1932

Abstract

Bacteria and their viruses (bacteriophages or phages) interact antagonistically and beneficially in polymicrobial communities such as the guts of animals. These interactions are multifaceted and are influenced by environmental conditions. In this review, we discuss phage-bacteria interactions as they relate to the complex environment of the gut. Within the mammalian and invertebrate guts, phages and bacteria engage in diverse interactions including genetic coexistence through lysogeny, and phages directly modulate microbiota composition and the immune system with consequences that are becoming recognized as potential drivers of health and disease. With greater depth of understanding of phage-bacteria interactions in the gut and the outcomes, future phage therapies become possible.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-091919-101238
2021-09-29
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/virology/8/1/annurev-virology-091919-101238.html?itemId=/content/journals/10.1146/annurev-virology-091919-101238&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Braga LPP, Spor A, Kot W, Breuil MC, Hansen LH et al. 2020. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome 8:52
    [Google Scholar]
  2. 2. 
    Payet JP, McMinds R, Burkepile DE, Vega Thurber RL 2014. Unprecedented evidence for high viral abundance and lytic activity in coral reef waters of the South Pacific Ocean. Front. Microbiol. 5:493
    [Google Scholar]
  3. 3. 
    Wetzel KS, Aull HG, Zack KM, Garlena RA, Hatfull GF. 2020. Protein-mediated and RNA-based origins of replication of extrachromosomal mycobacterial prophages. mBio 11:2e00385-20
    [Google Scholar]
  4. 4. 
    Johnson AD, Poteete AR, Lauer G, Sauer RT, Ackers GK, Ptashne M. 1981. λ Repressor and cro–components of an efficient molecular switch. Nature 294:217–23
    [Google Scholar]
  5. 5. 
    Little JW, Mount DW. 1982. The SOS regulatory system of Escherichia coli. Cell 29:11–22
    [Google Scholar]
  6. 6. 
    Hobbs Z, Abedon ST. 2016. Diversity of phage infection types and associated terminology: the problem with ‘Lytic or lysogenic.’. FEMS Microbiol. Lett. 363:fnw047
    [Google Scholar]
  7. 7. 
    Calendar R. 2006. The Bacteriophages Oxford/New York: Oxford Univ. Press
  8. 8. 
    Loh B, Kuhn A, Leptihn S. 2019. The fascinating biology behind phage display: filamentous phage assembly. Mol. Microbiol. 111:1132–38
    [Google Scholar]
  9. 9. 
    Rakonjac J, Bennett NJ, Spagnuolo J, Gagic D, Russel M. 2011. Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr. Issues Mol. Biol. 13:51–76
    [Google Scholar]
  10. 10. 
    Stassen AP, Folmer RH, Hilbers CW, Konings RN. 1994. Single-stranded DNA binding protein encoded by the filamentous bacteriophage M13: structural and functional characteristics. Mol. Biol. Rep. 20:109–27
    [Google Scholar]
  11. 11. 
    McLeod SM, Kimsey HH, Davis BM, Waldor MK. 2005. CTXφ and Vibrio cholerae: exploring a newly recognized type of phage–host cell relationship. Mol. Microbiol. 57:347–56
    [Google Scholar]
  12. 12. 
    Forsberg KJ, Bhatt IV, Schmidtke DT, Javanmardi K, Dillard KE et al. 2019. Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome. eLife 8:e46540
    [Google Scholar]
  13. 13. 
    Winter C, Bouvier T, Weinbauer MG, Thingstad TF. 2010. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol. . Mol. Biol. Rev. 74:42–57
    [Google Scholar]
  14. 14. 
    Maslov S, Sneppen K. 2017. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems. Sci. Rep. 7:39642
    [Google Scholar]
  15. 15. 
    Breitbart M, Haynes M, Kelley S, Angly F, Edwards RA et al. 2008. Viral diversity and dynamics in an infant gut. Res. Microbiol. 159:367–73
    [Google Scholar]
  16. 16. 
    Lim ES, Zhou Y, Zhao G, Bauer IK, Droit L et al. 2015. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21:1228–34
    [Google Scholar]
  17. 17. 
    Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA et al. 2016. Lytic to temperate switching of viral communities. Nature 531:466–70
    [Google Scholar]
  18. 18. 
    Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD 2013. Rapid evolution of the human gut virome. PNAS 110:12450–55
    [Google Scholar]
  19. 19. 
    Reyes A, Haynes M, Hanson N, Angly FE, Heath AC et al. 2010. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466:334–38
    [Google Scholar]
  20. 20. 
    Mathieu A, Dion M, Deng L, Tremblay D, Moncaut E et al. 2020. Virulent coliphages in 1-year-old children fecal samples are fewer, but more infectious than temperate coliphages. Nat. Commun. 11:378
    [Google Scholar]
  21. 21. 
    Stern A, Mick E, Tirosh I, Sagy O, Sorek R. 2012. CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res 22:1985–94
    [Google Scholar]
  22. 22. 
    Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS et al. 2016. Prophages mediate defense against phage infection through diverse mechanisms. ISME J 10:2854–66
    [Google Scholar]
  23. 23. 
    Obeng N, Pratama AA, Elsas JDV. 2016. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol 24:440–49
    [Google Scholar]
  24. 24. 
    Shkoporov AN, Ryan FJ, Draper LA, Forde A, Stockdale SR et al. 2018. Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome 6:68
    [Google Scholar]
  25. 25. 
    Kleiner M, Hooper LV, Duerkop BA. 2015. Evaluation of methods to purify virus-like particles for metagenomic sequencing of intestinal viromes. BMC Genom 16:7
    [Google Scholar]
  26. 26. 
    Shkoporov AN, Hill C. 2019. Bacteriophages of the human gut: the “known unknown” of the microbiome. Cell Host Microbe 25:195–209
    [Google Scholar]
  27. 27. 
    Cao J, Zhang Y, Dai M, Xu J, Chen L et al. 2020. Profiling of human gut virome with Oxford Nanopore Technology. Med. Microecol. 4:100012
    [Google Scholar]
  28. 28. 
    Shkoporov AN, Clooney AG, Sutton TDS, Ryan FJ, Daly KM et al. 2019. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26:527–41.e5
    [Google Scholar]
  29. 29. 
    Manrique P, Bolduc B, Walk ST, van der Oost J, de Vos WM, Young MJ 2016. Healthy human gut phageome. PNAS 113:10400–5
    [Google Scholar]
  30. 30. 
    Moreno-Gallego JL, Chou SP, Di Rienzi SC, Goodrich JK, Spector TD et al. 2019. Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins. Cell Host Microbe 25:261–72.e5
    [Google Scholar]
  31. 31. 
    Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. 2020. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28:724–40.e8
    [Google Scholar]
  32. 32. 
    Minot S, Sinha R, Chen J, Li H, Keilbaugh SA et al. 2011. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 21:1616–25
    [Google Scholar]
  33. 33. 
    Reyes A, Blanton LV, Cao S, Zhao G, Manary M et al. 2015. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. PNAS 112:11941–46
    [Google Scholar]
  34. 34. 
    Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GG et al. 2014. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5:4498
    [Google Scholar]
  35. 35. 
    Honap TP, Sankaranarayanan K, Schnorr SL, Ozga AT, Warinner C, Lewis CM Jr. 2020. Biogeographic study of human gut-associated crAssphage suggests impacts from industrialization and recent expansion. PLOS ONE 15:e0226930
    [Google Scholar]
  36. 36. 
    Siranosian BA, Tamburini FB, Sherlock G, Bhatt AS. 2020. Acquisition, transmission and strain diversity of human gut-colonizing crAss-like phages. Nat. Commun. 11:280
    [Google Scholar]
  37. 37. 
    Edwards RA, Vega AA, Norman HM, Ohaeri M, Levi K et al. 2019. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat. Microbiol. 4:1727–36
    [Google Scholar]
  38. 38. 
    Yutin N, Makarova KS, Gussow AB, Krupovic M, Segall A et al. 2018. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 3:38–46
    [Google Scholar]
  39. 39. 
    Shkoporov AN, Khokhlova EV, Fitzgerald CB, Stockdale SR, Draper LA et al. 2018. ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat. Commun. 9:4781
    [Google Scholar]
  40. 40. 
    Hryckowian AJ, Merrill BD, Porter NT, Van Treuren W, Nelson EJ et al. 2020. Bacteroides thetaiotaomicron-infecting bacteriophage isolates inform sequence-based host range predictions. Cell Host Microbe 28:371–79.e5
    [Google Scholar]
  41. 41. 
    Gorvitovskaia A, Holmes SP, Huse SM 2016. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome 4:15
    [Google Scholar]
  42. 42. 
    Manrique P, Dills M, Young MJ. 2017. The human gut phage community and its implications for health and disease. Viruses 9:6141
    [Google Scholar]
  43. 43. 
    Maqsood R, Rodgers R, Rodriguez C, Handley SA, Ndao IM et al. 2019. Discordant transmission of bacteria and viruses from mothers to babies at birth. Microbiome 7:156
    [Google Scholar]
  44. 44. 
    Tan SK, Granados AC, Bouquet J, Hoy-Schulz YE, Green L et al. 2020. Metagenomic sequencing of stool samples in Bangladeshi infants: virome association with poliovirus shedding after oral poliovirus vaccination. Sci. Rep. 10:15392
    [Google Scholar]
  45. 45. 
    Liang G, Zhao C, Zhang H, Mattei L, Sherrill-Mix S et al. 2020. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 581:470–74
    [Google Scholar]
  46. 46. 
    Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V et al. 2018. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24:133–45.e5
    [Google Scholar]
  47. 47. 
    Pannaraj PS, Ly M, Cerini C, Saavedra M, Aldrovandi GM et al. 2018. Shared and distinct features of human milk and infant stool viromes. Front. Microbiol. 9:1162
    [Google Scholar]
  48. 48. 
    McCann A, Ryan FJ, Stockdale SR, Dalmasso M, Blake T et al. 2018. Viromes of one year old infants reveal the impact of birth mode on microbiome diversity. PeerJ 6:e4694
    [Google Scholar]
  49. 49. 
    Khan Mirzaei M, Khan MAA, Ghosh P, Taranu ZE, Taguer M et al. 2020. Bacteriophages isolated from stunted children can regulate gut bacterial communities in an age-specific manner. Cell Host Microbe 27:199–212.e5
    [Google Scholar]
  50. 50. 
    Miller-Ensminger T, Garretto A, Stark N, Putonti C. 2020. Mimicking prophage induction in the body: induction in the lab with pH gradients. PeerJ 8:e9718
    [Google Scholar]
  51. 51. 
    Kim MS, Bae JW. 2018. Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J 12:1127–41
    [Google Scholar]
  52. 52. 
    Furuse K, Osawa S, Kawashiro J, Tanaka R, Ozawa A et al. 1983. Bacteriophage distribution in human faeces: continuous survey of healthy subjects and patients with internal and leukaemic diseases. J. Gen. Virol. 64:92039–43
    [Google Scholar]
  53. 53. 
    Duerkop BA, Clements CV, Rollins D, Rodrigues JLM, Hooper LV 2012. A composite bacteriophage alters colonization by an intestinal commensal bacterium. PNAS 109:17621–26
    [Google Scholar]
  54. 54. 
    Cornuault JK, Moncaut E, Loux V, Mathieu A, Sokol H et al. 2020. The enemy from within: A prophage of Roseburia intestinalis systematically turns lytic in the mouse gut, driving bacterial adaptation by CRISPR spacer acquisition. ISME J 14:771–87
    [Google Scholar]
  55. 55. 
    Scanlan PD. 2017. Bacteria-bacteriophage coevolution in the human gut: implications for microbial diversity and functionality. Trends Microbiol 25:614–23
    [Google Scholar]
  56. 56. 
    Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ et al. 2010. Antagonistic coevolution accelerates molecular evolution. Nature 464:275–78
    [Google Scholar]
  57. 57. 
    O'Connell Motherway M, Zomer A, Leahy SC, Reunanen J, Bottacini F et al. 2011. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. PNAS 108:11217–22
    [Google Scholar]
  58. 58. 
    Zhu A, Sunagawa S, Mende DR, Bork P. 2015. Inter-individual differences in the gene content of human gut bacterial species. Genome Biol 16:82
    [Google Scholar]
  59. 59. 
    Patrick S, Blakely GW, Houston S, Moore J, Abratt VR et al. 2010. Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis. Microbiology 156:3255–69
    [Google Scholar]
  60. 60. 
    De Sordi L, Lourenço M, Debarbieux L. 2019.. “ I will survive”: a tale of bacteriophage-bacteria coevolution in the gut. Gut Microbes 10:92–99
    [Google Scholar]
  61. 61. 
    Duerkop BA, Huo W, Bhardwaj P, Palmer KL, Hooper LV. 2016. Molecular basis for lytic bacteriophage resistance in enterococci. mBio 7:4e01304-16
    [Google Scholar]
  62. 62. 
    Chatterjee A, Johnson CN, Luong P, Hullahalli K, McBride SW et al. 2019. Bacteriophage resistance alters antibiotic-mediated intestinal expansion of enterococci. Infect. Immun. 87:6e00085-19
    [Google Scholar]
  63. 63. 
    Seed KD, Yen M, Shapiro BJ, Hilaire IJ, Charles RC et al. 2014. Evolutionary consequences of intra-patient phage predation on microbial populations. eLife 3:e03497
    [Google Scholar]
  64. 64. 
    Porter NT, Hryckowian AJ, Merrill BD, Fuentes JJ, Gardner JO et al. 2020. Phase-variable capsular polysaccharides and lipoproteins modify bacteriophage susceptibility in Bacteroides thetaiotaomicron. Nat. Microbiol. 5:1170–81
    [Google Scholar]
  65. 65. 
    De Sordi L, Khanna V, Debarbieux L. 2017. The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses. Cell Host Microbe 22:801–8.e3
    [Google Scholar]
  66. 66. 
    Reyes A, Wu M, McNulty NP, Rohwer FL, Gordon JI 2013. Gnotobiotic mouse model of phage-bacterial host dynamics in the human gut. PNAS 110:20236–41
    [Google Scholar]
  67. 67. 
    Hsu BB, Gibson TE, Yeliseyev V, Liu Q, Lyon L et al. 2019. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 25:803–14.e5
    [Google Scholar]
  68. 68. 
    Frazão N, Sousa A, Lässig M, Gordo I 2019. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. PNAS 116:17906–15
    [Google Scholar]
  69. 69. 
    Acheson DW, Reidl J, Zhang X, Keusch GT, Mekalanos JJ, Waldor MK. 1998. In vivo transduction with Shiga toxin 1-encoding phage. Infect. Immun. 66:4496–98
    [Google Scholar]
  70. 70. 
    Diard M, Bakkeren E, Cornuault JK, Moor K, Hausmann A et al. 2017. Inflammation boosts bacteriophage transfer between Salmonella spp. Science 355:1211–15
    [Google Scholar]
  71. 71. 
    Kleiner M, Bushnell B, Sanderson KE, Hooper LV, Duerkop BA 2020. Transductomics: sequencing-based detection and analysis of transduced DNA in pure cultures and microbial communities. Microbiome 8:158
    [Google Scholar]
  72. 72. 
    De Sordi L, Lourenço M, Debarbieux L. 2019. The battle within: interactions of bacteriophages and bacteria in the gastrointestinal tract. Cell Host Microbe 25:210–18
    [Google Scholar]
  73. 73. 
    Sausset R, Petit MA, Gaboriau-Routhiau V, De Paepe M. 2020. New insights into intestinal phages. Mucosal Immunol 13:205–15
    [Google Scholar]
  74. 74. 
    Lourenço M, Chaffringeon L, Lamy-Besnier Q, Pédron T, Campagne P et al. 2020. The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe 28:390–401.e5
    [Google Scholar]
  75. 75. 
    Galtier M, De Sordi L, Sivignon A, de Vallée A, Maura D et al. 2017. Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohn's disease. J. Crohn's Colitis 11:840–47
    [Google Scholar]
  76. 76. 
    Maura D, Galtier M, Le Bouguénec C, Debarbieux L 2012. Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine. Antimicrob. Agents Chemother. 56:6235–42
    [Google Scholar]
  77. 77. 
    Weiss M, Denou E, Bruttin A, Serra-Moreno R, Dillmann ML, Brüssow H. 2009. In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli. Virology 393:16–23
    [Google Scholar]
  78. 78. 
    Gabig M, Herman-Antosiewicz A, Kwiatkowska M, Los M, Thomas MS, Wegrzyn G. 2002. The cell surface protein Ag43 facilitates phage infection of Escherichia coli in the presence of bile salts and carbohydrates. Microbiology 148:1533–42
    [Google Scholar]
  79. 79. 
    Scanlan JG, Hall AR, Scanlan PD. 2019. Impact of bile salts on coevolutionary dynamics between the gut bacterium Escherichia coli and its lytic phage PP01. Infect. Genet. Evol. 73:425–32
    [Google Scholar]
  80. 80. 
    Scanlan PD, Bischofberger AM, Hall AR. 2017. Modification of Escherichia coli–bacteriophage interactions by surfactants and antibiotics in vitro. FEMS Microbiol. Ecol. 93:fiw211
    [Google Scholar]
  81. 81. 
    Nielsen AT, Dolganov NA, Rasmussen T, Otto G, Miller MC et al. 2010. A bistable switch and anatomical site control Vibrio cholerae virulence gene expression in the intestine. PLOS Pathog 6:e1001102
    [Google Scholar]
  82. 82. 
    Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML et al. 2013. Bacteriophage adhering to mucus provide a non-host-derived immunity. PNAS 110:10771–76
    [Google Scholar]
  83. 83. 
    Barr JJ, Auro R, Sam-Soon N, Kassegne S, Peters G et al. 2015. Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters. PNAS 112:13675–80
    [Google Scholar]
  84. 84. 
    Joiner KL, Baljon A, Barr J, Rohwer F, Luque A. 2019. Impact of bacteria motility in the encounter rates with bacteriophage in mucus. Sci. Rep. 9:16427
    [Google Scholar]
  85. 85. 
    Almeida GMF, Laanto E, Ashrafi R, Sundberg LR. 2019. Bacteriophage adherence to mucus mediates preventive protection against pathogenic bacteria. mBio 10:6e01984-19
    [Google Scholar]
  86. 86. 
    Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY et al. 2015. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160:447–60
    [Google Scholar]
  87. 87. 
    Zuo T, Lu XJ, Zhang Y, Cheung CP, Lam S et al. 2019. Gut mucosal virome alterations in ulcerative colitis. Gut 68:1169–79
    [Google Scholar]
  88. 88. 
    Duerkop BA, Kleiner M, Paez-Espino D, Zhu W, Bushnell B et al. 2018. Murine colitis reveals a disease-associated bacteriophage community. Nat. Microbiol. 3:1023–31
    [Google Scholar]
  89. 89. 
    Ansari MH, Ebrahimi M, Fattahi MR, Gardner MG, Safarpour AR et al. 2020. Viral metagenomic analysis of fecal samples reveals an enteric virome signature in irritable bowel syndrome. BMC Microbiol 20:123
    [Google Scholar]
  90. 90. 
    Clooney AG, Sutton TDS, Shkoporov AN, Holohan RK, Daly KM et al. 2019. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 26:764–78.e5
    [Google Scholar]
  91. 91. 
    Jacob V, Crawford C, Cohen-Mekelburg S, Viladomiu M, Putzel GG et al. 2017. Single delivery of high-diversity fecal microbiota preparation by colonoscopy is safe and effective in increasing microbial diversity in active ulcerative colitis. Inflamm. Bowel Dis. 23:903–11
    [Google Scholar]
  92. 92. 
    Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M et al. 2015. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149:102–9.e6
    [Google Scholar]
  93. 93. 
    Ott SJ, Waetzig GH, Rehman A, Moltzau-Anderson J, Bharti R et al. 2017. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 152:4671–74
    [Google Scholar]
  94. 94. 
    Gogokhia L, Buhrke K, Bell R, Hoffman B, Brown DG et al. 2019. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25:285–99.e8
    [Google Scholar]
  95. 95. 
    Sweere JM, Van Belleghem JD, Ishak H, Bach MS, Popescu M et al. 2019. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363:6434eaat9691
    [Google Scholar]
  96. 96. 
    Chatterjee A, Willett JLE, Dunny GM, Duerkop BA. 2021. Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLOS Genet 17:e1009204
    [Google Scholar]
  97. 97. 
    Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM et al. 2012. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–23
    [Google Scholar]
  98. 98. 
    Palmela C, Chevarin C, Xu Z, Torres J, Sevrin G et al. 2018. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 67:574–87
    [Google Scholar]
  99. 99. 
    Duan Y, Llorente C, Lang S, Brandl K, Chu H et al. 2019. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 575:505–11
    [Google Scholar]
  100. 100. 
    Fluckiger A, Daillere R, Sassi M, Sixt BS, Liu P et al. 2020. Cross-reactivity between tumor MHC class I–restricted antigens and an enterococcal bacteriophage. Science 369:936–42
    [Google Scholar]
  101. 101. 
    Engel P, Moran NA. 2013. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37:699–735
    [Google Scholar]
  102. 102. 
    Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. 2008. How many species are infected with Wolbachia?—A statistical analysis of current data. FEMS Microbiol. Lett. 281:215–20
    [Google Scholar]
  103. 103. 
    Werren JH, Zhang W, Guo LR. 1995. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc. Biol. Sci. 261:55–63
    [Google Scholar]
  104. 104. 
    Jeyaprakash A, Hoy MA. 2000. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol. Biol. 9:393–405
    [Google Scholar]
  105. 105. 
    Werren JH, Baldo L, Clark ME. 2008. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6:741–51
    [Google Scholar]
  106. 106. 
    Gavotte L, Henri H, Stouthamer R, Charif D, Charlat S et al. 2007. A survey of the bacteriophage WO in the endosymbiotic bacteria Wolbachia. Mol. Biol. Evol. 24:427–35
    [Google Scholar]
  107. 107. 
    Bork P. 1993. Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally?. Proteins 17:363–74
    [Google Scholar]
  108. 108. 
    Tanaka K, Furukawa S, Nikoh N, Sasaki T, Fukatsu T. 2009. Complete WO phage sequences reveal their dynamic evolutionary trajectories and putative functional elements required for integration into the Wolbachia genome. Appl. Environ. Microbiol. 75:5676–86
    [Google Scholar]
  109. 109. 
    Bordenstein SR, Bordenstein SR. 2016. Eukaryotic association module in phage WO genomes from Wolbachia. Nat. Commun. 7:13155
    [Google Scholar]
  110. 110. 
    Pichon S, Bouchon D, Liu C, Chen L, Garrett RA, Greve P. 2012. The expression of one ankyrin pk2 allele of the WO prophage is correlated with the Wolbachia feminizing effect in isopods. BMC Microbiol 12:55
    [Google Scholar]
  111. 111. 
    Walker T, Klasson L, Sebaihia M, Sanders MJ, Thomson NR et al. 2007. Ankyrin repeat domain-encoding genes in the wPip strain of Wolbachia from the Culex pipiens group. BMC Biol 5:39
    [Google Scholar]
  112. 112. 
    LePage DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JI et al. 2017. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543:243–47
    [Google Scholar]
  113. 113. 
    Turelli M, Cooper BS, Richardson KM, Ginsberg PS, Peckenpaugh B et al. 2018. Rapid global spread of wRi-like Wolbachia across multiple Drosophila. Curr. Biol. 28:963–71.e8
    [Google Scholar]
  114. 114. 
    Hancock PA, Sinkins SP, Godfray HC. 2011. Population dynamic models of the spread of Wolbachia. Am. Nat. 177:323–33
    [Google Scholar]
  115. 115. 
    Pietri JE, DeBruhl H, Sullivan W. 2016. The rich somatic life of Wolbachia. MicrobiologyOpen 5:923–36
    [Google Scholar]
  116. 116. 
    Brune A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12:168–80
    [Google Scholar]
  117. 117. 
    Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H et al. 2008. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322:1108–9
    [Google Scholar]
  118. 118. 
    Pramono AK, Kuwahara H, Itoh T, Toyoda A, Yamada A, Hongoh Y. 2017. Discovery and complete genome sequence of a bacteriophage from an obligate intracellular symbiont of a cellulolytic protist in the termite gut. Microbes Environ 32:112–17
    [Google Scholar]
  119. 119. 
    Tikhe CV, Husseneder C. 2017. Metavirome sequencing of the termite gut reveals the presence of an unexplored bacteriophage community. Front. Microbiol. 8:2548
    [Google Scholar]
  120. 120. 
    Clark AJ, Pontes M, Jones T, Dale C. 2007. A possible heterodimeric prophage-like element in the genome of the insect endosymbiont Sodalis glossinidius. J. Bacteriol. 189:2949–51
    [Google Scholar]
  121. 121. 
    Leigh BA, Bordenstein SR, Brooks AW, Mikaelyan A, Bordenstein SR. 2018. Finer-scale phylosymbiosis: insights from insect viromes. mSystems 3:6e00131-18
    [Google Scholar]
  122. 122. 
    Deboutte W, Beller L, Yinda CK, Maes P, de Graaf DC, Matthijnssens J 2020. Honey-bee–associated prokaryotic viral communities reveal wide viral diversity and a profound metabolic coding potential. PNAS 117:10511–19
    [Google Scholar]
  123. 123. 
    Mead PS. 2015. Epidemiology of Lyme disease. Infect. Dis. Clin. North Am. 29:187–210
    [Google Scholar]
  124. 124. 
    Stevenson B, Zuckert WR, Akins DR. 2000. Repetition, conservation, and variation: the multiple cp32 plasmids of Borrelia species. J. Mol. Microbiol. Biotechnol. 2:411–22
    [Google Scholar]
  125. 125. 
    Eggers CH, Kimmel BJ, Bono JL, Elias AF, Rosa P, Samuels DS. 2001. Transduction by φBB-1, a bacteriophage of Borrelia burgdorferi. J. Bacteriol. 183:4771–78
    [Google Scholar]
  126. 126. 
    Eggers CH, Samuels DS. 1999. Molecular evidence for a new bacteriophage of Borrelia burgdorferi. J. Bacteriol. 181:7308–13
    [Google Scholar]
  127. 127. 
    Tokarz R, Anderton JM, Katona LI, Benach JL. 2004. Combined effects of blood and temperature shift on Borrelia burgdorferi gene expression as determined by whole genome DNA array. Infect. Immun. 72:5419–32
    [Google Scholar]
  128. 128. 
    Hefty PS, Brooks CS, Jett AM, White GL, Wikel SK et al. 2002. OspE-related, OspF-related, and Elp lipoproteins are immunogenic in baboons experimentally infected with Borrelia burgdorferi and in human Lyme disease patients. J. Clin. Microbiol. 40:4256–65
    [Google Scholar]
  129. 129. 
    Freeman CJ, Thacker RW, Baker DM, Fogel ML. 2013. Quality or quantity: Is nutrient transfer driven more by symbiont identity and productivity than by symbiont abundance?. ISME J 7:1116–25
    [Google Scholar]
  130. 130. 
    Webster NS, Taylor MW, Behnam F, Lucker S, Rattei T et al. 2010. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ. Microbiol. 12:2070–82
    [Google Scholar]
  131. 131. 
    Vogel S. 1977. Current-induced flow through living sponges in nature. PNAS 74:2069–71
    [Google Scholar]
  132. 132. 
    Horn H, Slaby BM, Jahn MT, Bayer K, Moitinho-Silva L et al. 2016. An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial metagenomes. Front. Microbiol. 7:1751
    [Google Scholar]
  133. 133. 
    Bergh O, Borsheim KY, Bratbak G, Heldal M. 1989. High abundance of viruses found in aquatic environments. Nature 340:467–68
    [Google Scholar]
  134. 134. 
    Jahn MT, Arkhipova K, Markert SM, Stigloher C, Lachnit T et al. 2019. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe 26:542–50.e5
    [Google Scholar]
/content/journals/10.1146/annurev-virology-091919-101238
Loading
/content/journals/10.1146/annurev-virology-091919-101238
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error