1932

Abstract

The devastating wheat blast disease first emerged in Brazil in 1985. The disease was restricted to South America until 2016, when a series of grain imports from Brazil led to a wheat blast outbreak in Bangladesh. Wheat blast is caused by (), a species genetically distinct from the species that causes rice blast. has high genetic and phenotypic diversity and a broad host range that enables it to move back and forth between wheat and other grass hosts. Recombination is thought to occur mainly on the other grass hosts, giving rise to the highly diverse population observed in wheat fields. This review brings together past and current knowledge about the history, etiology, epidemiology, physiology, and genetics of wheat blast and discusses the future need for integrated management strategies. The most urgent current need is to strengthen quarantine and biosafety regulations to avoid additional spread of the pathogen to disease-free countries. International breeding efforts will be needed to develop wheat varieties with more durable resistance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080417-050036
2018-08-25
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080417-050036.html?itemId=/content/journals/10.1146/annurev-phyto-080417-050036&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Akhtar J, Kandan A, Singh B, Kumar P, Khan Z et al. 2016. Diagnostics of seed-borne plant pathogens for safe introduction and healthy conservation of plant genetic resources. Current Trends in Plant Disease Diagnostics and Management Practices P Kumar, VK Gupta, AK Tiwari, M Kamle 429–40 Cham, Switz.: Springer
    [Google Scholar]
  2. 2.  Alberione E, Bainotti C, Cettour I, Salines J 2008. Evaluación de enfermedades en trigos en siembra de verano en el NEA argentino-Campaña 2007/2008. 7th Congreso Nacional Trigo1–10 Santa Rosa, Argent.: Univ. Nacional La Pampa
    [Google Scholar]
  3. 3.  Amiri A, Heath SM, Peres NA 2013. Resistance to fluopyram, fluxapyroxad, and penthiopyrad in Botrytis cinerea from strawberry. Plant Dis 98:532–39
    [Google Scholar]
  4. 4.  Anh VL, Anh NT, Tagle AG, Vy TTP, Inoue Y et al. 2015. Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopathology 105:1568–72
    [Google Scholar]
  5. 5.  Anjos JRN, Silva DB, Charchar MJD, Rodrigues GC 1996. Ocurrence of blast fungus (Pyricularia grisea) on wheat and rye in the savanna region of Central Brazil. Pesq. Agropec. Trop. 31:79–82
    [Google Scholar]
  6. 6.  Aucique-Pérez CE 2016. Wheat resistance to blast using a non-host selective toxin and host metabolic reprogramming through a successful infection by Pyricularia oryzae PhD Thesis Fed. Univ. Viçosa Viçosa, Braz.:
    [Google Scholar]
  7. 7.  Aucique-Pérez CE, de Menezes Silva PE, Moreira WR, DaMatta FM, Rodrigues 2017. Photosynthesis impairments and excitation energy dissipation on wheat plants supplied with silicon and infected with Pyricularia oryzae. Plant Physiol. Biochem. 121:196–205
    [Google Scholar]
  8. 8.  Aucique-Pérez CE, Rodrigues , Moreira WR, DaMatta FM 2013. Leaf gas exchange and chlorophyll A fluorescence in wheat plants supplied with silicon and infected with Pyricularia oryzae. . Phytopathology 104:143–49
    [Google Scholar]
  9. 9.  Barea G, Toledo J 1996. Identificación y zonificación de piricularia o bruzone (Pyricularia oryzae) en el cultivo del trigo en el Dpto. de Santa Cruz. Informe Técnico, Proyecto de Investigación Trigo76–86 Cali, Colombia: CIAT
    [Google Scholar]
  10. 10.  Bilgin DD, Zavala JA, Zhu JIN, Clough SJ, Ort DR, DeLucia EH 2010. Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ 33:1597–613
    [Google Scholar]
  11. 11.  Bockus WW, Cruz CD, Stack JP, Valent B 2015. Effect of seed-treatment fungicides on sporulation of Magnaporthe oryzae from wheat seed, 2014. Plant Dis. Manag. Rep. 9:ST004
    [Google Scholar]
  12. 12.  Brunetta D, Bassoi MC, Dotto SR, Scheeren PL, Miranda MZD et al. 2006. Characteristics and agronomic performance of wheat cultivar BRS 229 in Paraná State, Brazil. Pesq. Agropec. Bras. 41:889–992
    [Google Scholar]
  13. 13.  Bruno AC, Urashima AS 2001. Sexual relationship between Magnaporthe grisea from wheat and from other hosts. Fitopatol. Bras. 26:21–26
    [Google Scholar]
  14. 14.  Cabrera MG, Gutiérres SA 2007. Primer registro de Pyricularia grisea en cultivos de trigo del NE de Argentina Actas Reun. Comun. Cient. Tecnol. Bull., SGCYT, Corrientes, Argent.
    [Google Scholar]
  15. 15.  Callaway E 2016. Devastating wheat fungus appears in Asia for first time. Nature 532:421–22
    [Google Scholar]
  16. 16.  Cardoso CAA, Reis EM, Moreira EN 2008. Development of a warning system for wheat blast caused by Pyricularia grisea. . Summa Phytopathol 34:216–21
    [Google Scholar]
  17. 17.  Castroagudín VL, Ceresini PC, de Oliveira SC, Reges JTA, Maciel JLN et al. 2015. Resistance to QoI fungicides is widespread in Brazilian populations of the wheat blast pathogen Magnaporthe oryzae. . Phytopathology 105:284–94
    [Google Scholar]
  18. 18.  Castroagudín VL, Danelli A, Moreira SI, Reges JTA, Carvalho G et al. 2017. The wheat blast pathogen Pyricularia graminis-tritici has complex origins and a disease cycle spanning multiple grass hosts. bioRxiv 203455. https://doi.org/10.1101/203455
    [Crossref]
  19. 19.  Castroagudín VL, Moreira SI, Pereira DAS, Moreira SS, Brunner PC et al. 2016. Pyricularia graminis-tritici, a new Pyricularia species causing wheat blast. Persoonia 37:199–216
    [Google Scholar]
  20. 20.  Chen X, Ma L, Qiang S, Ma D 2016. Development of a loop-mediated isothermal amplification method for the rapid diagnosis of Ascochyta rabiei L. in chickpeas. Sci. Rep. 6:25688
    [Google Scholar]
  21. 21.  Chiapello H, Mallet L, Guérin C, Aguileta G, Amselem J, Kroj T 2015. Deciphering genome content and evolutionary relationships of isolates from the fungus Magnaporthe oryzae attacking different host plants. Genome Biol. Evol. 7:2896–912
    [Google Scholar]
  22. 22.  Choi J, Park S-Y, Kim B-R, Roh J-H, Oh I-S et al. 2013. Comparative analysis of pathogenicity and phylogenetic relationship in Magnaporthe grisea species complex. PLOS ONE 8:e57196
    [Google Scholar]
  23. 23. CIMMYT (Int. Maize Wheat Improv. Cent.) Wheat Program. 2016. Understanding and managing the threat of wheat blast in South Asia, South America, and beyond. https://repository.cimmyt.org/xmlui/handle/10883/16947
  24. 24.  Coelho MDO, Torres GM, Cecon PR, Santana FM 2016. Sowing date reduces the incidence of wheat blast disease. Pesq. Agropec. Bras. 51:631–37
    [Google Scholar]
  25. 25. CONAB (Cia. Nac. Abast.). 2017. Acompanhamento da Safra Brasileira: Grãos, Vol. 4: Safra 2016/2017 Oitavo Levantamento Brasília, Braz.: Cia. Nac. Abast.
    [Google Scholar]
  26. 26.  Couch BC, Fudal I, Lebrun M-H, Tharreau D, Valent B et al. 2005. Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 170:613–30
    [Google Scholar]
  27. 27.  Couch BC, Kohn LM 2002. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–93
    [Google Scholar]
  28. 28.  Cruz CD, Kiyuna J, Bockus WW, Todd TC, Stack JP, Valent B 2015. Magnaporthe oryzae conidia on basal wheat leaves as a potential source of wheat blast inoculum. Plant Pathol 64:1491–98
    [Google Scholar]
  29. 29.  Cruz CD, Magarey RD, Christie DN, Fowler GA, Fernandez JM et al. 2016. Climate suitability for Magnaporthe oryzae Triticum pathotype in the United States. Plant Dis 100:1979–87
    [Google Scholar]
  30. 30.  Cruz CD, Peterson GL, Bockus WW, Kankanala P, Dubcovsky J et al. 2016. The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum pathotype of Magnaporthe oryzae. . Crop Sci 56:990–1000
    [Google Scholar]
  31. 31.  Cruz CD, Valent B 2017. Wheat blast disease: danger on the move. Trop. Plant Pathol. 42:210–22
    [Google Scholar]
  32. 32.  Cruz MFA, Debona D, Rios JA, Barros EG, Rodrigues 2015. Potentiation of defense-related gene expression by silicon increases wheat resistance to leaf blast. Trop. Plant Pathol. 40:394–400
    [Google Scholar]
  33. 33.  Cruz MFA, Diniz APC, Rodrigues , Barros EG 2011. Foliar application of products on the reduction of blast severity on wheat. Trop. Plant Pathol. 36:424–28
    [Google Scholar]
  34. 34.  Cruz MFA, Prestes AM, Maciel JLN, Scheeren PL 2010. Partial resistance to blast on common and synthetic wheat genotypes in seedling and in adult plant growth stages. Trop. Plant Pathol. 35:24–31
    [Google Scholar]
  35. 35.  Cruz MFA, Rios JA, Araujo L, Rodrigues 2016. Infection process of Pyricularia oryzae on the leaves of wheat seedlings. Trop. Plant Pathol. 41:123–27
    [Google Scholar]
  36. 36.  Cruz MFA, Silva LAF, Rios JA, Debona D, Rodrigues 2015. Microscopic aspects of the colonization of Pyricularia oryzae on the rachis of wheat plants supplied with silicon. Bragantia 74:207–14
    [Google Scholar]
  37. 37.  da Silva WL, Cruz MFA, Fortunato AA, Rodrigues 2015. Histochemical aspects of wheat resistance to leaf blast mediated by silicon. Sci. Agric. 72:322–27
    [Google Scholar]
  38. 38.  Debona D, Cruz MFA, Rodrigues 2017. Calcium-triggered accumulation of defense-related transcripts enhances wheat resistance to leaf blast. Trop. Plant Pathol. 42:309–14
    [Google Scholar]
  39. 39.  Debona D, Figueiró GG, Corte GD, Navarini L, Domingues LS, Balardin R 2009. Effect of seed treatment with fungicides and acibenzolar-S-methyl in soybean cultivars on Asian rust control and seedlings growth. Summa Phytopathol 35:26–31
    [Google Scholar]
  40. 40.  Debona D, Rios JA, Nascimento KJT, Silva LC, Rodrigues 2016. Influence of magnesium on physiological responses of wheat infected by Pyricularia oryzae. Plant Pathol. 65:114–23
    [Google Scholar]
  41. 41.  Debona D, Rodrigues , Rios JA, Martins SCV, Pereira LF, DaMatta FM 2013. Limitations to photosynthesis in leaves of wheat plants infected by Pyricularia oryzae. . Phytopathology 104:34–39
    [Google Scholar]
  42. 42.  Debona D, Rodrigues , Rios JA, Nascimento KJT 2012. Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. . Phytopathology 102:1121–29
    [Google Scholar]
  43. 43.  de Oliveira SC, Castroagudín VL, Maciel JLN, dos Santos Pereira DA, Ceresini PC 2015. Cross-resistance to QoI fungicides azoxystrobin and pyraclostrobin in the wheat blast pathogen Pyricularia oryzae in Brazil. Summa Phytopathol 41:298–304
    [Google Scholar]
  44. 44.  Duveiller E, Hodson D, Tiedmann A 2010. Wheat blast caused by Magnaporthe grisea: a reality and new challenge for wheat research. Proceedings of the 8th International Wheat Conference247–48 St. Petersburg, Russ.: Vavilov Res. Inst. Plant Ind.
    [Google Scholar]
  45. 45.  Farman M, Peterson G, Chen L, Starnes J, Valent B et al. 2017. The Lolium pathotype of Magnaporthe oryzae recovered from a single blasted wheat plant in the United States. Plant Dis 101:684–92
    [Google Scholar]
  46. 46.  Farman ML 2002. Pyricularia grisea isolates causing gray leaf spot on perennial ryegrass (Lolium perenne) in the United States: relationship to P. grisea isolates from other host plants. Phytopathology 92:245–54
    [Google Scholar]
  47. 47.  Fernandes JMC, Pavan W, Hölbig CA, Karrei M, de Vargas F et al. 2017. A weather-based model for predicting early season inoculum build-up and spike infection by the wheat blast pathogen. Trop. Plant Pathol. 42:230–37
    [Google Scholar]
  48. 48.  Galbieri R, Urashima AS 2008. Sexual characterization, compatibility and occurrence of sexual reproduction among isolates of Pyricularia grisea from different hosts. Summa Phytopathol 34:22–28
    [Google Scholar]
  49. 49.  Gladieux P, Condon B, Ravel S, Soanes D, Nunes Maciel JL et al. 2018. Gene flow between divergent cereal- and grass-specific lineages of the rice blast fungus Magnaporthe oryzae. mBio 9:e01219–17
    [Google Scholar]
  50. 50.  Gomes DP, Rocha VS, Pereira OL, de Souza MA 2017. Damage of wheat blast on the productivity and quality of seeds as a function of the initial inoculum in the field. J. Seed Sci. 39:66–74
    [Google Scholar]
  51. 51.  Goulart ACP, Paiva FA 1990. Transmision of Pyricularia oryzae by wheat (Triticum aestivum) seeds. Fitopatol. Bras. 15:359–62
    [Google Scholar]
  52. 52.  Goulart ACP, Paiva FA 1991. Control of Pyricularia oryzae and Helminthosporium sativum through wheat seeds treatment with fungicides. Pesq. Agropec. Bras. 26:1983–88
    [Google Scholar]
  53. 53.  Goulart ACP, Paiva FA 1992. Associated fungi in wheat (Triticum aestivum L.) seeds produced in Mato Grosso do Sul, in 1990 and 1991. Rev. Bras. Sementes 14:221–25
    [Google Scholar]
  54. 54.  Goulart ACP, Paiva FA 1992. Incidence of (Pyricularia oryzae) in different wheat cultivars under field conditions. Fitopatol. Bras. 17:321–25
    [Google Scholar]
  55. 55.  Goulart ACP, Paiva FA 1993. Fungi incidence in wheat (Triticum aestivum) seeds produced in Mato Grosso do Sul. Fitopatol. Bras. 18:107–9
    [Google Scholar]
  56. 56.  Goulart ACP, Paiva FA 1993. Survival of Pyricularia orizae Cav. on wheat seeds under different storing conditions. Rev. Bras. Sementes 15:153–56
    [Google Scholar]
  57. 57.  Goulart ACP, Paiva FA, Andrade PJM 1995. Relationship between incidence of blast in wheat seeds and the presence of Pyricularia grisea in the harvested seeds. Fitopatol. Bras. 20:184–89
    [Google Scholar]
  58. 58.  Goulart ACP, Paiva FA, Colman OP 1991. Reação de cultivares de trigo (Triticum aestivum L.) à brusone (Pyricularia oryzae Cav) em condições de campo. 16a Reunião da Comissão Centro-Sul Brasileira de Pesquisa de Trigo118–20 Dourados, Braz.: Embrapa-Uepae
    [Google Scholar]
  59. 59.  Goulart ACP, Paiva FA, Filho GAM, Richetti A 1996. Effect of the time and number of applications of tebuconazole and mancozeb fungicides on wheat blast control (Pyricularia grisea); technical and economic feasibility. Fitopatol. Bras. 21:381–87
    [Google Scholar]
  60. 60.  Goulart ACP, Paiva FA, Mesquita AN 1990. Occurrence of wheat blast (Pyricularia oryzae) in the state of Mato Grosso do Sul. Fitopatol. Bras. 15:112–14
    [Google Scholar]
  61. 61. Gov. Brazil. 2017. Análises das Informações de Comércio Exterior [The System of Analysis of Foreign Trade Information] Gov. Brazil. http://aliceweb.mdic.gov.br
    [Google Scholar]
  62. 62. Gov. India. 2016. Minutes of the meeting on “Occurrence of blast disease on wheat” held under the Chairmanship of Agriculture Commissioner on 28th September, 2016 at Kolkata File 4-2/20 13-NFSM Minist. Agric. & Farmers Welf., Dep. Agric. Coop. & Farmers Welf., Crops Div. NFSM Cell. Krishi Bhawan New Delhi, India:
    [Google Scholar]
  63. 63. Gov. People's Repub. Bangladesh. 1989. The destructive insects and pests rules, 1966 (Plant Quarantine) Amendment, 1989 Rep. Dep. Agric. Ext. Natl. Plant Quar. Auth. Dhaka, Bangladesh:
    [Google Scholar]
  64. 64. Gov. People's Repub. Bangladesh. 2011. Plant Quarantine Act, 2011 Dep. Agric. Ext. Natl. Plant Quar. Auth Dhaka, Bangladesh:
    [Google Scholar]
  65. 65.  Ha X, Koopmann B, von Tiedemann A 2016. Wheat blast and Fusarium head blight display contrasting interaction patterns on ears of wheat genotypes differing in resistance. Phytopathology 106:270–81
    [Google Scholar]
  66. 66.  Hanzalová A, Dumalasová V, Sumíková T, Bartoš P 2007. Rust resistance of the French wheat cultivar Renan. Czech J. Genet. Plant Breed. 43:53–60
    [Google Scholar]
  67. 67.  Hartmann FE, Croll D 2017. Distinct trajectories of massive recent gene gains and losses in populations of a microbial eukaryotic pathogen. Mol. Biol. Evol. 34:2808–22
    [Google Scholar]
  68. 68.  Hartmann FE, Sanchez-Vallet A, McDonald BA, Croll D 2017. A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements. ISME J 11:1189–204
    [Google Scholar]
  69. 69.  Hirata K, Kusba M, Chuma I, Osue J, Nakayashiki H et al. 2007. Speciation in Pyricularia inferred from multilocus phylogenetic analysis. Mycol. Res. 111:799–808
    [Google Scholar]
  70. 70.  Igarashi S 1991. Update on wheat blast (Pyricularia oryzae) in Brazil. Proceedings of the International Conference on Wheat for Nontraditional Warm Areas D Saunders 480–83 Texcoco, Mex.: Int. Maize Wheat Improv. Cent.
    [Google Scholar]
  71. 71.  Igarashi S, Utiamada CM, Igarashi LC, Kazuma AH, Lopes RS 1986. Ocurrence of Pyrcularia sp. in wheat (Triticum aestivum L.) in the State of Paraná, Brazil. Fitopatol. Bras. 11:351–52
    [Google Scholar]
  72. 72.  Inoue Y, Vy TTP, Yoshida K, Asano H, Mitsuoka C et al. 2017. Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357:80–83
    [Google Scholar]
  73. 73.  Ishii H, Hollomon DW 2015. Fungicide Resistance in Plant Pathogens: Principles and a Guide to Practical Management Tokyo: Springer
    [Google Scholar]
  74. 74.  Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A et al. 2016. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. . BMC Biol 14:84
    [Google Scholar]
  75. 75.  Jank L, Barrios SC, do Valle CB, Simeão RM, Alves GF 2014. The value of improved pastures to Brazilian beef production. Crop Pasture Sci 65:1132–37
    [Google Scholar]
  76. 76.  Jia J, Zhao S, Kong X, Li Y, Zhao G et al. 2013. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95
    [Google Scholar]
  77. 77.  Kato H, Yamamoto M, Yamaguchi-Ozaki T, Kadouchi H, Iwamoto Y et al. 2000. Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. J. Gen. Plant Pathol. 66:30–47
    [Google Scholar]
  78. 78.  Khan MAI, Ali MA, Monsur MA, Kawasaki-Tanaka A, Hayashi N et al. 2016. Diversity and distribution of rice blast (Pyricularia oryzae Cavara) races in Bangladesh. Plant Dis 100:2025–33
    [Google Scholar]
  79. 79.  Klaubauf S, Tharreau D, Fournier E, Groenewald JZ, Crous PW et al. 2014. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Stud. Mycol. 79:85–120
    [Google Scholar]
  80. 80.  Klionsky DJ 2007. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 8:931–37
    [Google Scholar]
  81. 81.  Kohli MM, Mehta YR, Guzman E, De Viedma L Cubilla LE 2011. Pyricularia blast—a threat to wheat cultivation. Czech J. Genet. Plant Breed. 47:S130–34
    [Google Scholar]
  82. 82.  Lima MIPM 2004. Giberela ou brusone? Orientações para a identificação correta dessas enfermidades em trigo e em cevada Passo Fundo, Braz.: Embrapa Trigo https://ainfo.cnptia.embrapa.br/digital/bitstream/item/84208/1/CNPT-DOC.-51-04.pdf
  83. 83.  Lucas JA, Hawkins NJ, Fraaije BA 2015. The evolution of fungicide resistance. Adv. Appl. Microbiol. 90:29–92
    [Google Scholar]
  84. 84.  Luo J, Zhang N 2013. Magnaporthiopsis, a new genus in Magnaporthaceae (Ascomycota). Mycologia 105:1019–29
    [Google Scholar]
  85. 85.  Maciel JLN 2011. Magnaporthe oryzae, the blast pathogen: current status and options for its control. Plant Sci. Rev. 2011:233–40
    [Google Scholar]
  86. 86.  Maciel JLN, Ceresini PC, Castroagudín VL, Kema GHJ, McDonald BA 2014. Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology 104:95–107
    [Google Scholar]
  87. 87.  Maciel JLN, Paludo EA, Só e Silva M, Scheeren PL, Caierão E 2008. Reação à brusone de genótipos de trigo do programa de melhoramento da Embrapa Trigo no estádio de planta adulta Passo Fundo: Embrapa Trigo http://www.cnpt.embrapa.br/biblio/bp/p_bp64.htm
  88. 88.  Malaker PK, Barma NCD, Tiwari TP, Collis WJ, Duveiller E et al. 2016. First report of wheat blast caused by Magnaporthe oryzae pathotype triticum in Bangladesh. Plant Dis 100:2330
    [Google Scholar]
  89. 89.  Martins TD, Lavorenti NA, Urashima AS 2004. Methods to examine transmission of Pyricularia grisea from seeds to seedlings of triticale. Fitopatol. Bras. 29:425–28
    [Google Scholar]
  90. 90.  McDonald BA, Linde C 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40:349–79
    [Google Scholar]
  91. 91.  McDonald BA, Stukenbrock EH 2016. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philos. Trans. R. Soc. B 371:20160026
    [Google Scholar]
  92. 92.  Medeiros CA 1995. Occurrence of plant pathogenic fungi on weed species from the Medium Plateau of Rio Grande do Sul and studies on sporulation and pathogenicity of Bipolaris euphorbiae MS Thesis, Federal Univ. Lavras, Lavras, Braz.
    [Google Scholar]
  93. 93.  Mehta YR 2014. Pillars of integrated disease management. Wheat Diseases and Their Management17–63 New York: Springer
    [Google Scholar]
  94. 94.  Mehta YR, Riede CR, Campos LAC, Kohli MM 1992. Integrated management of major wheat diseases in Brazil: an example for the Southern Cone region of Latin America. Crop Prot 11:517–24
    [Google Scholar]
  95. 95.  Mezzalama M 2016. Seed Health: Fostering the Safe Distribution of Maize and Wheat Seed—General Guidelines Texcoco, Mex.: Int. Maize Wheat Improv. Cent. , 4th ed..
  96. 96. Minist. Agric. Pecuária Abast. (MAPA). 2017. Agrofit—Sistemas de Agrotóxicos Fitossanitários, Coordenação Geral de Agrotóxicos e Afins. Minist. Agric. Pecuária Abast. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons
  97. 97.  Moreira SI, Ceresini PC, Alves E 2015. Sexual reproduction in Pyricularia oryzae. . Summa Phytopathol 41:175–82
    [Google Scholar]
  98. 98.  Murakami J, Tomita R, Kataoka T, Nakayashiki H, Tosa Y, Mayama S 2003. Analysis of host species specificity of Magnaporthe grisea toward foxtail millet using a genetic cross between isolates from wheat and foxtail millet. Phytopathology 93:42–45
    [Google Scholar]
  99. 99.  Murata N, Aoki T, Kusaba M, Tosa Y, Chuma I 2014. Various species of Pyricularia constitute a robust clade distinct from Magnaporthe salvinii and its relatives in Magnaporthacea. J. Gen. Plant Pathol. 80:66–72
    [Google Scholar]
  100. 100.  Navarini L, Balardin RS 2012. Foliar diseases and control by fungicides on yield and quality of wheat grains. Summa Phytopathol 38:294–99
    [Google Scholar]
  101. 101.  Nicolau M, Danelli ALD, Pavan W, Fernandes JMC 2016. Using a Bayesian model for estimating air borne infection risks: wheat blast. 5th International Symposium on Fusarium Head Blight/2nd International Workshop on Wheat Blast EM Del Ponte, GC Bergstrom, W Pavan, A Lazzaretti, JMC Fernandes 159 Passo Fundo, Braz.: Ed. Univ. Passo Fundo
    [Google Scholar]
  102. 102.  Oh HS, Tosa Y, Takabayashi N, Nakagawa S, Tomita R et al. 2002. Characterization of an Avena isolate of Magnaporthe grisea and identification of a locus conditioning its specificity on oat. Can. J. Bot. 80:1088–95
    [Google Scholar]
  103. 103.  Ou SH 1985. Blast. Rice Diseases SH Ou 109–201 Wallingford, UK: CABI
    [Google Scholar]
  104. 104.  Pagani AP, Dianese AC, Café Filho AC 2014. Management of wheat blast with synthetic fungicides, partial resistance and silicate and phosphite minerals. Phytoparasitica 42:609–17
    [Google Scholar]
  105. 105.  Panisson E, Boller W, Reis EM 2004. Spray deposition evaluation on wheat anthers to study the head blight (Gibberella zeae) chemical control. Eng. Agric. 24:111–20
    [Google Scholar]
  106. 106.  Park JH, Choi GJ, Jang KS, Lim HK, Kim HT et al. 2005. Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiol. Lett. 252:309–13
    [Google Scholar]
  107. 107.  Pereira JF, Consoli L, Bombonatto EAS, Bonato ALV, Maciel JLN 2014. Development of genomic SSR markers and molecular characterizaton of Magnaporthe oryzae isolates from wheat in Brazil. Biochem. Genet. 52:52–70
    [Google Scholar]
  108. 108.  Perelló A, Martinez I, Molina M 2015. First report of virulence and effects of Magnaporthe oryzae isolates causing wheat blast in Argentina. Plant Dis 99:1177
    [Google Scholar]
  109. 109.  Petersen G, Seberg O, Yde M, Berthelsen K 2006. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol. Phylogenet. Evol. 39:70–82
    [Google Scholar]
  110. 110.  Pieck ML, Ruck A, Farman ML, Peterson GL, Stack JP et al. 2016. Genomics-based marker discovery and diagnostic assay development for wheat blast. Plant Dis 101:103–9
    [Google Scholar]
  111. 111. Plantwise. 2016. Wheat blast. Pest Management Decision Guide: Green List Surrey, UK: Centre Agric. Biosci. Int http://www.plantwise.org/FullTextPDF/2016/20167800929.pdf
    [Google Scholar]
  112. 112.  Poloni NM 2016. Widespread distribution of triazole fungicide resistance and evolution of the cyp51A gene in populations of the wheat blast pathogen Pyricularia oryzae in Brazil MS Thesis, Univ. São Paulo State São Paulo, Braz.:
    [Google Scholar]
  113. 113.  Prabhu AS, Filippi MC, Castro N 1992. Pathogenic variation among isolate of Pyricularia oryzae infecting rice, wheat and grasses in Brazil. Trop. Pest Manag. 38:367–71
    [Google Scholar]
  114. 114.  Prabhu AS, Morais OP 1993. Resistência estável a doenças de planta. Revis. Anu. Patol. Plantas 1:239–73
    [Google Scholar]
  115. 115.  Prestes A, Arendt P, Fernandes J, Scheeren P 2007. Resistance to Magnaporthe grisea among Brazilian wheat genotypes. Wheat Production in Stressed Environments: Proceedings of the 7th International Wheat Conference HT Buck, JE Nisi, N Salomón 119–23 Amsterdam: Springer
    [Google Scholar]
  116. 116.  Puttemans A 1936. Alguns dados para servir à historia da phytopathologia no Brasil e às primeiras notificações de doenças de vegetaes neste paiz. Rodriguesia 2:17–36
    [Google Scholar]
  117. 117.  Reis EM, Blum MC, Forcelini CA 1995. Survival of Pyricularia oryzae associated with wheat seeds. Summa Phytopathol 21:43–44
    [Google Scholar]
  118. 118.  Reis EM, Casa R 2016. Doenças do trigo. Manual de Fitopatologia, Vol. 2: Doenças das Plantas Cultivadas L Amorin, J Rezende, A Bergamim Filho, J Camargo 737–44 São Paulo, Braz.: Editora Agronômica Ceres
    [Google Scholar]
  119. 119.  Reis EM, Eichler MR, Anardi C 1977. Efeito da acidificação, dosagem e número de aplicações de triadimefom, no controle de doenças fúngicas do trigo. 9th Reunião Anual Conjunta de Pesquisa Trigo226–38 Passo Fundo, Braz.: Embrapa–Centro Nac. Pesquisa de Trigo
    [Google Scholar]
  120. 120.  Rios JA, Rios VS, Aucique-Pérez CE, Cruz MFA, Morais LE et al. 2017. Alteration of photosynthetic performance and source-sink relationships in wheat plants infected by Pyricularia oryzae. . Plant Pathol 66:1496–507
    [Google Scholar]
  121. 121.  Rios JA, Rios VS, Paul PA, Souza MA, Araujo L, Rodrigues 2016. Fungicide and cultivar effects on the development and temporal progress of wheat blast under field conditions. Crop Prot. 89:152–60
    [Google Scholar]
  122. 122.  Rios JA, Rios VS, Paul PA, Souza MA, Neto LBMC, Rodrigues 2016. Effects of blast on components of wheat physiology and grain yield as influenced by fungicide treatment and host resistance. Plant Pathol. 66:877–89
    [Google Scholar]
  123. 123.  Rios JA, Rodrigues , Debona D, Silva LC 2014. Photosynthetic gas exchange in leaves of wheat plants supplied with silicon and infected with Pyricularia oryzae. Acta Physiol. Plant. 36:371–79
    [Google Scholar]
  124. 124.  Rocha JRASC, Pimentel AJB, Ribeiro G, Souza MA 2014. Efficiency of fungicides in wheat blast control. Summa Phytopathol 40:347–52
    [Google Scholar]
  125. 125.  Rossman AY, Howard R, Valent B 1990. Pyricularia grisea, the correct name for the rice blast disease fungus. Mycologia 82:509–12
    [Google Scholar]
  126. 126.  Sadat MD, Choi J 2017. Wheat blast: a new fungal inhabitant to Bangladesh threatening world wheat production. Plant Pathol. J. 33:103–8
    [Google Scholar]
  127. 127.  Saharan MS, Bhardwaj SC, Chatrath R, Sharma P, Choudhary AK, Gupta RK 2016. Wheat blast disease—an overview. J. Wheat Res. 8:1–5
    [Google Scholar]
  128. 128.  Saleh D, Xu P, Shen Y, Li C, Adreit H et al. 2012. Sex at the origin: an Asian population of the rice blast fungus Magnaporthe oryzae reproduces sexually. Mol. Ecol. 21:1330–44
    [Google Scholar]
  129. 129.  Santos HP, Lhamby JCB, Prestes AM, Lima MR 2000. Effect of soil management and of crop rotation systems on wheat yield and diseases. Pesq. Agropec. Bras. 35:2355–61
    [Google Scholar]
  130. 130.  Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW et al. 2014. Genomics and the origin of species. Nat. Rev. Genet. 15:176–92
    [Google Scholar]
  131. 131.  Sharma R 2017. Wheat blast research: status and imperatives. Afr. J. Agric. Res. 12:377–81
    [Google Scholar]
  132. 132.  Silva CP, Nomura E, Freitas EG, Brugnaro C, Urashima AS 2009. Efficiency of alternative treatments in the control of Pyricularia grisea in wheat seeds. Trop. Plant Pathol. 34:127–31
    [Google Scholar]
  133. 133.  Silva ET 2017. Defense responses in flag leaves and spikes of two wheat cultivars differing in their basal level of resistance to blast MS Thesis, Federal Univ. Viçosa Viçosa, Braz.:
  134. 134.  Singh DP 2017. Wheat blast caused by Magnaporthe oryzae pathotype Triticum: present status, variability, and strategies for management. Management of Wheat and Barley Diseases DP Singh 635–43 Waretown, NJ: Apple Acad.
    [Google Scholar]
  135. 135.  Singh PK, Singh AK, Singh HB, Dhakad BK 2012. Biological control of rice blast disease with Trichoderma harzianum in direct seeded rice under medium low land rainfed conditions. Environ. Ecol. 30:834–37
    [Google Scholar]
  136. 136.  Singh RP, Singh PK, Rutkoski J, Hodson DP, He X et al. 2016. Disease impact on wheat yield potential and prospects of genetic control. Annu. Rev. Phytopathol. 54:303–22
    [Google Scholar]
  137. 137.  Sousa PG 2002. BR 18-Terena: wheat cultivar for Brazil. Pesq. Agropec. Bras. 37:1039–43
    [Google Scholar]
  138. 138.  Tagle AG, Chuma I, Tosa Y 2015. Rmg7, a new gene for resistance to Triticum isolates of Pyricularia oryzae identified in tetraploid wheat. Phytopathology 105:495–99
    [Google Scholar]
  139. 139.  Takabayashi N, Tosa Y, Oh HS, Mayama S 2002. A gene-for-gene relationship underlying the species-specific parasitism of Avena/Triticum isolates of Magnaporthe grisea on wheat cultivars. Phytopathology 92:1182–88
    [Google Scholar]
  140. 140.  Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM et al. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 31:21–32
    [Google Scholar]
  141. 141.  Toledo J 2015. Tratamiento de semillas. Manual de Recomendaciones Técnicas para el Cultivo de Trigo JA Camacho, R Villaroel-Morales 47–55 Santa Cruz, Boliv.: Asoc. Prod. Oleaginosas Trigo
    [Google Scholar]
  142. 142.  Tormen NR, Lenz G, Minuzzi SG, Uebel JD, Cezr HS et al. 2013. Reaction of wheat cultivars to leaf rust and yellow spot and responsiveness to fungicides. Cienc. Rural 43:239–46
    [Google Scholar]
  143. 143.  Tosa Y, Chuma I 2014. Classification and parasitic specialization of blast fungi. J. Gen. Plant Pathol. 80:202–9
    [Google Scholar]
  144. 144.  Tosa Y, Hirata K, Tamba H, Nakagawa S, Chuma I et al. 2004. Genetic constitution and pathogenicity of Lolium isolates of Magnaporthe oryzae in comparison with host species-specific pathotypes of the blast fungus. Phytopathology 94:454–62
    [Google Scholar]
  145. 145.  Urashima AS, Bruno AC, Lavorenti NA 2001. Segregation analysis of avirulence of Magnaporthe grisea of wheat. Fitopatol. Bras. 26:644–18
    [Google Scholar]
  146. 146.  Urashima AS, Galbieri R, Stabili A 2005. DNA fingerprinting and sexual characterization revealed two distinct populations of Magnaporthe grisea in wheat blast from Brazil. Czech J. Genet. Plant Breed. 41:238–45
    [Google Scholar]
  147. 147.  Urashima AS, Grosso CRF, Stabili A, Freitas EG, Silva CP et al. 2009. Effect of Magnaporthe grisea on seed germination, yield and quality of wheat. Advances in Genetics, Genomics and Control of Rice Blast Disease G-L Wang, B Valent 267–77 Dordrecht, Neth.: Springer
    [Google Scholar]
  148. 148.  Urashima AS, Hashimoto Y, Don LD, Kusaba M, Tosa Y et al. 1999. Molecular analysis of the wheat blast population in Brazil with a homolog of retrotransposon MGR583. Ann. Phytopathol. Soc. Jpn. 65:429–36
    [Google Scholar]
  149. 149.  Urashima AS, Igarashi S, Kato H 1993. Host range, mating type, and fertility of Pyricularia grisea from wheat in Brazil. Plant Dis 77:1211–16
    [Google Scholar]
  150. 150.  Urashima AS, Kato H 1994. Varietal resistance and chemical control of wheat blast fungus. Summa Phytopathol 20:107–12
    [Google Scholar]
  151. 151.  Urashima AS, Kato H 1998. Pathogenic relationship between isolates of Pyricularia grisea of wheat and other hosts at different host developmental stages. Fitopatol. Bras. 23:30–35
    [Google Scholar]
  152. 152.  Urashima AS, Lavorent NA, Goulart ACP, Mehta YR 2004. Resistance spectra of wheat cultivars and virulence diversity of Magnaporthe grisea isolates in Brazil. Fitopatol. Bras. 29:511–18
    [Google Scholar]
  153. 153.  Urashima AS, Leite SF, Galbieri R 2007. Efficiency of aerial dissemination of Pyricularia grisea. . Summa Phytopathol 33:275–79
    [Google Scholar]
  154. 154.  Valent B, Bockus W, Cruz C, Farman M, Hershman D et al. 2013. Recovery plan for wheat blast caused by Magnaporthe oryzae Triticum pathotype Rep. USDA Natl. Plant Dis. Recovery Syst., Off. Pest. Manag. Policy Washington, DC: https://www.ars.usda.gov/ARSUserFiles/00000000/opmp/Wheat%20Blast%20Recovery%20Plan%20Final.pdf
    [Google Scholar]
  155. 155.  Valent B, Cruz CD, Farman M, Peterson GL, Pedley K et al. 2016. Strategies for managing blast disease of wheat. Achieving Durable Resistance to Wheat Diseases and Pests Meeting5 St. Paul, MN: Am. Phytopathol. Soc.
    [Google Scholar]
  156. 156.  van den Bosch F, Paveley N, van den Berg F, Hobbelen P, Oliver R 2014. Mixtures as a fungicide resistance management tactic. Phytopathology 104:1264–73
    [Google Scholar]
  157. 157.  Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot NJ 2006. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312:580–83
    [Google Scholar]
  158. 158.  Viedma LQ, Kohli M, Cubilla L, Cabrera G 2010. Manejo integrado de mancha amarilla y la Piricularia en el cultivo de trigo en Paraguay. Tercer Semin. Nacional de Trigo: “Del Grano al Pan” M Kohli, LE Cubilla, G Cabrera 31–42 Asunción, Parag.: Capeco/Inbio
    [Google Scholar]
  159. 159.  Viedma LQ, Morel W 2002. Añublo o Piricularia del Trigo (Wheat Blast) Díptico Capitán Miranda, Itapúa, Parag.: MAG/DIA/CRIA
    [Google Scholar]
  160. 160.  West JS, Canning GGM, Perryman SA, King K 2017. Novel technologies for the detection of Fusarium head blight disease and airborne inoculum. Trop. Plant Pathol. 42:203–9
    [Google Scholar]
  161. 161.  West JS, Kimber RBE 2015. Innovations in air sampling to detect plant pathogens. Ann. Appl. Biol. 166:4–17
    [Google Scholar]
  162. 162.  Xavier Filha MS, Rodrigues , Domiciano GP, Oliveira HV, Silveira PR, Moreira WR 2011. Wheat resistance to leaf blast mediated by silicon. Australas. Plant Pathol. 40:28–38
    [Google Scholar]
  163. 163.  Yoshida K, Saunders DG, Mitsuoka C, Natsume S, Kosugi S et al. 2016. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genom 18:370
    [Google Scholar]
  164. 164.  Zhan J, Thrall PH, Papaïx J, Xie L, Burdon JJ 2015. Playing on a pathogen's weakness: using evolution to guide sustainable plant disease control strategies. Annu. Rev. Phytopathol. 53:19–43
    [Google Scholar]
  165. 165.  Zhan SW, Mayama S, Tosa Y 2008. Identification of two genes for resistance to Triticum isolates of Magnaporthe oryzae in wheat. Genome 51:216–21
    [Google Scholar]
  166. 166.  Zhang H, Zheng X, Zhang Z 2016. The Magnaporthe grisea species complex and plant pathogenesis. Mol. Plant Pathol. 17:796–804
    [Google Scholar]
  167. 167.  Zhang N, Luo J, Rossman AY, Aoki T, Chuma I et al. 2016. Generic names in Magnaporthales. IMA Fungus 7:155–59
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080417-050036
Loading
/content/journals/10.1146/annurev-phyto-080417-050036
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error