1932

Abstract

Rust fungi (Pucciniales, Basidiomycota) are obligate biotrophic pathogens that cause rust diseases in plants, inflicting severe damage to agricultural crops. Pucciniales possess the most complex life cycles known in fungi. These include an alternation of generations, the development of up to five different sporulating stages, and, for many species, the requirement of infecting two unrelated host plants during different parts of their life cycle, termed heteroecism. These fungi have been extensively studied in the past century through microscopy and inoculation studies, providing precise descriptions of their infection processes, although the molecular mechanisms underlying their unique biology are poorly understood. In this review, we cover recent genomic and life cycle transcriptomic studies in several heteroecious rust species, which provide insights into the genetic tool kits associated with host adaptation and virulence, opening new avenues for unraveling their unique evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-020620-121149
2021-08-25
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/phyto/59/1/annurev-phyto-020620-121149.html?itemId=/content/journals/10.1146/annurev-phyto-020620-121149&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Agrios G. 2005.. Plant Pathology London: Elsevier. , 5th ed..
  2. 2. 
    Aime MC, Bell CD, Wilson AW. 2018. Deconstructing the evolutionary complexity of rust fungi (Pucciniales) and their plant hosts. Stud. Mycol. 89:143–52
    [Google Scholar]
  3. 3. 
    Aime MC, McTaggart AR. 2021. A higher-rank classification for rust fungi, with notes on genera. Fungal Syst. Evol. 7:21–47
    [Google Scholar]
  4. 4. 
    Aime MC, McTaggart AR, Mondo SJ, Duplessis S. 2017. Phylogenetics and phylogenomics of rust fungi. Adv. Genet. 100:267–307
    [Google Scholar]
  5. 5. 
    Aime MC, Toome M, McLaughlin D 2014. The Pucciniomycotina. The Mycota, Vol. 7: Systematics and Evolution, Part A D McLaughlin, JW Spatafora 271–94 Berlin, Ger: Springer
    [Google Scholar]
  6. 6. 
    Anderson C, Khan MA, Catanzariti A-M, Jack CA, Nemri A et al. 2016. Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus. Melampsora lini. BMC Genom 17:667
    [Google Scholar]
  7. 7. 
    Arroyo-Velez N, Gonzalez-Fuente M, Peeters N, Lauber E, Noël LD. 2020. From effectors to effectomes: Are functional studies of individual effectors enough to decipher plant pathogen infectious strategies?. PLOS Pathog 16:12e1009059
    [Google Scholar]
  8. 8. 
    Bakkeren G, Szabo LJ. 2020. Progress on molecular genetics and manipulation of rust fungi. Phytopathology 110:532–43
    [Google Scholar]
  9. 9. 
    Barres B, Dutech C, Andrieux A, Halkett F, Frey P. 2012. Exploring the role of asexual multiplication in poplar rust epidemics: impact on diversity and structure. Mol. Ecol. 21:204996–5008
    [Google Scholar]
  10. 10. 
    Barrett LG, Thrall PH, Dodds PN, van der Merwe M, Linde CC et al. 2009. Diversity and evolution of effector loci in natural populations of the plant pathogen Melampsora lini. Mol. Biol. Evol. 26:2499–513
    [Google Scholar]
  11. 11. 
    Bentham AR, De la Concepcion JC, Mukhi N, Zdrzalek R, Draeger M et al. 2020. A molecular roadmap to the plant immune system. J. Biol. Chem. 295:4414916–35
    [Google Scholar]
  12. 12. 
    Bolton MD, Kolmer JA, Garvin DF. 2008. Wheat leaf rust caused by Puccinia triticina. Mol. Plant Pathol. 9:563–75
    [Google Scholar]
  13. 13. 
    Brown JKM, Hovmoller MS. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–41
    [Google Scholar]
  14. 14. 
    Bushnell WR, Roelfs AP. 1984. The Cereal Rusts, Vol. 1. Origins, Specificity, Structure, and Physiology Cambridge, MA: Academic
    [Google Scholar]
  15. 15. 
    Cantu D, Govindarajulu M, Kozik A, Wang M, Chen X et al. 2011. Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. PLOS ONE 6:8e24230
    [Google Scholar]
  16. 16. 
    Cantu D, Segovia V, MacLean D, Bayles R, Chen X et al. 2013. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genom 14:270
    [Google Scholar]
  17. 17. 
    Catanzariti A-M, Dodds PN, Lawrence GJ, Ayliffe MA, Ellis JG. 2006. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell 18:243–56
    [Google Scholar]
  18. 18. 
    Catanzariti A-M, Dodds PN, Ve T, Kobe B, Ellis JG, Staskawicz BJ. 2010. The AvrM effector from flax rust has a structured C-terminal domain and interacts directly with the M resistance protein. Mol. Plant-Microbe Interact. 23:49–57
    [Google Scholar]
  19. 19. 
    Chen J, Upadhyaya NM, Ortiz D, Sperschneider J, Li F et al. 2017. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 358:1607–10
    [Google Scholar]
  20. 20. 
    Chen J, Wu J, Zhang P, Dong C, Upadhyaya NM et al. 2020. De novo genome assembly and comparative genomics of the barley leaf rust pathogen Puccinia hordei identifies candidates for three avirulence genes. G3 9:3263–71
    [Google Scholar]
  21. 21. 
    Craigie JH. 1927. Discovery of the function of the pycnia of the rust fungi. Nature 120:765–67
    [Google Scholar]
  22. 22. 
    Cuomo CA, Bakkeren G, Khalil HB, Panwar V, Joly D et al. 2017. Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci. G3 7:361–76
    [Google Scholar]
  23. 23. 
    Deising H, Nicholson RL, Haug M, Howard RJ, Mendgen K. 1992. Adhesion pad formation and the involvement of cutinase and esterases in the attachment of uredospores to the host cuticle. Plant Cell 4:1101–11
    [Google Scholar]
  24. 24. 
    Dobon A, Bunting DCE, Cabrera-Quio LE, Uauy C, Saunders DGO. 2016. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression. BMC Genom 17:380
    [Google Scholar]
  25. 25. 
    Dodds PN, Lawrence GJ, Catanzariti A-M, MA Ayliffe, Ellis JG. 2004. The Melampsora lini Avr567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell 16:755–68
    [Google Scholar]
  26. 26. 
    Dodds PN, Lawrence GJ, Catanzariti A-M, Teh T, Wang C-IA et al. 2006. Direct protein interaction underlies gene-for-gene specificity and co-evolution of the flax resistance genes and flax rust avirulence genes. PNAS 103:8888–93
    [Google Scholar]
  27. 27. 
    Dodds PN, Rathjen JP. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:8539–48
    [Google Scholar]
  28. 28. 
    Duplessis S, Bakkeren G, Hamelin R. 2014. Advancing knowledge on biology of rust fungi through genomics. Adv. Bot. Res. 70:173–209
    [Google Scholar]
  29. 29. 
    Duplessis S, Cuomo CA, Lin YC, Aerts A, Tisserant E et al. 2011. Obligate biotrophy features unravelled by the genomic analysis of rust fungi. PNAS 108:9166–71
    [Google Scholar]
  30. 30. 
    Duplessis S, Hacquard S, Delaruelle C, Tisserant E, Frey P et al. 2011. Melampsora larici-populina transcript profiling during germination and time course infection of poplar leaves reveals dynamic expression patterns associated with virulence and biotrophy. Mol. Plant-Microbe Interact 24:808–18
    [Google Scholar]
  31. 31. 
    Duplessis S, Joly DJ, Dodds PN 2012. Rust effectors. Effectors in Plant-Microbe Interactions F Martin, S Kamoun 155–93 Oxford, UK: Wiley-Blackwell
    [Google Scholar]
  32. 32. 
    Ellis JG, Dodds PN, Lawrence GJ. 2007. Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions. Annu. Rev. Phytopathol. 45:289–306
    [Google Scholar]
  33. 33. 
    Fernandez D, Tisserant E, Talhinhas P, Azinheira H, Vieira A et al. 2012. 454-Pyrosequencing of Coffea arabica leaves infected by the rust fungus Hemileia vastatrix reveals in planta-expressed pathogen-secreted proteins and plant functions in a late compatible plant-rust interaction. Mol. Plant Pathol. 13:17–37
    [Google Scholar]
  34. 34. 
    Figueroa M, Dodds PN, Henningsen EC. 2020. Evolution of virulence in rust fungi: multiple solutions to one problem. Curr. Opin. Plant Biol. 56:20–27
    [Google Scholar]
  35. 35. 
    Figueroa M, Hammond-Kosack KE, Solomon PS. 2017. A review of wheat diseases: a field perspective. Mol. Plant Pathol. 19:1523–36
    [Google Scholar]
  36. 36. 
    Figueroa M, Upadhyaya NM, Sperschneider J, Park RF, Szabo LJ et al. 2016. Changing the game: using integrative genomics to probe virulence mechanisms of the stem rust pathogen Puccinia graminis f. sp. tritici. Front. Plant Sci 7:205
    [Google Scholar]
  37. 37. 
    Flor HH. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275–96
    [Google Scholar]
  38. 38. 
    Garnica D, Upadhyaya N, Dodds PN, Rathjen JP. 2013. Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing. PLOS ONE 8:e67150
    [Google Scholar]
  39. 39. 
    Godoy CV, Seixas CDS, Soares RM, Marcelino-Guimaraes FC, MC Meyer, Costamilan LM. 2016. Asian soybean rust in Brazil: past, present and future. Pesqui. Agropecu. Bras. 5:407–21
    [Google Scholar]
  40. 40. 
    Hacquard S, Delaruelle C, Frey P, Tisserant E, Kohler A, Duplessis S. 2013. Transcriptome analysis of poplar rust telia reveals overwintering adaptation and tightly coordinated karyogamy and meiosis processes. Front. Plant Sci. 4:456
    [Google Scholar]
  41. 41. 
    Hacquard S, Delaruelle C, Legue V, Tisserant E, Kohler A et al. 2010. Laser capture microdissection of uredinia formed by Melampsora larici-populina revealed a transcriptional switch between biotrophy and sporulation. Mol. Plant-Microbe Interact 23:1275–86
    [Google Scholar]
  42. 42. 
    Hacquard S, Joly DL, Lin Y-C, Tisserant E, Feau N et al. 2012. A comprehensive analysis of genes encoding small secreted proteins identifies candidate effectors in Melampsora larici-populina (poplar leaf rust). Mol. Plant-Microbe Interact 25:279–93
    [Google Scholar]
  43. 43. 
    Hacquard S, Petre B, Frey P, Hecker A, Rouhier N, Duplessis S. 2011. The poplar-poplar rust interaction: insights from genomics and transcriptomics. J. Pathog. 2011:716041
    [Google Scholar]
  44. 44. 
    Hahn M, Mendgen K. 1997. Characterization of in planta-induced rust genes isolated from a haustorium-specific cDNA library. Mol. Plant-Microbe Interact 10:427–37
    [Google Scholar]
  45. 45. 
    Harder DE. 1984. Developmental ultrastructure of hyphae and spores. The Cereal Rusts W Bushnell, AP Roelfs 333–73 Cambridge, MA: Academic
    [Google Scholar]
  46. 46. 
    Hiratsuka Y, Cummins GB. 1963. Morphology of the spermogonia of the rust fungi. Mycologia 55:4487–507
    [Google Scholar]
  47. 47. 
    Hiratsuka Y, Sato S 1982. Morphology and taxonomy of rust fungi. The Rust Fungi K Scott, AK Chakravorty 1–36 New York: Academic
    [Google Scholar]
  48. 48. 
    Hubbard A, Lewis CM, Yoshida K, Ramirez-Gonzalez RH, de Vallavieille-Pope C et al. 2015. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol 16:23
    [Google Scholar]
  49. 49. 
    Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:323–29
    [Google Scholar]
  50. 50. 
    Kangara N, Kurowski TJ, Radhakrishnan GV, Ghosh S, Cook NM et al. 2020. Mutagenesis of Puccinia graminis f. sp. tritici and selection of gain-of-virulence mutants. Front. Plant Sci. 11:570180
    [Google Scholar]
  51. 51. 
    Kohler A, Kuo A, Nagy LG, Morin E, Barry KW et al. 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47:410–15
    [Google Scholar]
  52. 52. 
    Kolmer JA, Ordonez ME, Groth JV. 2009. The rust fungi. Encyclopedia of Life Sciences (eLS)1–8 Chichester, UK: Wiley & Sons
    [Google Scholar]
  53. 53. 
    Lawrence GJ, Dodds PN, Ellis JG. 2007. Rust of flax and linseed caused by Melampsora lini. Mol. Plant Pathol. 8:349–64
    [Google Scholar]
  54. 54. 
    Leonard KJ, Szabo LJ. 2005. Stem rust of small grains and grasses caused by Puccinia graminis. Mol. Plant Pathol. 6:99–111
    [Google Scholar]
  55. 55. 
    Li F, Upadhyaya NM, Sperschneider J, Matny O, Nguyen-Phuc H et al. 2019. Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridization. Nat. Commun. 10:150–68
    [Google Scholar]
  56. 56. 
    Li J, Cornelissen B, Rep M. 2020. Host-specificity factors in plant pathogenic fungi. Fungal Genet. Biol. 144:103447
    [Google Scholar]
  57. 57. 
    Li Y, Xia C, Wang M, Yin C, Chen X 2020. Whole-genome sequencing of Puccinia striiformis f. sp. tritici mutant isolates identifies avirulence gene candidates. BMC Genom 21:247
    [Google Scholar]
  58. 58. 
    Link TI, Voegele RT. 2008. Secreted proteins of Uromyces fabae: similarities and stage specificity. Mol. Plant Pathol. 9:59–66
    [Google Scholar]
  59. 59. 
    Littlefield LJ, Heath MC. 1979. Ultrastructure of Rust Fungi New York: Academic
  60. 60. 
    Liu JJ, Sturrock RN, Sniezko RA, Williams H, Benton R, Zamany A. 2015. Transcriptome analysis of the white pine blister rust pathogen Cronartium ribicola: de novo assembly, expression profiling, and identification of candidate effectors. BMC Genom 16:678
    [Google Scholar]
  61. 61. 
    Loehrer M, Botterweck J, Jahnke J, Mahlmann DM, Gaetgens J et al. 2014. In vivo assessment by Mach-Zehnder double-beam interferometry of the invasive force exerted by the Asian soybean rust fungus (Phakopsora pachyrhizi). New Phytol 203:620–31
    [Google Scholar]
  62. 62. 
    Lorrain C, Gonçalves dos Santos KC, Germain H, Hecker A, Duplessis S. 2019. Advances in understanding obligate biotrophy in rust fungi. New Phytol 222:31190–206
    [Google Scholar]
  63. 63. 
    Lorrain C, Marchal C, Hacquard S, Delaruelle C, Petrowski J et al. 2018. The rust fungus Melampsora larici-populina expresses a conserved genetic program and distinct sets of secreted protein genes during infection of its two host plants, larch and poplar. Mol. Plant-Microbe Interact 31:695–706
    [Google Scholar]
  64. 64. 
    Lorrain C, Petre B, Duplessis S. 2018. Show me the way: rust effector targets in heterologous plant systems. Curr. Opin. Microbiol. 14:19–25
    [Google Scholar]
  65. 65. 
    McTaggart AR, Shivas RG, van der Nest MA, Roux J, Wingfield BD, Wingfield MJ. 2016. Host jumps shaped the diversity of extant rust fungi (Pucciniales). New Phytol 209:1149–58
    [Google Scholar]
  66. 66. 
    Mendgen K. 1984. Development and physiology of teliospores. The Cereal Rusts W Bushnell, AP Roelfs 375–98 Cambridge, MA: Academic
    [Google Scholar]
  67. 67. 
    Miller ME, Nazareno ES, Rottschaeffer SM, Riddle J, Dos Santos Pereira D et al. 2021. Increased virulence of Puccinia coronata f. sp. avenae populations through allele frequency changes at multiple putative Avr loci. PLOS Genet 16:12e1009291
    [Google Scholar]
  68. 68. 
    Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A et al. 2020. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiosis traits. Nat. Commun. 11:5125
    [Google Scholar]
  69. 69. 
    Park RF, Wellings CR. 2012. Somatic hybridization in the Uredinales. Annu. Rev. Phytopathol. 50:219–39
    [Google Scholar]
  70. 70. 
    Persoons A, Morin E, Delaruelle C, Payen T, Halkett F et al. 2014. Patterns of genomic variation in the poplar rust fungus Melampsora larici-populina identify pathogenesis-related factors. Front. Plant Sci. 5:450
    [Google Scholar]
  71. 71. 
    Petre B, Joly DL, Duplessis S. 2014. Effector proteins of rust fungi. Front. Plant Sci. 5:416
    [Google Scholar]
  72. 72. 
    Petre B, Lorrain C, Stukenbrock EH, Duplessis S. 2020. Host-specialized transcriptome of plant-associated organisms. Curr. Opin. Plant Biol. 56:81–88
    [Google Scholar]
  73. 73. 
    Petre B, Morin E, Tisserant E, Hacquard S, Da Silva C et al. 2012. RNA-Seq of early-infected poplar leaves by the rust pathogen Melampsora larici-populina uncovers PtSultr3;5, a fungal-induced host sulfate transporter. PLOS ONE 7:e44408
    [Google Scholar]
  74. 74. 
    Pretorius ZA, Pakendorf KW, Marais GF, Prins R, Komen JS. 2007. Challenges for sustainable cereal rust control in South Africa. Aust. J. Agric. Res. 58:593–601
    [Google Scholar]
  75. 75. 
    Pretsch K, Kemen A, Kemen E, Geiger M, Mendgen K, Voegele R. 2013. The rust transferred proteins: a new family of effector proteins exhibiting protease inhibitor function. Mol. Plant Pathol. 14:96–107
    [Google Scholar]
  76. 76. 
    Ryder LS, Talbot NJ. 2015. Regulation of appressorium development in pathogenic fungi. Curr. Opin. Plant Biol. 26:8–13
    [Google Scholar]
  77. 77. 
    Salcedo A, Rutter W, Wang S, Akhunova A, Bolus S et al. 2017. Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science 358:1604–6
    [Google Scholar]
  78. 78. 
    Sato T, Sato S. 1985. Morphology of aecia of the rust fungi. Trans. Br. Mycol. Sci. 85:2223–38
    [Google Scholar]
  79. 79. 
    Schafer JF, Roelfs AP, Bushnell WR 1984. Contributions of early scientists to knowledge of cereal rusts. The Cereal Rusts W Bushnell, AP Roelfs 3–38 Cambridge, MA: Academic
    [Google Scholar]
  80. 80. 
    Scholler M, Lutz M, Aime MC 2018. Repeated formation of correlated species in Tranzschelia (Pucciniales). Mycol. Prog. 18:295–303
    [Google Scholar]
  81. 81. 
    Schwessinger B. 2017. Fundamental wheat stripe rust research in the 21st century. New Phytol 213:41625–31
    [Google Scholar]
  82. 82. 
    Schwessinger B, Sperschneider J, Cuddy W, Miller M, Garnica D et al. 2017. A near complete haplotype-phased genome of the dikaryotic wheat stripe rust fungus Puccinia striiformis f. sp. tritici reveals high inter-haplome diversity. mBio 9:e02275–17
    [Google Scholar]
  83. 83. 
    Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S et al. 2011. The emergence of Ug99 races of the wheat stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 49:465–81
    [Google Scholar]
  84. 84. 
    Snelders NC, Rovenich H, Petti GC, Rocafort M, van den Berg GCM et al. 2020. Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nat. Plants 6:1365–74
    [Google Scholar]
  85. 85. 
    Song L, Wu J-Q, Dong C-M, Park RF. 2020. Integrated analysis of gene expression, SNP, InDel and CNV identifies candidate avirulence genes in Australian isolates of the wheat leaf rust pathogen Puccinia triticina. Genes 11:1107
    [Google Scholar]
  86. 86. 
    Sperschneider J, Catanzariti AM, DeBoer K, Petre B, Gardiner DM et al. 2017. LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Sci. Rep. 7:44598
    [Google Scholar]
  87. 87. 
    Sperschneider J, Dodds P, Gardiner D, Singh K, Taylor J. 2018. Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. Mol. Plant Pathol. 19:2094–110
    [Google Scholar]
  88. 88. 
    Sperschneider J, Gardiner DM, Dodds PN, Tini F, Covarelli L et al. 2016. EffectorP: predicting fungal effector proteins from secretomes using machine learning. New Phytol 210:743–61
    [Google Scholar]
  89. 89. 
    Sperschneider J, Taylor J, Dodds PN, Duplessis S 2017. Computational methods for predicting effectors in rust pathogens. Wheat Rust Disease: Methods and Protocols, Vol. 1659 S Periyannan 73–83 New York: Humana Press
    [Google Scholar]
  90. 90. 
    Staples RC. 2000. Research on the rust fungi during the twentieth century. Annu. Rev. Phytopathol. 38:49–69
    [Google Scholar]
  91. 91. 
    Staples RC, Macko V. 1984. Germination of urediniospores and differentiation of infection structures. The Cereal Rusts W Bushnell, AP Roelfs 255–89 Cambridge, MA: Academic
    [Google Scholar]
  92. 92. 
    Struck C. 2015. Amino acid uptake in rust fungi. Front. Plant Sci. 6:40
    [Google Scholar]
  93. 93. 
    Tang C, Wang XJ, Cheng YL, Liu MJ, Zhao MX et al. 2015. New insights in the battle between wheat and Puccinia striiformis. Front. Agric. Sci. Eng. 2:101–14
    [Google Scholar]
  94. 94. 
    Tang C, Xu Q, Zhao M, Wang X, Kang Z. 2017. Understanding the lifestyles and pathogenicity mechanisms of obligate biotrophic fungi in wheat: the emerging genomics era. Crop J 6:60–67
    [Google Scholar]
  95. 95. 
    Tao S-Q, Auer L, Morin E, Liang Y-M, Duplessis S. 2020. Transcriptome analysis of apple leaves infected by the rust fungus Gymnosporangium yamadae at two sporulation stages. Mol. Plant-Microbe Interact. 33:3444–61
    [Google Scholar]
  96. 96. 
    Tao S-Q, Cao B, Morin E, Liang Y-M, Duplessis S. 2019. Comparative transcriptomics of Gymnosporangium spp. teliospores reveals a conserved genetic program at this specific stage of the rust fungal life cycle. BMC Genom 20:723
    [Google Scholar]
  97. 97. 
    Tao S-Q, Cao B, Tian C-M, Liang Y-M. 2017. Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum). BMC Genom 18:651
    [Google Scholar]
  98. 98. 
    Tavares S, Ramos AP, Pires AS, Azinheira HG, Caldeirinha P et al. 2014. Genome size analyses of Pucciniales reveal the largest fungal genomes. Front. Plant Sci. 5:422
    [Google Scholar]
  99. 99. 
    Termorshuizen AJ, Swertz CA 2011. Roesten van Nederlands/Dutch Rust Fungi Doorwerth, Neth: AJ Termorshuizen Publ.
  100. 100. 
    Tremblay A, Li S, Scheffler BE, Matthews BF. 2009. Laser capture microdissection and expressed sequence tag analysis of uredinia formed by Phakopsora pachyrhizi, the causal agent of Asian soybean rust. Physiol. Mol. Plant Pathol. 6:163–74
    [Google Scholar]
  101. 101. 
    Upadhyaya NM, Garnica DP, Karaoglu H, Sperschneider J, Nemri A et al. 2015. Comparative genomics of Australian isolates of the wheat stem rust pathogen Puccinia graminis f. sp. tritici reveals extensive polymorphism in candidate effector genes. Front. Plant Sci. 5:759
    [Google Scholar]
  102. 102. 
    Upadhyaya NM, Mago R, Panwar V, Hewitt T, Luo M et al. 2021. Genomics accelerated isolation of a new stem rust avirulence gene–wheat resistance gene pair. Nat. Plants. https://doi.org/10.1038/s41477-021-00971-5
    [Crossref] [Google Scholar]
  103. 103. 
    Visser B, Meyer M, Park RF, Gilligan CA, Burgin LE et al. 2019. Microsatellite analysis and urediniospore dispersal simulations support the movement of Puccinia graminis f. sp. tritici from Southern Africa to Australia. Phytopathology 109:133–44
    [Google Scholar]
  104. 104. 
    Voegele RT, Hahn M, Mendgen K. 2009. The Uredinales: cytology, biochemistry, and molecular biology. The Mycota, Vol. 5: Plant Relationships HB Deising 69–98 Berlin, Ger: Springer
    [Google Scholar]
  105. 105. 
    Voegele RT, Mendgen K. 2003. Rust haustorium: nutrient uptake and beyond. New Phytol 159:93–100
    [Google Scholar]
  106. 106. 
    Wu J-Q, Dong C, Song L, Park RF. 2020. Long-read-based de novo genome assembly and comparative genomics of the wheat leaf rust pathogen Puccinia triticina identifies candidates for three avirulence genes. Front. Plant Sci. 11:521
    [Google Scholar]
  107. 107. 
    Wu W, Nemri A, Blackman LM, Catanzariti A-M, Sperschneider J et al. 2019. Flax rust infection transcriptomics reveals a transcriptional profile that may be indicative for rust Avr genes. PLOS ONE 14:e0226106
    [Google Scholar]
  108. 108. 
    Xia C, Lei Y, Wang M, Chen W, Chen X 2020. An avirulence gene cluster in the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) identified through genetic mapping and whole-genome sequencing of a sexual population. mSphere 5:3e00128-20
    [Google Scholar]
  109. 109. 
    Xu J, Linning R, Fellers J, Dickinson M, Zhu W et al. 2011. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi. BMC Genom 12:161
    [Google Scholar]
  110. 110. 
    Zambino PJ, Kubelik AR, Szabo LJ. 2000. Gene action and linkage of avirulence genes to DNA markers in the rust fungus Puccinia graminis. Phytopathology 90:819–26
    [Google Scholar]
  111. 111. 
    Zhao J, Duan W, Xu Y, Zhang C, Wang L et al. 2021. Distinct transcriptomic reprogramming in the wheat stripe rust fungus during the initial infection of wheat and barberry. Mol. Plant-Microbe Interact. 34:2198–209
    [Google Scholar]
  112. 112. 
    Zheng W, Huang L, Huang J, Wang X, Chen X et al. 2013. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nat. Commun. 4:2673
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-020620-121149
Loading
/content/journals/10.1146/annurev-phyto-020620-121149
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error