1932

Abstract

Genetically engineered crops have been grown for more than 20 years, resulting in widespread albeit variable benefits for farmers and consumers. We review current, likely, and potential genetic engineering (GE) applications for the development of disease-resistant crop cultivars. Gene editing, gene drives, and synthetic biology offer novel opportunities to control viral, bacterial, and fungal pathogens, parasitic weeds, and insect vectors of plant pathogens. We conclude that there will be no shortage of GE applications to tackle disease resistance and other farmer and consumer priorities for agricultural crops. Beyond reviewing scientific prospects for genetically engineered crops, we address the social institutional forces that are commonly overlooked by biological scientists. Intellectual property regimes, technology regulatory frameworks, the balance of funding between public- and private-sector research, and advocacy by concerned civil society groups interact to define who uses which GE technologies, on which crops, and for the benefit of whom. Ensuring equitable access to the benefits of genetically engineered crops requires affirmative policies, targeted investments, and excellent science.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080417-045954
2019-08-25
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/phyto/57/1/annurev-phyto-080417-045954.html?itemId=/content/journals/10.1146/annurev-phyto-080417-045954&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ahuja V. 2018. Regulation of emerging gene technologies in India. BMC Proc 12:Suppl. 814
    [Google Scholar]
  2. 2. 
    Alakonya A, Kumar R, Koenig D, Kimura S, Townsley B et al. 2012. Interspecific RNA interference of SHOOT MERISTEMLESS-Like disrupts Cuscuta pentagona plant parasitism. Plant Cell 24:73153–66
    [Google Scholar]
  3. 3. 
    Alexandratos N, Bruinsma J. 2012. World agriculture towards 2030/2050: the 2012 revision ESA Work. Pap 12–03
  4. 4. 
    Alston JM. 2018. Reflections on agricultural R&D, productivity, and the data constraint: unfinished business, unsettled issues. Am. J. Agric. Econ. 100:2392–413
    [Google Scholar]
  5. 5. 
    Alston JM, Andersen MA, James JS, Pardey PG 2011. The economic returns to U.S. public agricultural research. Am. J. Agric. Econ. 93:51257–77
    [Google Scholar]
  6. 6. 
    Areal FJ, Riesgo L, Rodríguez-Cerezo E 2013. Economic and agronomic impact of commercialized GM crops: a meta-analysis. J. Agric. Sci. 151:17–33
    [Google Scholar]
  7. 7. 
    Arias RS, Dang PM, Sobolev VS 2015. RNAi-mediated control of aflatoxins in peanut: method to analyze mycotoxin production and transgene expression in the peanut/Aspergillus pathosystem. J. Vis. Exp. 106:e53398
    [Google Scholar]
  8. 8. 
    Bachman PM, Ahmad A, Ahrens JE, Akbar W, Baum JA et al. 2017. Characterization of the activity spectrum of MON 88702 and the plant-incorporated protectant Cry51Aa2.834_16. PLOS ONE 12:1e0169409
    [Google Scholar]
  9. 9. 
    Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN et al. 2015. Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat. Plants 1:15145
    [Google Scholar]
  10. 10. 
    Baltzegar J, Cavin Barnes J, Elsensohn JE, Gutzmann N, Jones MS et al. 2018. Anticipating complexity in the deployment of gene drive insects in agriculture. J. Responsible Innov. 5:Suppl.S81–97
    [Google Scholar]
  11. 11. 
    Bart RS, Taylor NJ. 2017. New opportunities and challenges to engineer disease resistance in cassava, a staple food of African small-holder farmers. PLOS Pathog 13:51–7
    [Google Scholar]
  12. 12. 
    Barton KA, Brill WJ. 1983. Prospects in plant genetic engineering. Science 219:4585671–82
    [Google Scholar]
  13. 13. 
    Battisti DS, Naylor RL. 2009. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:5911240–44
    [Google Scholar]
  14. 14. 
    Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P et al. 2007. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25:1322–26
    [Google Scholar]
  15. 15. 
    Bebber DP. 2015. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53:1335–56
    [Google Scholar]
  16. 16. 
    Beintema N, Stads G. 2017. A comprehensive overview of investments and human resource capacity in African agricultural research ASTI Synth. Rep., Int. Food Policy Res. Inst Washington, DC:
  17. 17. 
    Beyene G, Chauhan RD, Ilyas M, Wagaba H, Fauquet CM et al. 2017. A virus-derived stacked RNAi construct confers robust resistance to Cassava brown streak disease. Front. Plant Sci. 7:2052
    [Google Scholar]
  18. 18. 
    Bhatnagar-Mathur P, Sunkara S, Bhatnagar-Panwar M, Waliyar F, Sharma KK 2015. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Sci 234:119–32
    [Google Scholar]
  19. 19. 
    Blakeney M. 2011. Recent developments in intellectual property and power in the private sector related to food and agriculture. Food Policy 36:S109–13
    [Google Scholar]
  20. 20. 
    Bouët A, Gruère GP. 2011. Refining opportunity cost estimates of not adopting GM cotton: an application in seven sub-Saharan African countries. Appl. Econ. Perspect. Policy 33:2260–79
    [Google Scholar]
  21. 21. 
    Brookes G, Barfoot P. 2017. Farm income and production impacts of using GM crop technology 1996–2015. GM Crops Food 8:3156–93
    [Google Scholar]
  22. 22. 
    Brookes G, Barfoot P. 2018. Farm income and production impacts of using GM crop technology 1996–2016. GM Crops Food 9:259–89
    [Google Scholar]
  23. 23. 
    Bunge J, Craymer L. 2018. Scientists in China race to edit crop genes, sowing unease in U.S. The Wall Street Journal May 6. https://www.wsj.com/articles/scientists-in-china-race-to-edit-crop-genes-sowing-unease-in-u-s-1525611601
    [Google Scholar]
  24. 24. 
    Burgess DJ. 2017. Synthetic biology: building a custom eukaryotic genome de novo. Nat. Rev. Genet. 18:5274
    [Google Scholar]
  25. 25. 
    Busch L. 2011. Food standards: the cacophony of governance. J. Exp. Bot. 62:103247–50
    [Google Scholar]
  26. 26. 
    Byrne FJ, Devonshire AL. 1996. Biochemical evidence of haplodiploidy in the whitefly Bemisia tabaci. Biochem. Genet 34:393–107
    [Google Scholar]
  27. 27. 
    Carpenter JE. 2010. Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat. Biotechnol. 28:4319–21
    [Google Scholar]
  28. 28. 
    Cent. Environ. Risk Assess. (CERA) 2017. CERA GM Crop Database. Center for Environmental Risk Assessment http://cera-gmc.org/GMCropDatabase
    [Google Scholar]
  29. 29. 
    Chavarriaga-Aguirre P, Brand A, Medina A, Prías M, Escobar R et al. 2016. The potential of using biotechnology to improve cassava: a review. In Vitro Cell. Dev. Plant Biol. 52:5461–78
    [Google Scholar]
  30. 30. 
    Chougule NP, Li H, Liu S, Linz LB, Narva KE et al. 2013. Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests. PNAS 110:218465–70
    [Google Scholar]
  31. 31. 
    CIMMYT 2012. Position statement on genetically modified crop varieties Position Statement, Int. Maize Wheat Improvement Cent., El Batán, Mex https://repository.cimmyt.org/xmlui/bitstream/handle/10883/4393/56971.pdf?sequence=1&isAllowed=y
  32. 32. 
    CIMMYT 2017. Position statement on novel genome editing technologies in crops Position Statement, Int. Maize Wheat Improvement Cent., El Batán, Mex. https://www.cimmyt.org/wp-content/uploads/2016/04/CIMMYT-Position-Statement-on-Novel-Genome-Editing-Technologies-17Dec2017.pdf
  33. 33. 
    CJEU 2018. Organisms obtained by mutagenesis are GMOs and are, in principle, subject to the obligations laid down by the GMO Directive Press Release, No. 111/18. https://curia.europa.eu/jcms/upload/docs/application/pdf/2018-07/cp180111en.pdf
    [Google Scholar]
  34. 34. 
    Cox KL, Meng F, Wilkins KE, Li F, Wang P et al. 2017. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nat. Commun. 8:15588
    [Google Scholar]
  35. 35. 
    D'Amour CB, Wenz L, Kalkuhl M, Steckel JC, Creutzig F 2016. Teleconnected food supply shocks. Environ. Res. Lett. 11:335007
    [Google Scholar]
  36. 36. 
    Darwish WS, Ikenaka Y, Nakayama SMM, Ishizuka M 2014. An overview on mycotoxin contamination of foods in Africa. J. Vet. Med. Sci. 76:6789–97
    [Google Scholar]
  37. 37. 
    de Framond A, Rich P, McMillan J, Ejeta G 2007. Effects on Striga parasitism of transgenic maize armed with RNAi constructs targeting essential S. asiatica genes. Integrating New Technologies for Striga Control G Ejeta, J Gressel 185–96 Singapore: World Sci.
    [Google Scholar]
  38. 38. 
    Diamond A, Desgagne-Penix I. 2016. Metabolic engineering for the production of plant isoquinoline alkaloids. Plant Biotechnol. J. 14:61319–28
    [Google Scholar]
  39. 39. 
    Dong Y, Simões ML, Marois E, Dimopoulos G 2018. CRISPR/Cas9-mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection. PLOS Pathog 14:3e1006898
    [Google Scholar]
  40. 40. 
    Du B, Zhang W, Liu B, Hu J, Wei Z et al. 2009. Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. PNAS 106:5222163–68
    [Google Scholar]
  41. 41. 
    Eigenbrode SD, Bosque-Perez NA, Davis TS 2018. Insect-borne plant pathogens and their vectors: ecology, evolution, and complex interactions. Annu. Rev. Entomol. 63:169–91
    [Google Scholar]
  42. 42. 
    Finger R, El Benni N, Kaphengst T, Evans C, Herbert S et al. 2011. A meta analysis on farm-level costs and benefits of GM crops. Sustainability 3:5743–62
    [Google Scholar]
  43. 43. 
    Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC 1992. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of Papaya ringspot virus. Nat. Biotechnol. 10:1466–72
    [Google Scholar]
  44. 44. 
    Galushko V, Gray R. 2014. Twenty five years of private wheat breeding in the UK: lessons for other countries. Sci. Public Policy 41:6765–79
    [Google Scholar]
  45. 45. 
    Gilbertson RL, Batuman O, Webster CG, Adkins S 2015. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol. 2:167–93
    [Google Scholar]
  46. 46. 
    Giller K, Andersson J, Sumberg J, Thompson J 2017. A golden age for agronomy?. Agronomy for Development J Sumberg 150–60 London: Earthscan
    [Google Scholar]
  47. 47. 
    Glenna L, Cahoy D. 2009. Agribusiness concentration, intellectual property, and the prospects for rural economic benefits from the emerging biofuel economy. South. Rural Sociol. 24:2111–29
    [Google Scholar]
  48. 48. 
    Glenna LL, Lacy WB, Welsh R, Biscotti D 2007. University administrators, agricultural biotechnology, and academic capitalism: defining the public good to promote university-industry relationships. Sociol. Q. 48:1141–63
    [Google Scholar]
  49. 49. 
    Glenna LL, Tooker J, Welsh JR, Ervin D 2015. Intellectual property, scientific independence, and the efficacy and environmental impacts of genetically engineered crops. Rural Sociol 80:2147–72
    [Google Scholar]
  50. 50. 
    Gobena D, Shimels M, Rich PJ, Ruyter-Spira C, Bouwmeester H et al. 2017. Mutation in sorghum Low Germination Stimulant 1 alters strigolactones and causes Striga resistance. PNAS 114:174471–76
    [Google Scholar]
  51. 51. 
    Godfray HCJ, North A, Burt A 2017. How driving endonuclease genes can be used to combat pests and disease vectors. BMC Biol 15:11–12
    [Google Scholar]
  52. 52. 
    Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L et al. 2019. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnol. J. 17:421–34
    [Google Scholar]
  53. 53. 
    Gowda A, Rydel TJ, Wollacott AM, Brown RS, Akbar W et al. 2016. A transgenic approach for controlling Lygus in cotton. Nat. Commun. 7:12213
    [Google Scholar]
  54. 54. 
    Graff G, Hochman G, Zilberman D 2009. The political economy of agricultural biotechnology policies. AgBioForum 12:134–46
    [Google Scholar]
  55. 55. 
    Gressel J, Hanafi A, Head G, Marasas W, Obilana AB et al. 2004. Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Prot 23:8661–89
    [Google Scholar]
  56. 56. 
    Groen SC, Wamonje FO, Murphy AM, Carr JP 2017. Engineering resistance to virus transmission. Curr. Opin. Virol. 26:20–27
    [Google Scholar]
  57. 57. 
    Groeneweld H. 2016. South Africa evolving biosafety regulatory system Presented at the 4th Annual South Asia Biosafety Conference, Hyderabad India: Sept 19–21
  58. 58. 
    Heberlein TA. 2012. Navigating environmental attitudes. Conserv. Biol. 26:4583–85
    [Google Scholar]
  59. 59. 
    Hebert SL, Jia L, Goggin FL 2007. Quantitative differences in aphid virulence and foliar symptom development on tomato plants carrying the Mi resistance gene. Environ. Entomol. 36:2458–67
    [Google Scholar]
  60. 60. 
    Heisey P, Fuglie K. 2018. Agricultural research investment and policy reform in high-income countries Econ. Res. Rep. 249, US Dep. Agric. Econ. Res. Serv Washington, DC:
  61. 61. 
    Horgan FG. 2018. Integrating gene deployment and crop management for improved rice resistance to Asian planthoppers. Crop Prot 110:21–33
    [Google Scholar]
  62. 62. 
    Hummel AW, Doyle EL, Bogdanove AJ 2012. Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak. New Phytol 195:4883–93
    [Google Scholar]
  63. 63. 
    Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW et al. 2010. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:6001222–25
    [Google Scholar]
  64. 64. 
    IPCC 2014. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change Rep., Intergov. Panel Clim. Change Geneva:
    [Google Scholar]
  65. 65. 
    ISAAA 2018. GM approval database International Service for the Acquisition of Agri-Biotech Applications. http://www.isaaa.org/gmapprovaldatabase/
  66. 66. 
    Ishii T, Araki M. 2017. A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops Food 8:144–56
    [Google Scholar]
  67. 67. 
    ISPC 2014. Strategic study of biotechnology research in CGIAR Rep., CGIAR Indep. Sci. Partnersh. Counc., Rome Italy:
  68. 68. 
    Jacobson AL, Nault BA, Vargo EL, Kennedy GG 2016. Restricted gene flow among lineages of Thrips tabaci supports genetic divergence among cryptic species groups. PLOS ONE 11:9e0163882
    [Google Scholar]
  69. 69. 
    Jairin J, Kobayashi T, Yamagata Y, Sanada-Morimura S, Mori K et al. 2013. A simple sequence repeat- and single-nucleotide polymorphism-based genetic linkage map of the brown planthopper, Nilaparvata lugens. DNA Res. 20:117–30
    [Google Scholar]
  70. 70. 
    Kawano K. 2003. Thirty years of cassava breeding for productivity: biological and social factors for success. Crop Sci 43:41325–35
    [Google Scholar]
  71. 71. 
    Khajuria C, Ivashuta S, Wiggins E, Flagel L, Moar W et al. 2018. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLOS ONE 13:5e0197059
    [Google Scholar]
  72. 72. 
    Kiome R. 2015. A strategic framework for transgenic research and product development in Africa: report of a CGIAR study ILRI Proj. Rep., Int. Livest. Res. Inst., Nairobi Kenya:
  73. 73. 
    Kirigia D, Runo S, Alakonya A 2014. A virus-induced gene silencing (VIGS) system for functional genomics in the parasitic plant Striga hermonthica. Plant Methods 10:16
    [Google Scholar]
  74. 74. 
    Klümper W, Qaim M. 2014. A meta-analysis of the impacts of genetically modified crops. PLOS ONE 9:11e111629
    [Google Scholar]
  75. 75. 
    Kniss AR. 2017. Long-term trends in the intensity and relative toxicity of herbicide use. Nat. Commun. 8:14865
    [Google Scholar]
  76. 76. 
    Knott GJ, Doudna JA. 2018. CRISPR-Cas guides the future of genetic engineering. Science 361:6405866–69
    [Google Scholar]
  77. 77. 
    Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG 2017. Aflatoxins: a global concern for food safety, human health and their management. Front. Microbiol. 7:2170
    [Google Scholar]
  78. 78. 
    Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A et al. 2018. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36:1062–66
    [Google Scholar]
  79. 79. 
    Lafforgue G, Martinez F, Sardanyes J, de la Iglesia F, Niu Q-W et al. 2011. Tempo and mode of plant RNA virus escape from RNA interference-mediated resistance. J. Virol. 85:199686–95
    [Google Scholar]
  80. 80. 
    Lajoie MJ, Rovner AJ, Goodman DB, Aerni H-R, Haimovich AD et al. 2013. Genomically recoded organisms expand biological functions. Science 342:6156357–60
    [Google Scholar]
  81. 81. 
    Lamichhane JR, Barzman M, Booij K, Boonekamp P, Desneux N et al. 2015. Robust cropping systems to tackle pests under climate change. A review. Agron. Sustain. Dev. 35:2443–59
    [Google Scholar]
  82. 82. 
    Li T, Liu B, Spalding MH, Weeks DP, Yang B 2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30:5390–92
    [Google Scholar]
  83. 83. 
    Liu W, Stewart CN. 2015. Plant synthetic biology. Trends Plant Sci 20:5309–17
    [Google Scholar]
  84. 84. 
    Livingston M, Fernandez-Cornejo J, Unger J, Osteen C, Schimmelpfennig D et al. 2015. The economics of glyphosate resistance management in corn and soybean production Econ. Res. Rep. 184, US Dep. Agric. Econ. Res. Serv Washington, DC:
  85. 85. 
    Luck J, Spackman M, Freeman A, Tre˛bicki P, Griffiths W et al. 2011. Climate change and diseases of food crops. Plant Pathol 60:1113–21
    [Google Scholar]
  86. 86. 
    Ma NJ, Isaacs FJ. 2016. Genomic recoding broadly obstructs the propagation of horizontally transferred genetic elements. Cell Syst 3:2199–207
    [Google Scholar]
  87. 87. 
    Majumdar R, Rajasekaran K, Cary JW 2017. RNA interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: concepts and considerations. Front. Plant Sci. 8:200
    [Google Scholar]
  88. 88. 
    Manyong V, Maeda C, Kanju E, Legg J 2010. Economic damage of cassava brown streak disease in sub-Saharan Africa. Tropical Root and Tuber Crops and the Challenges of Globalization and Climate Change RU Okechukwu, P Ntawuruhunga 61–68 Ibadan: IITA
    [Google Scholar]
  89. 89. 
    Marshall JM, Akbari OS. 2018. Can CRISPR-based gene drive be confined in the wild? A question for molecular and population biology. ACS Chem. Biol. 13:2424–30
    [Google Scholar]
  90. 90. 
    Mortensen DA, Egan JF, Maxwell BD, Ryan MR, Smith RG 2012. Navigating a critical juncture for sustainable weed management. Bioscience 62:175–84
    [Google Scholar]
  91. 91. 
    Müller V, Amé MV, Carrari V, Gieco J, Asis R 2014. Lipoxygenase activation in peanut seed cultivars resistant and susceptible to Aspergillus parasiticus colonization. Phytopathology 104:121340–48
    [Google Scholar]
  92. 92. 
    Mupunga I, Mngqawa P, Katerere DR 2017. Peanuts, aflatoxins and undernutrition in children in sub-Saharan Africa. Nutrients 9:12e1287
    [Google Scholar]
  93. 93. 
    Naseem A, Spielman DJ, Omamo SW 2010. Private-sector investment in R&D: a review of policy options to promote its growth in developing-country agriculture. Agribusiness 26:1143–73
    [Google Scholar]
  94. 94. 
    Natl. Acad. Sci. Eng. Med 2016. Genetically Engineered Crops: Experiences and Prospects Washington, DC: Natl. Acad. Press
  95. 95. 
    Ndyetabula IL, Merumba SM, Jeremiah SC, Kasele S, Mkamilo GS et al. 2016. Analysis of interactions between Cassava brown streak disease symptom types facilitates the determination of varietal responses and yield losses. Plant Dis 100:71388–96
    [Google Scholar]
  96. 96. 
    Nelson GC, Valin H, Sands RD, Havlík P, Ahammad H et al. 2014. Climate change effects on agriculture: economic responses to biophysical shocks. PNAS 111:93274–79
    [Google Scholar]
  97. 97. 
    Neve P. 2018. Gene drive systems: do they have a place in agricultural weed management?. Pest Manag. Sci. 74:122671–79
    [Google Scholar]
  98. 98. 
    Nombela G, Williamson VM, Muniz M 2003. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol. Plant-Microbe Interact 16:7645–49
    [Google Scholar]
  99. 99. 
    Okusu H. 2009. Biotechnology research in the CGIAR: an overview. AgBioForum 12:170–77
    [Google Scholar]
  100. 100. 
    Ostrov N, Landon M, Guell M, Kuznetsov G, Teramoto J et al. 2016. Design, synthesis, and testing toward a 57-codon genome. Science 353:6301819–22
    [Google Scholar]
  101. 101. 
    Oye KA, Esvelt K, Appleton E, Catteruccia F, Church G et al. 2014. Regulating gene drives. Science 345:6197626–28
    [Google Scholar]
  102. 102. 
    Pardey P, Beddow J. 2017. Revitalizing agricultural research and development to sustain US competitiveness Rep., Farm J. Found Washington, DC:
  103. 103. 
    Parrott W. 2018. Outlaws, old laws and no laws: The prospects of gene editing for agriculture in United States. Physiol. Plant. 164:4406–11
    [Google Scholar]
  104. 104. 
    Patil BL, Legg JP, Kanju E, Fauquet CM 2015. Cassava brown streak disease: a threat to food security in Africa. J. Gen. Virol. 96:Pt. 5956–68
    [Google Scholar]
  105. 105. 
    Pavan S, Jacobsen E, Visser RGF, Bai Y 2010. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol. Breed. 25:11–12
    [Google Scholar]
  106. 106. 
    Pellegrino E, Bedini S, Nuti M, Ercoli L 2018. Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci. Rep. 8:3113
    [Google Scholar]
  107. 107. 
    Perilla-Henao LM, Casteel CL. 2016. Vector-borne bacterial plant pathogens: interactions with hemipteran insects and plants. Front. Plant Sci. 7:1163
    [Google Scholar]
  108. 108. 
    Perry ED, Ciliberto F, Hennessy DA, Moschini G 2016. Genetically engineered crops and pesticide use in U.S. maize and soybeans. Sci. Adv. 2:8e1600850
    [Google Scholar]
  109. 109. 
    Phillips McDougall 2011. The cost and time involved in the discovery, development and authorization of a new plant biotechnology derived trait: a consultancy study for CropLife International Rep., Phillips McDougall Midlothian, UK: https://croplife.org/wp-content/uploads/2014/04/Getting-a-Biotech-Crop-to-Market-Phillips-McDougall-Study.pdf
    [Google Scholar]
  110. 110. 
    Piatek AA, Lenaghan SC, Stewart CN Jr. 2018. Advanced editing of the nuclear and plastid genomes in plants. Plant Sci 273:42–49
    [Google Scholar]
  111. 111. 
    Ramaiah KV, Chidley VL, House LR 1990. Inheritance of Striga seed-germination stimulant in sorghum. Euphytica 45:133–38
    [Google Scholar]
  112. 112. 
    Rao NC. 2017. Biotechnology for farmers welfare and poverty reduction: technologies, impact and policy framework. Agric. Econ. Res. Rev. 30:241–56
    [Google Scholar]
  113. 113. 
    Rausch MA, Chougule NP, Deist BR, Bonning BC 2016. Modification of Cry4Aa toward improved toxin processing in the gut of the pea aphid, Acyrthosiphon pisum. PLOS ONE 11:5e0155466
    [Google Scholar]
  114. 114. 
    Richardson SM, Mitchell LA, Stracquadanio G, Yang K, Dymond JS et al. 2017. Design of a synthetic yeast genome. Science 355:63291040–44
    [Google Scholar]
  115. 115. 
    Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III et al. 2009. A safe operating space for humanity. Nature 461:472–75
    [Google Scholar]
  116. 116. 
    Rodenburg J, Demont M, Zwart SJ, Bastiaans L 2016. Parasitic weed incidence and related economic losses in rice in Africa. Agric. Ecosyst. Environ. 235:306–17
    [Google Scholar]
  117. 117. 
    Rodriguez-Alvarez CI, Muniz M, Nombela G 2017. Effect of plant development (age and size) on the Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci. Bull. Entomol. Res 107:6768–76
    [Google Scholar]
  118. 118. 
    Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM 1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. PNAS 95:179750–54
    [Google Scholar]
  119. 119. 
    Savary S, Ficke A, Aubertot J-N, Hollier C 2012. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4:4519–37
    [Google Scholar]
  120. 120. 
    Schiek B, Hareau G, Baguma Y, Medakker A, Douches D et al. 2016. Demystification of GM crop costs: releasing late blight resistant potato varieties as public goods in developing countries. Int. J. Biotechnol. 14:2112–31
    [Google Scholar]
  121. 121. 
    Schwille P. 2011. Bottom-up synthetic biology: engineering in a tinkerer's world. Science 333:60471252–54
    [Google Scholar]
  122. 122. 
    Sharma KK, Pothana A, Prasad K, Shah D, Kaur J et al. 2018. Peanuts that keep aflatoxin at bay: a threshold that matters. Plant Biotechnol. J. 16:51024–33
    [Google Scholar]
  123. 123. 
    Shen J-W, Ruan Y, Ren W, Ma B-J, Wang X-L, Zheng C-F 2014. Lycorine: a potential broad-spectrum agent against crop pathogenic fungi. J. Microbiol. Biotechnol. 24:3354–58
    [Google Scholar]
  124. 124. 
    Simon J-C, Peccoud J. 2018. Rapid evolution of aphid pests in agricultural environments. Curr. Opin. Insect Sci. 26:17–24
    [Google Scholar]
  125. 125. 
    Sinkins SP, Gould F. 2006. Gene drive systems for insect disease vectors. Nat. Rev. Genet. 7:427–35
    [Google Scholar]
  126. 126. 
    Song H, Wang P, Li C, Han S, Lopez-Baltazar J et al. 2016. Identification of lipoxygenase (LOX) genes from legumes and their responses in wild type and cultivated peanut upon Aspergillus flavus infection. Sci. Rep. 6:35245
    [Google Scholar]
  127. 127. 
    Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S et al. 2005. The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J 42:6912–22
    [Google Scholar]
  128. 128. 
    Strange RN, Scott PR. 2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43:83–116
    [Google Scholar]
  129. 129. 
    Sundaresha S, Rohini S, Appanna VK, Arthikala M-K, Shanmugam NB et al. 2016. Co-overexpression of Brassica juncea NPR1 (BjNPR1) and Trigonella foenum-graecum defensin (Tfgd) in transgenic peanut provides comprehensive but varied protection against Aspergillus flavus and Cercospora arachidicola. Plant Cell Rep 35:51189–203
    [Google Scholar]
  130. 130. 
    Tabashnik BE, Carrière Y. 2017. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat. Biotechnol. 35:10926–35
    [Google Scholar]
  131. 131. 
    Takeshima H. 2010. Prospects for development of genetically modified cassava in sub-Saharan Africa. AgBioForum 13:163–75
    [Google Scholar]
  132. 132. 
    Taylor NJ, Halsey M, Gaitan-Solis E, Anderson P, Gichuki S et al. 2012. The VIRCA Project: Virus Resistant Cassava for Africa. GM Crops Food 3:293–103
    [Google Scholar]
  133. 133. 
    Tilman D, Balzer C, Hill J, Befort BL 2011. Global food demand and the sustainable intensification of agriculture. PNAS 108:5020260–64
    [Google Scholar]
  134. 134. 
    Tomilov AA, Tomilova NB, Wroblewski T, Michelmore R, Yoder JI 2008. Trans-specific gene silencing between host and parasitic plants. Plant J 56:3389–97
    [Google Scholar]
  135. 135. 
    Traore A. 2018. Evaluating agronomic and social dimensions of rice production: increasing the productivity of smallholders in the NERICA/rice value chain in Guinea PhD Diss., Pennsylvania State Univ., University Park
  136. 136. 
    Tripp R. 2001. Seed Provision & Agricultural Development: The Institutions of Rural Change Oxford, UK: James Currey Ltd 174 pp .
  137. 137. 
    USDA 2018. Secretary Perdue issues USDA statement on plant breeding innovation Press Release 0070.18, March 28. https://www.usda.gov/media/press-releases/2018/03/28/secretary-perdue-issues-usda-statement-plant-breeding-innovation
  138. 138. 
    USDA-FAS 2018. Environment ministry proposes policy for regulating genome editing GAIN Rep. J8075, Glob. Agric. Inf. Netw Washington, DC:
  139. 139. 
    Vanderschuren H, Moreno I, Anjanappa RB, Zainuddin IM, Gruissem W 2012. Exploiting the combination of natural and genetically engineered resistance to Cassava mosaic and Cassava brown streak viruses impacting cassava production in Africa. PLOS ONE 7:9e45277
    [Google Scholar]
  140. 140. 
    Wagaba H, Patil BL, Mukasa S, Alicai T, Fauquet CM, Taylor NJ 2016. Artificial microRNA-derived resistance to Cassava brown streak disease. J. Virol. Methods 231:38–43
    [Google Scholar]
  141. 141. 
    Wang W, Pan Q, He F, Akhunova A, Chao S et al. 2018. Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1:165–74
    [Google Scholar]
  142. 142. 
    Welsh R, Glenna L. 2006. Considering the role of the university in conducting research on agri-biotechnologies. Soc. Stud. Sci. 36:6929–42
    [Google Scholar]
  143. 143. 
    Wesseler J, Smart RD, Thomson J, Zilberman D 2017. Foregone benefits of important food crop improvements in sub-Saharan Africa. PLOS ONE 12:7e0181353
    [Google Scholar]
  144. 144. 
    Westwood JH, DePamphilis CW, Das M, Fernández-Aparicio M, Honaas LA et al. 2012. The parasitic plant genome project: new tools for understanding the biology of Orobanche and Striga. Weed Sci 60:2295–306
    [Google Scholar]
  145. 144a. 
    Wikipedia 2019. March against Monsanto. Wikipedia https://en.wikipedia.org/wiki/March_Against_Monsanto
    [Google Scholar]
  146. 145. 
    Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW et al. 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33:111162–64
    [Google Scholar]
  147. 146. 
    Wright BD, Pardey PG. 2006. Changing intellectual property regimes: implications for developing country agriculture. Int. J. Technol. Glob. 2:1–293–114
    [Google Scholar]
  148. 147. 
    Yang Z, Wafula EK, Honaas LA, Zhang H, Das M et al. 2015. Comparative transcriptome analyses reveal core parasitism genes and suggest gene duplication and repurposing as sources of structural novelty. Mol. Biol. Evol. 32:3767–90
    [Google Scholar]
  149. 148. 
    Yates AD, Michel A. 2018. Mechanisms of aphid adaptation to host plant resistance. Curr. Opin. Insect Sci. 26:41–49
    [Google Scholar]
  150. 149. 
    Yin K, Gao C, Qiu JL 2017. Progress and prospects in plant genome editing. Nat. Plants 3:17107
    [Google Scholar]
  151. 150. 
    Zaidi SS-E-A, Tashkandi M, Mansoor S, Mahfouz MM 2016. Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance. Front. Plant Sci. 7:1673
    [Google Scholar]
  152. 151. 
    Zaidi SS-E-A, Vanderschuren H, Qaim M, Mahfouz MM, Kohli A et al. 2019. New plant breeding technologies for food security. Science 363:64341390–91
    [Google Scholar]
  153. 152. 
    Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R 2015. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:6225991–94
    [Google Scholar]
  154. 153. 
    Zhao J, Zhang X, Hong Y, Liu Y 2016. Chloroplast in plant-virus interaction. Front. Microbiol. 7:1565
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080417-045954
Loading
/content/journals/10.1146/annurev-phyto-080417-045954
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error