1932

Abstract

The energy of data is the value of a real function of distances between data in metric spaces. The name energy derives from Newton's gravitational potential energy, which is also a function of distances between physical objects. One of the advantages of working with energy functions (energy statistics) is that even if the data are complex objects, such as functions or graphs, we can use their real-valued distances for inference. Other advantages are illustrated and discussed in this review. Concrete examples include energy testing for normality, energy clustering, and distance correlation. Applications include genome studies, brain studies, and astrophysics. The direct connection between energy and mind/observations/data in this review is a counterpart of the equivalence of energy and matter/mass in Einstein's =2.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-060116-054026
2017-03-07
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/statistics/4/1/annurev-statistics-060116-054026.html?itemId=/content/journals/10.1146/annurev-statistics-060116-054026&mimeType=html&fmt=ahah

Literature Cited

  1. Aaronson J, Burton R, Dehling H, Gilat D, Hill T, Weiss B. 1996. Strong laws for L- and U-statistics. Trans. Am. Math. Soc. 348:2845–65 [Google Scholar]
  2. Ajtai M, Komlós J, Tusnády G. 1984. On optimal matchings. Combinatorica 4:259–64 [Google Scholar]
  3. Baringhaus L, Franz C. 2004. On a new multivariate two-sample test. J. Multivar. Anal. 88:190–206 [Google Scholar]
  4. Baringhaus L, Franz C. 2010. Rigid motion invariant two-sample tests. Stat. Sin. 20:1333–61 [Google Scholar]
  5. Berg C. 2008. Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity. Positive Definite Functions: From Schoenberg to Space-Time Challenges J Mateu, E Porcu Castellon, Spain: Dept. Math. University Jaume I [Google Scholar]
  6. Berg C, Christensen JPR, Ressel P. 1984. Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions New York: Springer-Verlag
  7. Brillouin L. 2004. Science and Information Theory Mineola, New York: Dover, 2nd ed..
  8. Buja A, Logan BF, Reeds JA, Shepp LA. 1994. Inequalities and positive definite functions arising from a problem in multidimensional scaling. Ann. Stat. 22:406–38 [Google Scholar]
  9. Cailliez F. 1983. The analytical solution of the additive constant problem. Psychometrika 48:343–49 [Google Scholar]
  10. Chakraborty S, Bhattacharjee A. 2015. Distance correlation measures applied to analyze relation between variables in liver cirrhosis marker data. Int. J. Collab. Res. Intern. Med. Public Health 7:1–7 [Google Scholar]
  11. Cramér H. 1928. On the composition of elementary errors. Second paper: statistical applications. Scand. Actuar. J. 11:141–80 [Google Scholar]
  12. Deza MM, Laurent M. 1997. Geometry of Cuts and Metrics Berlin: Springer-Verlag
  13. Dueck J, Edelmann D, Gneiting T, Richards D. 2014. The affinely invariant distance correlation. Bernoulli 20:2305–30 [Google Scholar]
  14. Einstein A. 1905. Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?. Ann. Phys. 18:639–43 [Google Scholar]
  15. Escoufier Y. 1973. Le traitement des variables vectorielles. Biometrics 29:751–60 [Google Scholar]
  16. Fan J, Feng Y, Xia L. 2015. A conditional dependence measure with applications to undirected graphical models. arXiv1501.01617 [stat.ME]
  17. Feragen A, Lauze F, Hauberg S. 2015. Geodesic exponential kernels: when curvature and linearity conflict. Proc. IEEE Conf. Comput. Vis. Pattern Recognit.3032–42 New York: IEEE [Google Scholar]
  18. Ferenci T, Körner A, Kovács L. 2015. The interrelationship of HbA1c and real-time continuous glucose monitoring in children with type 1 diabetes. Diabetes Res. Clin. Pract. 108:38–44 [Google Scholar]
  19. Feuerverger A. 1993. A consistent test for bivariate dependence. Int. Stat. Rev. 61:419–33 [Google Scholar]
  20. Fischer H. 2011. A History of the Central Limit Theorem: From Classical to Modern Probability Theory New York: Springer
  21. Gel'fand IM, Shilov GE. 1964. Generalized Functions, Volume I: Properties and Operations transl. E Salatan New York: Academic
  22. Genovese C. 2009. Discussion of: Brownian distance covariance. Ann. Appl. Stat. 3:1299–302 [Google Scholar]
  23. Gini C. 1912. Variabilità e Mutabilità Bologna: Tipografia di Paolo Cuppini
  24. Gneiting T, Raftery AE. 2007. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102:359–78 [Google Scholar]
  25. Gretton A, Györfi L. 2010. Consistent nonparametric tests of independence. J. Mach. Learn. Res. 11:1391–423 [Google Scholar]
  26. Gretton A, Györfi L. 2012. Strongly consistent nonparametric test of conditional independence. Stat. Probab. Lett. 82:1145–50 [Google Scholar]
  27. Guo X, Zhang Y, Hu W, Tan H, Wang X. 2014. Inferring nonlinear gene regulatory network from gene expression data based on distance correlation. PLOS ONE 9:2e87446 [Google Scholar]
  28. Gurtler N, Henze N. 2000. Goodness-of-fit tests for the Cauchy distribution based on the empirical characteristic function. Ann. Inst. Stat. Math. 52:267–86 [Google Scholar]
  29. Heisenberg W. 1927. Über den anschaulichen Inhalt der quantummmechanischen Kinematic und Mechanic. Z. Phys. 43:172–98 [Google Scholar]
  30. Heller R, Heller Y, Gorfine M. 2013. A consistent multivariate test of association based on ranks of distances. Biometrika 100:503–10 [Google Scholar]
  31. Henze N, Zirkler B. 1990. A class of invariant and consistent tests for multivariate normality. Commun. Stat. Theory Methods 19:3595–617 [Google Scholar]
  32. Herbin E, Merzbach E. 2007. The multiparameter fractional Brownian motion. Math Everywhere G Aletti, A Micheletti, D Morale, M Burger 93–101 Berlin: Springer [Google Scholar]
  33. Hjorth P, Lison˜ek P, Markvorsen S, Thomassen C. 1998. Finite metric spaces of strictly negative type. Linear Algebra Appl. 270:255–73 [Google Scholar]
  34. Hoeffding W. 1948. A class of statistics with asymptotic normal distribution. Ann. Math. Stat. 19:293–325 [Google Scholar]
  35. Horn HR. 1972. On necessary and sufficient conditions for an infinitely divisible distribution to be normal or degenerate. Z. Wahrscheinlichkeitstheorie Verwandte Geb. 21:179–87 [Google Scholar]
  36. Horváth L, Kokoszka P. 2012. Inference for Functional Data with Applications New York: Springer
  37. Hua W, Nichols TE, Ghosh D. 2015. Multiple comparison procedures for neuroimaging genomewide association studies. Biostatistics 16:17–30 [Google Scholar]
  38. Huo X, Székely GJ. 2016. Fast computing for distance covariance. Technometrics 58435–47
  39. Jaroszewitz SZ, Lukasz Z. 2015. Székely regularization for uplift modeling. Challenges in Computational Statistics and Data Mining135–54 New York: Springer [Google Scholar]
  40. Josse J, Holmes S. 2014. Measures of dependence between random vectors and tests of independence. arXiv1307.7383 [stat.ME]
  41. Jovanovič I, Stanič Z. 2012. Spectral distances of graphs. Linear Algebra Appl. 436:1425–35 [Google Scholar]
  42. Jurečková J. 1972. Nonparametric estimate of regression coefficient. Ann. Math. Stat. 42:1328–38 [Google Scholar]
  43. Kim AY, Marzban C, Percival DB, Stuetzle W. 2009. Using labeled data to evaluate change detectors in a multivariate streaming environment. Signal Process. 89:2529–36 [Google Scholar]
  44. Klebanov L. 2005. N-Distances and Their Applications Prague: Charles Univ.
  45. Kong J, Klein BEK, Klein R, Lee K, Wahba G. 2012. Using distance correlation and SS-ANOVA to assess associations of familial relationships, lifestyle factors, diseases, and mortality. PNAS 109:20352–57 [Google Scholar]
  46. Koroljuk VS, Borovskich YuV. 1994. Theory of U-statistics transl. PV Malyshev. Dordrecht: Kluwer
  47. Li R, Zhong W, Zhu L. 2012. Feature screening via distance correlation learning. J. Am. Stat. Asssoc. 107:1129–39 [Google Scholar]
  48. Li S. 2015. k-groups: a generalization of k-means by energy distance PhD thesis, Bowling Green State Univ.
  49. Lovász L. 2012. Large Networks and Graph Limits. Providence, RI: Am. Math. Soc.
  50. Lu JY, Peng YX, Wang M, Gu SJ, Zhao MX. 2015. Support vector machine combined with distance correlation learning for Dst forecasting during intense geomagnetic storms. Planet. Space Sci. 120:48–55 [Google Scholar]
  51. Lyons R. 2013. Distance covariance in metric spaces. Ann. Probab. 41:3284–305 [Google Scholar]
  52. Lyons R. 2015. Hyperbolic space has strong negative type. Ill. J. Math. 58:1009–13 [Google Scholar]
  53. Major P. 2013. On Estimation of Multiple Random Integrals and U-statistics New York: Springer
  54. Mardia KV. 1970. Measures of multivariate skewness and kurtosis with applications. Biometrika 57:519–30 [Google Scholar]
  55. Matsui M, Takemura A. 2005. Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE. Ann. Inst. Stat. Math. 57:183–99 [Google Scholar]
  56. Matteson DS, James NA. 2013. A nonparametric approach for multiple change point analysis of multivariate data. arXiv1306.4933 [stat.ME]
  57. Matteson DS, Tsay RS. 2016. Independent component analysis via distance covariance. J. Am. Stat. Assoc. http://dx.doi.org/10.1080/01621459.2016.1150851
  58. Mattner L. 1997. Strict negative definiteness of integrals via complete monotonicity of derivatives. Trans. Am. Math. Soc. 349:3321–42 [Google Scholar]
  59. Meckes MW. 2013. Positive definite metric spaces. Positivity 17:733–57 [Google Scholar]
  60. Mensheinin DO, Zubkov AM. 2012. Properties of the Székely-Móri asymmetry criterion statistics in the case of binary vectors with independent components. Math. Notes 91:62–72 [Google Scholar]
  61. Morgenstern D. 2001. Proof of a conjecture by Walter Deuber concerning the distance between points of two types in Rd. Discret. Math. 226:347–49 [Google Scholar]
  62. Newton MA. 2009. Introducing the discussion paper by Székely and Rizzo. Ann. Appl. Stat. 3:1233–35 [Google Scholar]
  63. Olkin I, Yitzhaki S. 1992. Gini regression analysis. Int. Stat. Rev. 60:185–96 [Google Scholar]
  64. Park T, Shao X, Yao S. 2015. Partial Martingale difference correlation. Electron. J. Stat. 9:1492–517 [Google Scholar]
  65. Patra RK, Sen B, Székely GJ. 2015. On a nonparametric notion of residual and its applications. Stat. Probability Lett. 109:208–13 [Google Scholar]
  66. R Core Team 2016. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. https://www.R-project.org/
  67. Ramdas A, Garcia N, Cuturi M. 2015. On Wasserstein two sample testing and related families of nonparametric tests. arXiv1509.02237 [math.ST]
  68. Rémillard B. 2009. Discussion of: Brownian distance covariance. Ann. Appl. Stat. 3:41295–98 [Google Scholar]
  69. Riesz M. 1938. Intégrales de Riemann–Liouville et potentiels. Acta Sci. Math. Szeged 9:1–42 [Google Scholar]
  70. Riesz M. 1949. L'intégrale de Riemann–Liouville et le problème de Cauchy. Acta Math. 81:1–223 [Google Scholar]
  71. Rizzo ML. 2002. A new rotation invariant goodness-of-fit test PhD thesis, Bowling Green State Univ.
  72. Rizzo ML. 2003. A test of homogeneity for two multivariate populations. 2002 Proc. Am. Stat. Assoc. Spring Res. Conf., SPES Alexandria, VA: Am. Stat. Assoc. [Google Scholar]
  73. Rizzo ML. 2009. New goodness-of-fit tests for Pareto distributions. ASTIN Bull. 39:691–715 [Google Scholar]
  74. Rizzo ML, Székely GJ. 2010. DISCO analysis: a nonparametric extension of analysis of variance. Ann. Appl. Stat. 4:1034–55 [Google Scholar]
  75. Rizzo ML, Székely GJ. 2016. energy: E-statistics: multivariate inference via the energy of data. R package version 1.7-0. https://CRAN.R-project.org
  76. Robert P, Escoufier Y. 1976. A unifying tool for linear multivariate statistical methods: the RV-coefficient. Appl. Stat. 25:257–65 [Google Scholar]
  77. Rudas J, Guaje J, Demertzi A, Heine L, Tshibanda L. et al. 2014. A method for functional network connectivity using distance correlation. Proc. 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.2793–2796 New York: IEEE [Google Scholar]
  78. Schilling K, Oberdick J, Schilling RL. 2012. Toward an efficient and integrative analysis of limited-choice behavioral experiments. J. Neurosci. 32:12651–56 [Google Scholar]
  79. Schrödinger E. 1926. An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28:1049–70 [Google Scholar]
  80. Schrödinger E. 1944. What Is Life—the Physical Aspect of the Living Cell Cambridge, UK: Cambridge Univ. Press
  81. Schölkopf B, Smola AJ. 2002. Learning with Kernels Cambridge, MA: MIT Press
  82. Schoenberg IJ. 1938a. Metric spaces and completely monotone functions. Ann. Math. 39:811–41 [Google Scholar]
  83. Schoenberg IJ. 1938b. Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44:522–36 [Google Scholar]
  84. Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K. 2013. Equivalence of distance-based and RKHS-based statistics in hypothesis testing. Ann. Stat. 41:2263–91 [Google Scholar]
  85. Serfling RJ. 1980. Approximation Theorems of Mathematical Statistics New York: Wiley
  86. Shamsuzzaman MD, Satish M, Pintér JD. 2015. Distance correlation based nearly orthogonal space-filling experimental designs. Int. J. Exp. Des. Process Optim. 4:216–33 [Google Scholar]
  87. Shao X, Zhang J. 2014. Martingale difference correlation and its use in high-dimensional variable screening. J. Am. Stat. Assoc. 109:1302–18 [Google Scholar]
  88. Sheng W, Yin X. 2013. Direction estimation in single-index models via distance covariance. J. Multivar. Anal. 122:148–61 [Google Scholar]
  89. Sheng W, Yin X. 2016. Sufficient dimension reduction via distance covariance. J. Comput. Gr. Stat. 25:91–104 [Google Scholar]
  90. Simon N, Tibshirani R. 2011. Comment on “Detecting Novel Associations in Large Data Set” by Reshef et al.. arXiv1401.7645 [stat.ME]
  91. Steutel FW, van Harn K. 2004. Infinite Divisibility of Probability Distributions on the Real Line Boca Raton: CRC
  92. Székely GJ. 1989. Potential and kinetic energy in statistics Lect. notes, Budapest Inst. of Technol.
  93. Székely GJ. 1996. Contests in Higher Mathematics New York: Springer
  94. Székely GJ. 2002. E-statistics: energy of statistical samples. Tech. Rep. No. 02–16, Bowling Green State Univ., Dep. Math. Stat. doi: http://dx.doi.org/10.13140/RG.2.1.5063.9761
  95. Székely GJ, Bakirov NK. 2003. Extremal probabilities for Gaussian quadratic forms. Probab. Theory Related Fields 126:184–202 [Google Scholar]
  96. Székely GJ, Móri TF. 2001. A characteristic measure of asymmetry and its application for testing diagonal symmetry. Commun. Stat. Theory Methods 30:1633–39 [Google Scholar]
  97. Székely GJ, Rizzo ML. 2004. Testing for equal distributions in high dimension. InterStat Nov. http://interstat.statjournals.net/YEAR/2004/abstracts/0411005.php
  98. Székely GJ, Rizzo ML. 2005a. A new test for multivariate normality. J. Multivar. Anal. 93:58–80 [Google Scholar]
  99. Székely GJ, Rizzo ML. 2005b. Hierarchical clustering via joint between-within distances: extending Ward's minimum variance method. J. Classif. 22:2151–83 [Google Scholar]
  100. Székely GJ, Rizzo ML. 2007. The uncertainty principle of game theory. Am. Math. Mon. 114:688–702 [Google Scholar]
  101. Székely GJ, Rizzo ML. 2009. Brownian distance covariance. Ann. Appl. Stat. 3:1236–65 [Google Scholar]
  102. Székely GJ, Rizzo ML. 2012. On the uniqueness of distance covariance. Stat. Probab. Lett. 82:2278–82 [Google Scholar]
  103. Székely GJ, Rizzo ML. 2013a. Energy statistics: a class of statistics based on distances. J. Stat. Plann. Inference 143:1249–72 [Google Scholar]
  104. Székely GJ, Rizzo ML. 2013b. The distance correlation t-test of independence in high dimension. J. Multivar. Anal. 117:193–213 [Google Scholar]
  105. Székely GJ, Rizzo ML. 2014. Partial distance correlation with methods for dissimilarities. Ann. Stat. 42:2382–412 [Google Scholar]
  106. Székely GJ, Rizzo ML, Bakirov NK. 2007. Measuring and testing independence by correlation of distances. Ann. Stat. 35:2769–94 [Google Scholar]
  107. Szilárd L. 1929. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen [On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings]. Z. Phys. 53:840–56 [Google Scholar]
  108. Talagrand M. 2005. The General Chaining New York: Springer
  109. Vaiciukynas E, Verikas A, Gelzinis A, Bacauskiene M, Olenina I. 2015. Exploiting statistical energy test for comparison of multiple groups in morphometric and chemometric data. Chemom. Intell. Lab. Syst. 146:10–23 [Google Scholar]
  110. Vapnik V. 1995. The Nature of Statistical Learning Theory New York: Springer
  111. Varina T, Bureaua R, Muellerb C, Willett P. 2009. Clustering files of chemical structures using the Székely–Rizzo generalization of Ward's method. J. Mol. Graph. Model. 28:187–95 [Google Scholar]
  112. Villani C. 2008. Optimal Transport: Old and New New York: Springer
  113. Von Mises R. 1947. On the asymptotic distributions of differentiable statistical functionals. Ann. Math. Stat. 2:209–348 [Google Scholar]
  114. von Neumann J. 1928. Theorie der Gesellschaftspiele. Math. Ann. 100:295–320 [Google Scholar]
  115. Wahba G. 1990. Spline Models for Observational Data Philadelphia: SIAM
  116. Wahba G. 2014. Positive definite functions, reproducing kernel Hilbert spaces and all that. Presented at Joint Stat. Meet., Aug. 6, Boston, MA. http://www.stat.wisc.edu/∼wahba/talks1/fisher.14/wahba.fisher.7.11.pdf
  117. Wang X, Pan W, Hu W, Tian Y, Zhang H. 2015. Conditional distance correlation. J. Am. Stat. Assoc. 110:1726–34 [Google Scholar]
  118. Würtz D, Chalabi Y, Chen W, Ellis A. 2009. Portfolio Optimization with R/Rmetrics Zurich: Rmetrics Assoc. and Finance Online Publ.
  119. Yang G. 2012. The energy goodness-of-fit test for univariate stable distributions PhD thesis, Bowling Green State Univ.
  120. Yitzhaki S. 2003. Gini's mean difference: a superior measure of variability for non-normal distributions. Metron 61:285–316 [Google Scholar]
  121. Zacks S. 1981. Parametric Statistical Inference: Basic Theory and Modern Approaches Oxford, UK: Pergamon
  122. Zanoni M, Setragno F, Sarti A. 2014. The violin ontology. Proc. 9th Conf. Interdiscip. Musicol.—CIM14, Berlin. In press
  123. Zhou Z. 2012. Measuring nonlinear dependence in time-series, a distance correlation approach. J. Time Ser. Anal. 33:438–57 [Google Scholar]
/content/journals/10.1146/annurev-statistics-060116-054026
Loading
/content/journals/10.1146/annurev-statistics-060116-054026
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error