underlying central thermoregulation provides a useful platform for exploring its functional organization, elucidating the molecular underpinnings of its neuronal interactions, and discovering novel therapeutic approaches to modulating body temperature and energy homeostasis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-020518-114546
2019-02-10
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/physiol/81/1/annurev-physiol-020518-114546.html?itemId=/content/journals/10.1146/annurev-physiol-020518-114546&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Betz MJ, Enerback S 2015. Human brown adipose tissue: what we have learned so far. Diabetes 64:2352–60
    [Google Scholar]
  2. 2.  Blondin DP, Labbe SM, Phoenix S, Guerin B, Turcotte EE et al. 2015. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men. J. Physiol. 593:701–14
    [Google Scholar]
  3. 3.  Werner J. 2010. System properties, feedback control and effector coordination of human temperature regulation. Eur. J. Appl. Physiol. 109:13–25
    [Google Scholar]
  4. 4.  Romanovsky AA. 2004. Do fever and anapyrexia exist? Analysis of set point-based definitions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:R992–95
    [Google Scholar]
  5. 5.  Kanosue K, Crawshaw LI, Nagashima K, Yoda T 2010. Concepts to utilize in describing thermoregulation and neurophysiological evidence for how the system works. Eur. J. Appl. Physiol. 109:5–11
    [Google Scholar]
  6. 6.  Bratincsak A, Palkovits M 2005. Evidence that peripheral rather than intracranial thermal signals induce thermoregulation. Neuroscience 135:525–32
    [Google Scholar]
  7. 7.  Nakamura K. 2011. Central circuitries for body temperature regulation and fever. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301:R1207–28
    [Google Scholar]
  8. 8.  Morrison SF, Madden CJ, Tupone D 2014. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 19:741–56
    [Google Scholar]
  9. 9.  Romanovsky AA, Ivanov AI, Shimansky YP 2002. Selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality. J. Appl. Physiol. 92:2667–79
    [Google Scholar]
  10. 10.  Minson CT, Wladkowski SL, Pawelczyk JA, Kenney WL 1999. Age, splanchnic vasoconstriction, and heat stress during tilting. Am. J. Physiol. 276:R203–12
    [Google Scholar]
  11. 11.  Terrien J, Perret M, Aujard F 2011. Behavioral thermoregulation in mammals: a review. Front. Biosci. 16:1428–44
    [Google Scholar]
  12. 12.  Smith CJ, Johnson JM 2016. Responses to hyperthermia. Optimizing heat dissipation by convection and evaporation: Neural control of skin blood flow and sweating in humans. Auton. Neurosci. 196:25–36
    [Google Scholar]
  13. 13.  McKemy DD, Neuhausser WM, Julius D 2002. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58
    [Google Scholar]
  14. 14.  Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA et al. 2002. A TRP channel that senses cold stimuli and menthol. Cell 108:705–15
    [Google Scholar]
  15. 15.  Tajino K, Matsumura K, Kosada K, Shibakusa T, Inoue K et al. 2007. Application of menthol to the skin of whole trunk in mice induces autonomic and behavioral heat-gain responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293:R2128–35
    [Google Scholar]
  16. 16.  Tajino K, Hosokawa H, Maegawa S, Matsumura K, Dhaka A, Kobayashi S 2011. Cooling-sensitive TRPM8 is thermostat of skin temperature against cooling. PLOS ONE 6:e17504
    [Google Scholar]
  17. 17.  Reimúndez A, Fernández-Peña C, García G, Fernández R, Ordás P et al. 2018. Deletion of the cold thermoreceptor TRPM8 increases heat loss and food intake leading to reduced body temperature and obesity in mice. J. Neurosci. 38:3643–56
    [Google Scholar]
  18. 18.  Almeida MC, Hew-Butler T, Soriano RN, Rao S, Wang W et al. 2012. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J. Neurosci. 32:2086–99
    [Google Scholar]
  19. 19.  Tan CH, McNaughton PA 2016. The TRPM2 ion channel is required for sensitivity to warmth. Nature 536:460–63
    [Google Scholar]
  20. 20.  Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y et al. 2006. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25:1804–15
    [Google Scholar]
  21. 21.  Song K, Wang H, Kamm GB, Pohle J, Reis FC et al. 2016. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353:1393–98
    [Google Scholar]
  22. 22.  Szelényi Z, Hummel Z, Szolcsányi J, Davis JB 2004. Daily body temperature rhythm and heat tolerance in TRPV1 knockout and capsaicin pretreated mice. Eur. J. Neurosci. 19:1421–4
    [Google Scholar]
  23. 23.  Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–24
    [Google Scholar]
  24. 24.  Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H et al. 1998. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–43
    [Google Scholar]
  25. 25.  Romanovsky AA, Almeida MC, Garami A, Steiner AA, Norman MH et al. 2009. The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol. Rev. 61:228–61
    [Google Scholar]
  26. 26.  Steiner AA, Turek VF, Almeida MC, Burmeister JJ, Oliveira DL et al. 2007. Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J. Neurosci. 27:7459–68
    [Google Scholar]
  27. 27.  Mohammed M, Madden CJ, Andresen MC, Morrison SF 2018. Activation of TRPV1 in nucleus tractus solitarius reduces brown adipose tissue thermogenesis, arterial pressure and heart rate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315:R134–43
    [Google Scholar]
  28. 28.  Feketa VV, Balasubramanian A, Flores CM, Player MR, Marrelli SP 2013. Shivering and tachycardic responses to external cooling in mice are substantially suppressed by TRPV1 activation but not by TRPM8 inhibition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305:R1040–50
    [Google Scholar]
  29. 29.  Riedel W. 1976. Warm receptors in the dorsal abdominal wall of the rabbit. Pflügers Arch 361:205–6
    [Google Scholar]
  30. 30.  Gupta BN, Nier K, Hensel H 1979. Cold-sensitive afferents from the abdomen. Pflügers Arch 380:203–4
    [Google Scholar]
  31. 31.  Zhang L, Jones S, Brody K, Costa M, Brookes SJH 2004. Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. Am. J. Physiol. Gastrointest. Liver Physiol. 286:G983–91
    [Google Scholar]
  32. 32.  Todd G, Gordon CJ, Groeller H, Taylor NA 2014. Does intramuscular thermal feedback modulate eccrine sweating in exercising humans?. Acta Physiol 212:86–96
    [Google Scholar]
  33. 33.  Craig AD, Krout K, Andrew D 2001. Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J. Neurophysiol. 86:1459–80
    [Google Scholar]
  34. 34.  Andrew D, Craig AD 2001. Spinothalamic lamina I neurones selectively responsive to cutaneous warming in cats. J. Physiol. 537:489–95
    [Google Scholar]
  35. 35.  Hylden JL, Anton F, Nahin RL 1989. Spinal lamina I projection neurons in the rat: collateral innervation of parabrachial area and thalamus. Neuroscience 28:27–37
    [Google Scholar]
  36. 36.  Li J, Xiong K, Pang Y, Dong Y, Kaneko T, Mizuno N 2006. Medullary dorsal horn neurons providing axons to both the parabrachial nucleus and thalamus. J. Comp. Neurol. 498:539–51
    [Google Scholar]
  37. 37.  Craig AD. 2002. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3:655–66
    [Google Scholar]
  38. 38.  Nakamura K, Morrison SF 2008. A thermosensory pathway that controls body temperature. Nat. Neurosci. 11:62–71
    [Google Scholar]
  39. 39.  Yahiro T, Kataoka N, Nakamura Y, Nakamura K 2017. The lateral parabrachial nucleus, but not the thalamus, mediates thermosensory pathways for behavioural thermoregulation. Sci. Rep. 7:5031
    [Google Scholar]
  40. 40.  Nakamura K, Morrison SF 2010. A thermosensory pathway mediating heat-defense responses. PNAS 107:8848–53
    [Google Scholar]
  41. 41.  Nakamura K, Morrison SF 2011. Central efferent pathways for cold-defensive and febrile shivering. J. Physiol. 589:3641–58
    [Google Scholar]
  42. 42.  Kobayashi A, Osaka T 2003. Involvement of the parabrachial nucleus in thermogenesis induced by environmental cooling in the rat. Pflügers Arch 446:760–65
    [Google Scholar]
  43. 43.  Cechetto DF, Standaert DG, Saper CB 1985. Spinal and trigeminal dorsal horn projections to the parabrachial nucleus in the rat. J. Comp. Neurol. 240:153–60
    [Google Scholar]
  44. 44.  Geerling JC, Kim M, Mahoney CE, Abbott SBG, Agostinelli LJ et al. 2016. Genetic identity of thermosensory relay neurons in the lateral parabrachial nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310:R41–54
    [Google Scholar]
  45. 45.  Campos CA, Bowen AJ, Roman CW, Palmiter RD 2018. Encoding of danger by parabrachial CGRP neurons. Nature 555:617–22
    [Google Scholar]
  46. 46.  Tupone D, Cano G, Morrison SF 2017. Thermoregulatory inversion: a novel thermoregulatory paradigm. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312:R779–86
    [Google Scholar]
  47. 47.  Romanovsky AA. 2007. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:R37–46
    [Google Scholar]
  48. 48.  McAllen RM, Tanaka M, Ootsuka Y, McKinley MJ 2010. Multiple thermoregulatory effectors with independent central controls. Eur. J. Appl. Physiol. 109:27–33
    [Google Scholar]
  49. 49.  Morrison SF. 2011. 2010 Carl Ludwig Distinguished Lectureship of the APS Neural Control and Autonomic Regulation Section: central neural pathways for thermoregulatory cold defense. J. Appl. Physiol. 110:1137–49
    [Google Scholar]
  50. 50.  Morrison SF, Ramamurthy S, Young JB 2000. Reduced rearing temperature augments responses in sympathetic outflow to brown adipose tissue. J. Neurosci. 20:9264–71
    [Google Scholar]
  51. 51.  Sacks H, Symonds ME 2013. Anatomical locations of human brown adipose tissue: functional relevance and implications in obesity and type 2 diabetes. Diabetes 62:1783–90
    [Google Scholar]
  52. 52.  Nakamura K, Matsumura K, Hübschle T, Nakamura Y, Hioki H et al. 2004. Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J. Neurosci. 24:5370–80
    [Google Scholar]
  53. 53.  Nakamura K, Matsumura K, Kaneko T, Kobayashi S, Katoh H, Negishi M 2002. The rostral raphe pallidus nucleus mediates pyrogenic transmission from the preoptic area. J. Neurosci. 22:4600–10
    [Google Scholar]
  54. 54.  Cano G, Passerin AM, Schiltz JC, Card JP, Morrison SF, Sved AF 2003. Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J. Comp. Neurol. 460:303–26
    [Google Scholar]
  55. 55.  Bamshad M, Song CK, Bartness TJ 1999. CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am. J. Physiol. 276:R1569–78
    [Google Scholar]
  56. 56.  Yoshida K, Nakamura K, Matsumura K, Kanosue K, Konig M et al. 2003. Neurons of the rat preoptic area and the raphe pallidus nucleus innervating the brown adipose tissue express the prostaglandin E receptor subtype EP3. Eur. J. Neurosci. 18:1848–60
    [Google Scholar]
  57. 57.  McAllen RM, Farrell M, Johnson JM, Trevaks D, Cole L et al. 2006. Human medullary responses to cooling and rewarming the skin: a functional MRI study. PNAS 103:809–13
    [Google Scholar]
  58. 58.  Nakamura K, Wu SX, Fujiyama F, Okamoto K, Hioki H, Kaneko T 2004. Independent inputs by VGLUT2- and VGLUT3-positive glutamatergic terminals onto rat sympathetic preganglionic neurons. NeuroReport 15:431–36
    [Google Scholar]
  59. 59.  Stornetta RL, Rosin DL, Simmons JR, McQuiston TJ, Vujovic N et al. 2005. Coexpression of vesicular glutamate transporter-3 and γ-aminobutyric acidergic markers in rat rostral medullary raphe and intermediolateral cell column. J. Comp. Neurol. 492:477–94
    [Google Scholar]
  60. 60.  Sasek CA, Wessendorf MW, Helke CJ 1990. Evidence for co-existence of thyrotropin-releasing hormone, substance P and serotonin in ventral medullary neurons that project to the intermediolateral cell column in the rat. Neuroscience 35:105–19
    [Google Scholar]
  61. 61.  Martín-Cora FJ, Fornal CA, Metzler CW, Jacobs BL 2000. Single-unit responses of serotonergic medullary and pontine raphe neurons to environmental cooling in freely moving cats. Neuroscience 98:301–9
    [Google Scholar]
  62. 62.  Nason MW Jr., Mason P. 2006. Medullary raphe neurons facilitate brown adipose tissue activation. J. Neurosci. 26:1190–98
    [Google Scholar]
  63. 63.  Lkhagvasuren B, Nakamura Y, Oka T, Sudo N, Nakamura K 2011. Social defeat stress induces hyperthermia through activation of thermoregulatory sympathetic premotor neurons in the medullary raphe region. Eur. J. Neurosci. 34:1442–52
    [Google Scholar]
  64. 64.  Madden CJ, Morrison SF 2006. Serotonin potentiates sympathetic responses evoked by spinal NMDA. J. Physiol. 577:525–37
    [Google Scholar]
  65. 65.  Madden CJ, Morrison SF 2010. Endogenous activation of spinal 5-hydroxytryptamine (5-HT) receptors contributes to the thermoregulatory activation of brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R776–83
    [Google Scholar]
  66. 66.  Hodges MR, Tattersall GJ, Harris MB, McEvoy SD, Richerson DN et al. 2008. Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J. Neurosci. 28:2495–505
    [Google Scholar]
  67. 67.  Deuchars SA, Milligan CJ, Stornetta RL, Deuchars J 2005. GABAergic neurons in the central region of the spinal cord: a novel substrate for sympathetic inhibition. J. Neurosci. 25:1063–70
    [Google Scholar]
  68. 68.  Madden CJ, Morrison SF 2003. Excitatory amino acid receptor activation in the raphe pallidus area mediates prostaglandin-evoked thermogenesis. Neuroscience 122:5–15
    [Google Scholar]
  69. 69.  Morrison SF. 2003. Raphe pallidus neurons mediate prostaglandin E2-evoked increases in brown adipose tissue thermogenesis. Neuroscience 121:17–24
    [Google Scholar]
  70. 70.  Ootsuka Y, Blessing WW, Steiner AA, Romanovsky AA 2008. Fever response to intravenous prostaglandin E2 is mediated by the brain but does not require afferent vagal signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294:R1294–1303
    [Google Scholar]
  71. 71.  Nakamura K, Morrison SF 2007. Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:R127–36
    [Google Scholar]
  72. 72.  Morrison SF. 2004. Activation of 5-HT1A receptors in raphe pallidus inhibits leptin-evoked increases in brown adipose tissue thermogenesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286:R832–37
    [Google Scholar]
  73. 73.  Zaretsky DV, Zaretskaia MV, DiMicco JA 2003. Stimulation and blockade of GABAA receptors in the raphe pallidus: effects on body temperature, heart rate, and blood pressure in conscious rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285:R110–16
    [Google Scholar]
  74. 74.  Cao WH, Fan W, Morrison SF 2004. Medullary pathways mediating specific sympathetic responses to activation of dorsomedial hypothalamus. Neuroscience 126:229–40
    [Google Scholar]
  75. 75.  Cerri M, Morrison SF 2006. Corticotropin releasing factor increases in brown adipose tissue thermogenesis and heart rate through dorsomedial hypothalamus and medullary raphe pallidus. Neuroscience 140:711–21
    [Google Scholar]
  76. 76.  Kataoka N, Hioki H, Kaneko T, Nakamura K 2014. Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metab 20:346–58
    [Google Scholar]
  77. 77.  Tupone D, Madden CJ, Cano G, Morrison SF 2011. An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. J. Neurosci. 31:15944–55
    [Google Scholar]
  78. 78.  Cao WH, Morrison SF 2006. Glutamate receptors in the raphe pallidus mediate brown adipose tissue thermogenesis evoked by activation of dorsomedial hypothalamic neurons. Neuropharmacology 51:426–37
    [Google Scholar]
  79. 79.  Nakamura Y, Nakamura K, Matsumura K, Kobayashi S, Kaneko T, Morrison SF 2005. Direct pyrogenic input from prostaglandin EP3 receptor-expressing preoptic neurons to the dorsomedial hypothalamus. Eur. J. Neurosci. 22:3137–46
    [Google Scholar]
  80. 80.  Nakamura Y, Nakamura K, Morrison SF 2009. Different populations of prostaglandin EP3 receptor-expressing preoptic neurons project to two fever-mediating sympathoexcitatory brain regions. Neuroscience 161:614–20
    [Google Scholar]
  81. 81.  DiMicco JA, Zaretsky DV 2007. The dorsomedial hypothalamus: a new player in thermoregulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:R47–63
    [Google Scholar]
  82. 82.  Conceição EPS, Madden CJ, Morrison SF 2018. Neurons in the rat ventral lateral preoptic area are essential for the warm-evoked inhibition of brown adipose tissue and shivering thermogenesis. Acta Physiol In press
  83. 83.  Conceição EPS, Madden CJ, Morrison SF 2017. Tonic inhibition of brown adipose tissue sympathetic nerve activity via muscarinic acetylcholine receptors in the rostral raphe pallidus. J. Physiol. 595:7495–508
    [Google Scholar]
  84. 84.  Conceição EPS, Madden CJ, Morrison SF 2017. Glycinergic inhibition of BAT sympathetic premotor neurons in rostral raphe pallidus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312:R919–26
    [Google Scholar]
  85. 85.  Morrison SF, Sved AF, Passerin AM 1999. GABA-mediated inhibition of raphe pallidus neurons regulates sympathetic outflow to brown adipose tissue. Am. J. Physiol. 276:R290–97
    [Google Scholar]
  86. 86.  Nakamura K, Matsumura K, Kobayashi S, Kaneko T 2005. Sympathetic premotor neurons mediating thermoregulatory functions. Neurosci. Res. 51:1–8
    [Google Scholar]
  87. 87.  Nakamura Y, Yanagawa Y, Morrison SF, Nakamura K 2017. Medullary reticular neurons mediate neuropeptide Y-induced metabolic inhibition and mastication. Cell Metab 25:322–34
    [Google Scholar]
  88. 88.  Chen XM, Hosono T, Yoda T, Fukuda Y, Kanosue K 1998. Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats. J. Physiol. 512:Part 3883–92
    [Google Scholar]
  89. 89.  Rothwell NJ, Stock MJ, Thexton AJ 1983. Decerebration activates thermogenesis in the rat. J. Physiol. 342:15–22
    [Google Scholar]
  90. 90.  Morrison SF, Cao W-H, Madden CJ 2004. Dorsomedial hypothalamic and brainstem pathways controlling thermogenesis in brown adipose tissue. J. Thermal Biol. 29:333–37
    [Google Scholar]
  91. 91.  Rathner JA, Madden CJ, Morrison SF 2008. Central pathway for spontaneous and prostaglandin E2-evoked cutaneous vasoconstriction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295:R343–54
    [Google Scholar]
  92. 92.  Madden CJ, Morrison SF 2004. Excitatory amino acid receptors in the dorsomedial hypothalamus mediate prostaglandin-evoked thermogenesis in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286:R320–25
    [Google Scholar]
  93. 93.  Zhao ZD, Yang WZ, Gao C, Fu X, Zhang W et al. 2017. A hypothalamic circuit that controls body temperature. PNAS 114:2042–47
    [Google Scholar]
  94. 94.  Samuels BC, Zaretsky DV, DiMicco JA 2002. Tachycardia evoked by disinhibition of the dorsomedial hypothalamus in rats is mediated through medullary raphe. J. Physiol. 538:941–46
    [Google Scholar]
  95. 95.  Yoshida K, Li X, Cano G, Lazarus M, Saper CB 2009. Parallel preoptic pathways for thermoregulation. J. Neurosci. 29:11954–64
    [Google Scholar]
  96. 96.  Zhang Y, Kerman IA, Laque A, Nguyen P, Faouzi M et al. 2011. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J. Neurosci. 31:1873–84
    [Google Scholar]
  97. 97.  Elmquist JK, Scammell TE, Jacobson CD, Saper CB 1996. Distribution of Fos-like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration. J. Comp. Neurol. 371:85–103
    [Google Scholar]
  98. 98.  Zaretskaia MV, Zaretsky DV, DiMicco JA 2003. Role of the dorsomedial hypothalamus in thermogenesis and tachycardia caused by microinjection of prostaglandin E2 into the preoptic area in anesthetized rats. Neurosci. Lett. 340:1–4
    [Google Scholar]
  99. 99.  von Euler C. 1961. Physiology and pharmacology of temperature regulation. Pharmacol. Rev. 13:361–98
    [Google Scholar]
  100. 100.  Morrison SF, Madden CJ 2014. Central nervous system regulation of brown adipose tissue. Compr. Physiol. 4:1677–713
    [Google Scholar]
  101. 101.  Stuart D, Ott K, Ishikawa K, Eldred E 1966. The rhythm of shivering. I. General sensory contributions. Am. J. Phys. Med. 45:61–74
    [Google Scholar]
  102. 102.  Schäfer SS, Schäfer S 1973. The role of the primary afference in the generation of a cold shivering tremor. Exp. Brain Res. 17:381–93
    [Google Scholar]
  103. 103.  Tanaka M, Owens NC, Nagashima K, Kanosue K, McAllen RM 2006. Reflex activation of rat fusimotor neurons by body surface cooling, and its dependence on the medullary raphe. J. Physiol. 572:569–83
    [Google Scholar]
  104. 104.  Nason MW Jr., Mason P. 2004. Modulation of sympathetic and somatomotor function by the ventromedial medulla. J. Neurophysiol. 92:510–22
    [Google Scholar]
  105. 105.  Blessing W, McAllen R, McKinley M 2016. Control of the cutaneous circulation by the central nervous system. Compr. Physiol. 6:1161–97
    [Google Scholar]
  106. 106.  Smith JE, Jansen AS, Gilbey MP, Loewy AD 1998. CNS cell groups projecting to sympathetic outflow of tail artery: neural circuits involved in heat loss in the rat. Brain Res 786:153–64
    [Google Scholar]
  107. 107.  Toth IE, Toth DE, Boldogkoi Z, Hornyak A, Palkovits M, Blessing WW 2006. Serotonin-synthesizing neurons in the rostral medullary raphe/parapyramidal region transneuronally labelled after injection of pseudorabies virus into the rat tail. Neurochem. Res. 31:277–86
    [Google Scholar]
  108. 108.  Blessing WW, Nalivaiko E 2001. Raphe magnus/pallidus neurons regulate tail but not mesenteric arterial blood flow in rats. Neuroscience 105:923–29
    [Google Scholar]
  109. 109.  Rathner JA, McAllen RM 1999. Differential control of sympathetic drive to the rat tail artery and kidney by medullary premotor cell groups. Brain Res 834:196–99
    [Google Scholar]
  110. 110.  Tanaka M, Nagashima K, McAllen RM, Kanosue K 2002. Role of the medullary raphe in thermoregulatory vasomotor control in rats. J. Physiol. 540:657–64
    [Google Scholar]
  111. 111.  Blessing WW, Yu YH, Nalivaiko E 1999. Raphe pallidus and parapyramidal neurons regulate ear pinna vascular conductance in the rabbit. Neurosci. Lett. 270:33–36
    [Google Scholar]
  112. 112.  Ootsuka Y, McAllen RM 2005. Interactive drives from two brain stem premotor nuclei are essential to support rat tail sympathetic activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289:R1107–15
    [Google Scholar]
  113. 113.  Ootsuka Y, Blessing WW 2005. Activation of slowly conducting medullary raphe-spinal neurons, including serotonergic neurons, increases cutaneous sympathetic vasomotor discharge in rabbit. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288:R909–18
    [Google Scholar]
  114. 114.  Tanaka M, McKinley MJ, McAllen RM 2011. Preoptic-raphe connections for thermoregulatory vasomotor control. J. Neurosci. 31:5078–88
    [Google Scholar]
  115. 115.  Nakayama T, Eisenman JS, Hardy JD 1961. Single unit activity of anterior hypothalamus during local heating. Science 134:560–61
    [Google Scholar]
  116. 116.  Boulant JA, Dean JB 1986. Temperature receptors in the central nervous system. Annu. Rev. Physiol. 48:639–54
    [Google Scholar]
  117. 117.  Kanosue K, Nakayama T, Tanaka H, Yanase M, Yasuda H 1990. Modes of action of local hypothalamic and skin thermal stimulation on salivary secretion in rats. J. Physiol. 424:459–71
    [Google Scholar]
  118. 118.  Hammel HT, Hardy JD, Fusco MM 1960. Thermoregulatory responses to hypothalamic cooling in unanesthetized dogs. Am. J. Physiol. 198:481–86
    [Google Scholar]
  119. 119.  Imai-Matsumura K, Matsumura K, Nakayama T 1984. Involvement of ventromedial hypothalamus in brown adipose tissue thermogenesis induced by preoptic cooling in rats. Jpn. J. Physiol. 34:939–43
    [Google Scholar]
  120. 120.  Boulant JA, Hardy JD 1974. The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones. J. Physiol. 240:639–60
    [Google Scholar]
  121. 121.  Tabarean IV, Behrens MM, Bartfai T, Korn H 2004. Prostaglandin E2-increased thermosensitivity of anterior hypothalamic neurons is associated with depressed inhibition. PNAS 101:2590–95
    [Google Scholar]
  122. 122.  Eberwine J, Bartfai T 2011. Single cell transcriptomics of hypothalamic warm sensitive neurons that control core body temperature and fever response signaling asymmetry and an extension of chemical neuroanatomy. Pharmacol. Ther. 129:241–59
    [Google Scholar]
  123. 123.  Lundius EG, Sanchez-Alavez M, Ghochani Y, Klaus J, Tabarean IV 2010. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons. J. Neurosci. 30:4369–81
    [Google Scholar]
  124. 124.  Tabarean IV, Conti B, Behrens M, Korn H, Bartfai T 2005. Electrophysiological properties and thermosensitivity of mouse preoptic and anterior hypothalamic neurons in culture. Neuroscience 135:433–49
    [Google Scholar]
  125. 125.  Tan CL, Cooke EK, Leib DE, Lin YC, Daly GE et al. 2016. Warm-sensitive neurons that control body temperature. Cell 167:47–59.e15
    [Google Scholar]
  126. 126.  Morrison SF. 1999. RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue. Am. J. Physiol. 276:R962–73
    [Google Scholar]
  127. 127.  Zaretskaia MV, Zaretsky DV, Shekhar A, DiMicco JA 2002. Chemical stimulation of the dorsomedial hypothalamus evokes non-shivering thermogenesis in anesthetized rats. Brain Res 928:113–25
    [Google Scholar]
  128. 128.  Cao WH, Morrison SF 2003. Disinhibition of rostral raphe pallidus neurons increases cardiac sympathetic nerve activity and heart rate. Brain Res 980:1–10
    [Google Scholar]
  129. 129.  Osaka T. 2004. Cold-induced thermogenesis mediated by GABA in the preoptic area of anesthetized rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:R306–13
    [Google Scholar]
  130. 130.  Zaretsky DV, Hunt JL, Zaretskaia MV, DiMicco JA 2006. Microinjection of prostaglandin E2 and muscimol into the preoptic area in conscious rats: comparison of effects on plasma adrenocorticotrophic hormone (ACTH), body temperature, locomotor activity, and cardiovascular function. Neurosci. Lett. 397:291–96
    [Google Scholar]
  131. 131.  Tanaka M, McKinley MJ, McAllen RM 2009. Roles of two preoptic cell groups in tonic and febrile control of rat tail sympathetic fibers. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296:R1248–57
    [Google Scholar]
  132. 132.  Yu S, Qualls-Creekmore E, Rezai-Zadeh K, Jiang Y, Berthoud HR et al. 2016. Glutamatergic preoptic area neurons that express leptin receptors drive temperature-dependent body weight homeostasis. J. Neurosci. 36:5034–46
    [Google Scholar]
  133. 133.  Abbott SBG, Saper CB 2017. Median preoptic glutamatergic neurons promote thermoregulatory heat loss and water consumption in mice. J. Physiol. 595:6569–83
    [Google Scholar]
  134. 134.  Nakamura K, Morrison SF 2008. Preoptic mechanism for cold-defensive responses to skin cooling. J. Physiol. 586:2611–20
    [Google Scholar]
  135. 135.  Dimitrov EL, Kim YY, Usdin TB 2011. Regulation of hypothalamic signaling by tuberoinfundibular peptide of 39 residues is critical for the response to cold: a novel peptidergic mechanism of thermoregulation. J. Neurosci. 31:18166–79
    [Google Scholar]
  136. 136.  Tupone D, Morrison S 2014. An excitatory projection from median preoptic area to the dorsomedial hypothalamus contributes to the activation BAT thermogenesis. FASEB J 28:Suppl. 11104.28 (Abstr.)
    [Google Scholar]
  137. 137.  Matsumura K, Cao C, Ozaki M, Morii H, Nakadate K, Watanabe Y 1998. Brain endothelial cells express cyclooxygenase-2 during lipopolysaccharide-induced fever: light and electron microscopic immunocytochemical studies. J. Neurosci. 18:6279–89
    [Google Scholar]
  138. 138.  Steiner AA, Ivanov AI, Serrats J, Hosokawa H, Phayre AN et al. 2006. Cellular and molecular bases of the initiation of fever. PLOS Biol 4:e284
    [Google Scholar]
  139. 139.  Nakamura K, Kaneko T, Yamashita Y, Hasegawa H, Katoh H et al. 1999. Immunocytochemical localization of prostaglandin EP3 receptor in the rat hypothalamus. Neurosci. Lett. 260:117–20
    [Google Scholar]
  140. 140.  Lazarus M, Yoshida K, Coppari R, Bass CE, Mochizuki T et al. 2007. EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat. Neurosci. 10:1131–33
    [Google Scholar]
  141. 141.  Tanaka M, Ootsuka Y, McKinley MJ, McAllen RM 2007. Independent vasomotor control of rat tail and proximal hairy skin. J. Physiol. 582:421–33
    [Google Scholar]
  142. 142.  Ushikubi F, Segi E, Sugimoto Y, Murata T, Matsuoka T et al. 1998. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature 395:281–84
    [Google Scholar]
  143. 143.  Steiner AA, Antunes-Rodrigues J, Branco LG 2002. Role of preoptic second messenger systems (cAMP and cGMP) in the febrile response. Brain Res 944:135–45
    [Google Scholar]
  144. 144.  Cabanac M, Serres P 1976. Peripheral heat as a reward for heart rate response in the curarized rat. J. Comp. Physiol. Psychol. 90:435–41
    [Google Scholar]
  145. 145.  Flouris AD. 2011. Functional architecture of behavioural thermoregulation. Eur. J. Appl. Physiol. 111:1–8
    [Google Scholar]
  146. 146.  Davis KD, Kwan CL, Crawley AP, Mikulis DJ 1998. Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. J. Neurophysiol. 80:1533–46
    [Google Scholar]
  147. 147.  Han S, Soleiman MT, Soden ME, Zweifel LS, Palmiter RD 2015. Elucidating an affective pain circuit that creates a threat memory. Cell 162:363–74
    [Google Scholar]
  148. 148.  Sato M, Ito M, Nagase M, Sugimura YK, Takahashi Y et al. 2015. The lateral parabrachial nucleus is actively involved in the acquisition of fear memory in mice. Mol. Brain 8:22
    [Google Scholar]
  149. 149.  Miller RL, Knuepfer MM, Wang MH, Denny GO, Gray PA, Loewy AD 2012. Fos-activation of FoxP2 and Lmx1b neurons in the parabrachial nucleus evoked by hypotension and hypertension in conscious rats. Neuroscience 218:110–25
    [Google Scholar]
  150. 150.  Satinoff E, Rutstein J 1970. Behavioral thermoregulation in rats with anterior hypothalamic lesions. J. Comp. Physiol. Psychol. 71:77–82
    [Google Scholar]
  151. 151.  Almeida MC, Steiner AA, Branco LG, Romanovsky AA 2006. Neural substrate of cold-seeking behavior in endotoxin shock. PLOS ONE 1:e1
    [Google Scholar]
  152. 152.  Baldwin BA, Ingram DL 1967. Effect of heating and cooling the hypothalamus on behavioral thermoregulation in the pig. J. Physiol. 191:375–92
    [Google Scholar]
  153. 153.  Paxinos G, Watson C 2007. The Rat Brain in Stereotaxic Coordinates London: Academic. , 6th ed..
/content/journals/10.1146/annurev-physiol-020518-114546
Loading
/content/journals/10.1146/annurev-physiol-020518-114546
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error