1932

Abstract

Combinatory antiretroviral therapy (cART) reduces human immunodeficiency virus type 1 (HIV-1) replication but is not curative because cART interruption almost invariably leads to a rapid rebound of viremia due to the persistence of stable HIV-1-infected cellular reservoirs. These reservoirs are mainly composed of CD4+ T cells harboring replication-competent latent proviruses. A broadly explored approach to reduce the HIV-1 reservoir size, the shock and kill strategy, consists of reactivating HIV-1 gene expression from the latently infected cellular reservoirs (the shock), followed by killing of the virus-producing infected cells (the kill). Based on improved understanding of the multiple molecular mechanisms controlling HIV-1 latency, distinct classes of latency reversing agents (LRAs) have been studied for their efficiency to reactivate viral gene expression in in vitro and ex vivo cell models. Here, we provide an up-to-date review of these different mechanistic classes of LRAs and discuss optimizations of the shock strategy by combining several LRAs simultaneously or sequentially.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-091919-103029
2021-09-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/virology/8/1/annurev-virology-091919-103029.html?itemId=/content/journals/10.1146/annurev-virology-091919-103029&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    UNAIDS 2020. Global HIV & AIDS statistics—2020 fact sheet Fact Sheet, UNAIDS Geneva, Switz: https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf
  2. 2. 
    Montessori V, Press N, Harris M, Akagi L, Montaner JSG. 2004. Adverse effects of antiretroviral therapy for HIV infection. CMAJ 170:229–38
    [Google Scholar]
  3. 3. 
    Althoff KN, McGinnis KA, Wyatt CM, Freiberg MS, Gilbert C et al. 2015. Comparison of risk and age at diagnosis of myocardial infarction, end-stage renal disease, and non-AIDS-defining cancer in HIV-infected versus uninfected adults. Clin. Infect. Dis. 60:627–38
    [Google Scholar]
  4. 4. 
    Deeks SG, Lewin SR, Havlir DV. 2013. The end of AIDS: HIV infection as a chronic disease. Lancet 382:1525–33
    [Google Scholar]
  5. 5. 
    Arts EJ, Hazuda DJ. 2012. HIV-1 antiretroviral drug therapy. Cold Spring Harb. . Perspect. Med. 2:a007161
    [Google Scholar]
  6. 6. 
    Wong JK. 1997. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278:1291–95
    [Google Scholar]
  7. 7. 
    Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K et al. 2003. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9:727–28
    [Google Scholar]
  8. 8. 
    Cohn LB, Chomont N, Deeks SG. 2020. The biology of the HIV-1 latent reservoir and implications for cure strategies. Cell Host Microbe 27:519–30
    [Google Scholar]
  9. 9. 
    Van Lint C, Bouchat S, Marcello A 2013. HIV-1 transcription and latency: an update. Retrovirology 10:67
    [Google Scholar]
  10. 10. 
    García M, Buzón MJ, Benito JM, Rallón N. 2018. Peering into the HIV reservoir. Rev. Med. Virol. 28:e1981
    [Google Scholar]
  11. 11. 
    Buzon MJ, Sun H, Li C, Shaw A, Seiss K et al. 2014. HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat. Med. 20:139–42
    [Google Scholar]
  12. 12. 
    Darcis G, Moutschen M. 2017. The effect of treatment simplification on HIV reservoirs. Lancet HIV 4:e328–29
    [Google Scholar]
  13. 13. 
    Lorenzo-Redondo R, Fryer HR, Bedford T, Kim EY, Archer J et al. 2016. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530:51–56
    [Google Scholar]
  14. 14. 
    Ganor Y, Real F, Sennepin A, Dutertre CA, Prevedel L et al. 2019. HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy. Nat. Microbiol. 4:633–44
    [Google Scholar]
  15. 15. 
    Ananworanich J, Dubé K, Chomont N. 2015. How does the timing of antiretroviral therapy initiation in acute infection affect HIV reservoirs?. Curr. Opin. HIV AIDS 10:18–28
    [Google Scholar]
  16. 16. 
    Peterson CW, Kiem H-P 2018. Cell and gene therapy for HIV cure. HIV-1 Latency G Silvestri, M Lichterfeld 211–48 Cham, Switz: Springer
    [Google Scholar]
  17. 17. 
    Dieffenbach CW, Fauci AS. 2020. The search for an HIV vaccine, the journey continues. J. Int. AIDS Soc. 23:e25506
    [Google Scholar]
  18. 18. 
    Paiardini M, Dhodapkar K, Harper J, Deeks SG, Ahmed R 2020. Editorial: HIV and cancer immunotherapy: similar challenges and converging approaches. Front. Immunol. 11:519
    [Google Scholar]
  19. 19. 
    Abner E, Jordan A 2019. HIV “shock and kill” therapy: in need of revision. Antiviral Res 166:1934
    [Google Scholar]
  20. 20. 
    Moranguinho I, Valente ST. 2020. Block-and-lock: new horizons for a cure for HIV-1. Viruses 12:1443
    [Google Scholar]
  21. 21. 
    Debyser Z, Vansant G, Bruggemans A, Janssens J, Christ F 2018. Insight in HIV integration site selection provides a block-and-lock strategy for a functional cure of HIV infection. Viruses 11:12
    [Google Scholar]
  22. 22. 
    Dutilleul A, Rodari A, Van Lint C. 2020. Depicting HIV-1 transcriptional mechanisms: a summary of what we know. Viruses 12:1385
    [Google Scholar]
  23. 23. 
    Ait-Ammar A, Kula A, Darcis G, Verdikt R, De Wit S et al. 2020. Current status of latency reversing agents facing the heterogeneity of HIV-1 cellular and tissue reservoirs. Front. Microbiol. 10:3060
    [Google Scholar]
  24. 24. 
    Sarracino A, Gharu L, Kula A, Pasternak AO, Avettand-Fenoel V et al. 2018. Posttranscriptional regulation of HIV-1 gene expression during replication and reactivation from latency by nuclear matrix protein MATR3. mBio 9:e02158-18
    [Google Scholar]
  25. 25. 
    Shukla A, Ramirez N-GP, D'Orso I 2020. HIV-1 proviral transcription and latency in the new era. Viruses 12:555
    [Google Scholar]
  26. 26. 
    Mori L, Valente ST. 2020. Key players in HIV-1 transcriptional regulation: targets for a functional cure. Viruses 12:529
    [Google Scholar]
  27. 27. 
    Kim Y, Anderson JL, Lewin SR. 2018. Getting the ‘kill’ into ‘shock and kill’: strategies to eliminate latent HIV. Cell Host Microbe 23:14–26
    [Google Scholar]
  28. 28. 
    Verdin ER. 1991. DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J. Virol. 65:126790–99
    [Google Scholar]
  29. 29. 
    Verdin E, Paras P Jr., Van Lint C. 1993. Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J. 12:83249–59
    [Google Scholar]
  30. 30. 
    Van Lint C, Emiliani S, Ott M, Verdin E. 1996. Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J 15:1112–20
    [Google Scholar]
  31. 31. 
    Xing S, Siliciano RF. 2013. Targeting HIV latency: pharmacologic strategies toward eradication. Drug Discov. Today 18:541–51
    [Google Scholar]
  32. 32. 
    Kumar A, Darcis G, Van Lint C, Herbein G. 2015. Epigenetic control of HIV-1 post integration latency: implications for therapy. Clin. Epigenet. 7:103
    [Google Scholar]
  33. 33. 
    Tripathy MK, Abbas W, Herbein G. 2011. Epigenetic regulation of HIV-1 transcription. Epigenomics 3:487–502
    [Google Scholar]
  34. 34. 
    Barton KM, Archin NM, Keedy KS, Espeseth AS, Zhang YL et al. 2014. Selective HDAC inhibition for the disruption of latent HIV-1 infection. PLOS ONE 9:e102684
    [Google Scholar]
  35. 35. 
    Archin NM, Archin NM, Keedy KS, Espeseth AS, Zhang YL et al. 2012. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487:482–85
    [Google Scholar]
  36. 36. 
    Rasmussen TA, Tolstrup M, Brinkmann CR, Olesen R, Erikstrup C et al. 2014. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV 1:e13–21
    [Google Scholar]
  37. 37. 
    Søgaard OS, Graversen ME, Leth S, Olesen R, Brinkmann CR et al. 2015. The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLOS Pathog 11:e1005142
    [Google Scholar]
  38. 38. 
    Li JH, Ma J, Kang W, Wang CF, Bai F et al. 2020. The histone deacetylase inhibitor chidamide induces intermittent viraemia in HIV-infected patients on suppressive antiretroviral therapy. HIV Med 21:747–57
    [Google Scholar]
  39. 39. 
    Zaikos TD, Painter MM, Kettinger NTS, Terry VH, Collins KL. 2018. Class 1-selective histone deacetylase (HDAC) inhibitors enhance HIV latency reversal while preserving the activity of HDAC isoforms necessary for maximal HIV gene expression. J. Virol. 92:e02110-17
    [Google Scholar]
  40. 40. 
    Laird GM, Bullen CK, Rosenbloom DI, Martin AR, Hill AL et al. 2015. Ex vivo analysis identifies effective HIV-1 latency–reversing drug combinations. J. Clin. Invest. 125:1901–12
    [Google Scholar]
  41. 41. 
    Gunst JD, Kjær K, Olesen R, Rasmussen TA, Østergaard L et al. 2019. Fimepinostat, a novel dual inhibitor of HDAC and PI3K, effectively reverses HIV-1 latency ex vivo without T cell activation. J. Virus Erad. 5:133–37
    [Google Scholar]
  42. 42. 
    du Chéné I, Basyuk E, Lin YL, Triboulet R, Knezevich A et al. 2007. Suv39H1 and HP1γ are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J 26:424–35
    [Google Scholar]
  43. 43. 
    Imai K, Togami H, Okamoto T. 2010. Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J. Biol. Chem. 285:16538–45
    [Google Scholar]
  44. 44. 
    Friedman J, Cho WK, Chu CK, Keedy KS, Archin NM et al. 2011. Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. J. Virol. 85:9078–89
    [Google Scholar]
  45. 45. 
    Bouchat S, Gatot JS, Kabeya K, Cardona C, Colin L et al. 2012. Histone methyltransferase inhibitors induce HIV-1 recovery in resting CD4+ T cells from HIV-1-infected HAART-treated patients. AIDS 26:1473–82
    [Google Scholar]
  46. 46. 
    Bernhard W, Barreto K, Saunders A, Dahabieh MS, Johnson P et al. 2011. The Suv39H1 methyltransferase inhibitor chaetocin causes induction of integrated HIV-1 without producing a T cell response. FEBS Lett 585:3549–54
    [Google Scholar]
  47. 47. 
    Kauder SE, Bosque A, Lindqvist A, Planelles V, Verdin E. 2009. Epigenetic regulation of HIV-1 latency by cytosine methylation. PLOS Pathog 5:e1000495
    [Google Scholar]
  48. 48. 
    Blazkova J, Trejbalova K, Gondois-Rey F, Halfon P, Philibert P et al. 2009. CpG methylation controls reactivation of HIV from latency. PLOS Pathog 5:e1000554
    [Google Scholar]
  49. 49. 
    Chávez L, Kauder S, Verdin E 2011. In vivo, in vitro and in silico analysis of methylation of the HIV-1 provirus. Methods 53:47–53
    [Google Scholar]
  50. 50. 
    Bouchat S, Delacourt N, Kula A, Darcis G, Van Driessche B et al. 2016. Sequential treatment with 5-aza-2′-deoxycytidine and deacetylase inhibitors reactivates HIV-1. EMBO Mol. Med. 8:117–38
    [Google Scholar]
  51. 51. 
    Palacios JA, Pérez-Piñar T, Toro C, Sanz-Minguela B, Moreno V et al. 2012. Long-term nonprogressor and elite controller patients who control viremia have a higher percentage of methylation in their HIV-1 proviral promoters than aviremic patients receiving highly active antiretroviral therapy. J. Virol. 86:13081–84
    [Google Scholar]
  52. 52. 
    Blazkova J, Murray D, Justement JS, Funk EK, Nelson AK et al. 2012. Paucity of HIV DNA methylation in latently infected, resting CD4+ T cells from infected individuals receiving antiretroviral therapy. J. Virol. 86:5390–92
    [Google Scholar]
  53. 53. 
    Weber S, Weiser B, Kemal KS, Burger H, Ramirez CM et al. 2014. Epigenetic analysis of HIV-1 proviral genomes from infected individuals: predominance of unmethylated CpG's. Virology 449:181–89
    [Google Scholar]
  54. 54. 
    Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB et al. 2013. Replication-competent noninduced proviruses in the latent reservoir 959 increase barrier to HIV-1 cure. Cell 155:540–51
    [Google Scholar]
  55. 55. 
    Trejbalová K, Kovářová D, Blažková J, Machala L, Jilich D et al. 2016. Development of 5′LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin. Epigenetics 8:19
    [Google Scholar]
  56. 56. 
    Cortés-Rubio CN, de Oca GS, Prado-Galbarro FJ, Matías-Florentino M, Murakami-Ogasawara A et al. 2019. Longitudinal variation in human immunodeficiency virus long terminal repeat methylation in individuals on suppressive antiretroviral therapy. Clin. Epigenet. 11:134
    [Google Scholar]
  57. 57. 
    Rasmussen TA, Tolstrup M, Søgaard OS. 2016. Reversal of latency as part of a cure for HIV-1. Trends Microbiol 24:90–97
    [Google Scholar]
  58. 58. 
    Kazanietz MG, Areces LB, Bahador AF, Mischak HA, Goodnight JO et al. 1993. Characterization of ligand and substrate specificity for the calcium-dependent and calcium-independent protein kinase C isozymes. Mol. Pharmacol. 44:298–307
    [Google Scholar]
  59. 59. 
    Bertolini TM, Giorgione J, Harvey DF, Newton AC. 2003. Protein kinase C translocation by modified phorbol esters with functionalized lipophilic regions. J. Org. Chem. 68:5028–36
    [Google Scholar]
  60. 60. 
    Newton AC. 2018. Protein kinase C: perfectly balanced. Crit. Rev. Biochem. Mol. Biol. 53:208–30
    [Google Scholar]
  61. 61. 
    Williams SA, Chen LF, Kwon H, Fenard D, Bisgrove D et al. 2004. Prostratin antagonizes HIV latency by activating NF-κB. J. Biol. Chem. 279:42008–17
    [Google Scholar]
  62. 62. 
    Jiang G, Dandekar S. 2015. Targeting NF-κB signaling with protein kinase C agonists as an emerging strategy for combating HIV latency. AIDS Res. Hum. Retroviruses 31:4–12
    [Google Scholar]
  63. 63. 
    Trushin SA, Bren GD, Asin S, Pennington KN, Paya CV et al. 2005. Human immunodeficiency virus reactivation by phorbol esters or T-cell receptor ligation requires both PKCα and PKCθ. J. Virol. 79:9821–30
    [Google Scholar]
  64. 64. 
    Walker-Sperling VE, Cohen VJ, Tarwater PM, Blankson JN. Reactivation kinetics of HIV-1 and susceptibility of reactivated latently infected CD4+ T cells to HIV-1-specific CD8+ T cells. J. Virol. 89:18963138
    [Google Scholar]
  65. 65. 
    Bui JK, Halvas EK, Fyne E, Sobolewski MD, Koontz D et al. 2017. Ex vivo activation of CD4+ T-cells from donors on suppressive ART can lead to sustained production of infectious HIV-1 from a subset of infected cells. PLOS Pathog 13:e1006230
    [Google Scholar]
  66. 66. 
    Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U et al. 1982. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 257:7847–51
    [Google Scholar]
  67. 67. 
    Marsden MD, Loy BA, Wu X, Ramirez CM, Schrier AJ et al. 2017. In vivo activation of latent HIV with a synthetic bryostatin analog effects both latent cell ‘kick’ and ‘kill’ in strategy for virus eradication. PLOS Pathog 13:e1006575
    [Google Scholar]
  68. 68. 
    Beans EJ, Fournogerakis D, Gauntlett C, Heumann LV, Kramer R et al. 2013. Highly potent, synthetically accessible prostratin analogs induce latent HIV expression in vitro and ex vivo. PNAS 110:11698–703
    [Google Scholar]
  69. 69. 
    Hezareh M, Moukil MA, Szanto I, Pondarzewski M, Mouche S et al. 2004. Mechanisms of HIV receptor and co-receptor down-regulation by prostratin: role of conventional and novel PKC isoforms. Antivir. Chem. Chemother. 15:207–22
    [Google Scholar]
  70. 70. 
    Perez M, de Vinuesa AG, Sanchez-Duffhues G, Marquez N, Bellido ML et al. 2010. Bryostatin-1 synergizes with histone deacetylase inhibitors to reactivate HIV-1 from latency. Curr. HIV Res. 8:418–29
    [Google Scholar]
  71. 71. 
    Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF. 2014. Novel exvivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat. Med. 20:425–29
    [Google Scholar]
  72. 72. 
    Darcis G, Kula A, Bouchat S, Fujinaga K, Corazza F et al. 2015. An in-depth comparison of latency-reversing agent combinations in various in vitro and ex vivo HIV-1 latency models identified bryostatin-1+JQ1 and ingenol-B+JQ1 to potently reactivate viral gene expression. PLOS Pathog 11:e1005063
    [Google Scholar]
  73. 73. 
    Kollár P, Rajchard J, Balounová Z., Pazourek J. 2014. Marine natural products: bryostatins in preclinical and clinical studies. Pharm. Biol. 52:237–42
    [Google Scholar]
  74. 74. 
    Grant S, Roberts J, Poplin E, Tombes MB, Kyle B et al. 1998. Phase Ib trial of bryostatin 1 in patients with refractory malignancies. Clin. Cancer Res. 4:611–18
    [Google Scholar]
  75. 75. 
    Jayson GC, Crowther D, Prendiville J, McGown AT, Scheid C et al. 1995. A phase I trial of bryostatin 1 in patients with advanced malignancy using a 24 hour intravenous infusion. Br. J. Cancer 72:461–68
    [Google Scholar]
  76. 76. 
    José DP, Bartholomeeusen K, da Cunha RD, Abreu CM, Glinski J et al. 2014. Reactivation of latent HIV-1 by new semi-synthetic ingenol esters. Virology 462–463 328–39
    [Google Scholar]
  77. 77. 
    Abreu CM, Price SL, Shirk EN, Cunha RD, Pianowski LF et al. 2014. Dual role of novel ingenol derivatives from Euphorbia tirucalli in HIV replication: inhibition of de novo infection and activation of viral LTR. PLOS ONE 9:e97257
    [Google Scholar]
  78. 78. 
    Jiang G, Mendes EA, Kaiser P, Sankaran-Walters S, Tang Y et al. 2014. Reactivation of HIV latency by a newly modified Ingenol derivative via protein kinase Cδ-NF-κB signaling. AIDS Lond. Engl. 28:1555–66
    [Google Scholar]
  79. 79. 
    Jiang G, Maverakis E, Cheng MY, Elsheikh MM, Deleage C et al. 2019. Disruption of latent HIV in vivo during the clearance of actinic keratosis by ingenol mebutate. JCI Insight 4:e126027
    [Google Scholar]
  80. 80. 
    Fujinaga K, Barboric M, Li Q, Luo Z, Price DH, Peterlin BM 2012. PKC phosphorylates HEXIM1 and regulates P-TEFb activity. Nucleic Acids Res 40:9160–70
    [Google Scholar]
  81. 81. 
    Reuse S, Calao M, Kabeya K, Guiguen A, Gatot JS et al. 2009. Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLOS ONE 4:e6093
    [Google Scholar]
  82. 82. 
    Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H et al. 1999. HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J. 18:216106–18
    [Google Scholar]
  83. 83. 
    Parada CA, Roeder RG. 1999. Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 384:375–78
    [Google Scholar]
  84. 84. 
    Kim JB, Sharp PA. 2001. Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase. J. Biol. Chem. 276:1512317–23
    [Google Scholar]
  85. 85. 
    Fujinaga K, Irwin D, Huang Y, Taube R, Kurosu T, Peterlin BM. 2004. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol. Cell. Biol. 24:2787–95
    [Google Scholar]
  86. 86. 
    Kaehlcke K, Dorr A, Hetzer-Egger C, Kiermer V, Henklein P et al. 2003. Acetylation of Tat defines a cyclinT1-independent step in HIV transactivation. Mol. Cell 12:1167–76
    [Google Scholar]
  87. 87. 
    Brès V, Kiernan R, Emiliani S, Benkirane M. 2002. Tat acetyl-acceptor lysines are important for human immunodeficiency virus type-1 replication. J. Biol. Chem. 277:2522215–21
    [Google Scholar]
  88. 88. 
    Molle D, Maiuri P, Boireau S, Bertrand E, Knezevich A et al. 2007. A real-time view of the TAR:Tat:P-TEFb complex at HIV-1 transcription sites. Retrovirology 4:36
    [Google Scholar]
  89. 89. 
    Budhiraja S, Famiglietti M, Bosque A, Planelles V, Rice AP. 2013. Cyclin T1 and CDK9 T-loop phosphorylation are downregulated during establishment of HIV-1 latency in primary resting memory CD4+ T cells. J. Virol. 87:1211–20
    [Google Scholar]
  90. 90. 
    Chiang K, Rice AP. 2012. MicroRNA-mediated restriction of HIV-1 in resting CD4+ T cells and monocytes. Viruses 4:1390–409
    [Google Scholar]
  91. 91. 
    Chiang K, Sung T-L, Rice AP. 2012. Regulation of cyclin T1 and HIV-1 replication by microRNAs in resting CD4+ T lymphocytes. J. Virol. 86:3244–52
    [Google Scholar]
  92. 92. 
    Hoque M, Shamanna RA, Guan D, Pe'ery T, Mathews MB. 2011. HIV-1 replication and latency are regulated by translational control of cyclin T1. J. Mol. Biol. 410:917–32
    [Google Scholar]
  93. 93. 
    Cherrier T, Le Douce V, Eilebrecht S, Riclet R, Marban C et al. 2013. CTIP2 is a negative regulator of P-TEFb. PNAS 110:12655–60
    [Google Scholar]
  94. 94. 
    Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K. 2005. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19:523–34
    [Google Scholar]
  95. 95. 
    Boehm D, Calvanese V, Dar RD, Xing S, Schroeder S et al. 2013. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle 12:452–62
    [Google Scholar]
  96. 96. 
    Peterlin BM, Price DH. 2006. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23:297–305
    [Google Scholar]
  97. 97. 
    Bartholomeeusen K, Xiang Y, Fujinaga K, Peterlin BM. 2012. Bromodomain and extra-terminal (BET) bromodomain inhibition activate transcription via transient release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein. J. Biol. Chem. 287:36609–16
    [Google Scholar]
  98. 98. 
    Banerjee C, Archin N, Michaels D, Belkina AC, Denis GV et al. 2012. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J. Leukoc. Biol. 92:1147–54
    [Google Scholar]
  99. 99. 
    Zhu J, Gaiha GD, John SP, Pertel T, Chin CR et al. 2012. Reactivation of latent HIV-1 by inhibition of BRD4. Cell Rep 2:807–16
    [Google Scholar]
  100. 100. 
    Li Z, Guo J, Wu Y, Zhou Q. 2013. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res 41:277–87
    [Google Scholar]
  101. 101. 
    Abner E, Stoszko M, Zeng L, Chen HC, Izquierdo-Bouldstridge A et al. 2018. A new quinoline BRD4 inhibitor targets a distinct latent HIV-1 reservoir for reactivation from other “shock” drugs. J. Virol. 92:e02056-17
    [Google Scholar]
  102. 102. 
    Li G, Zhang Z, Reszka-Blanco N, Li F, Chi L et al. 2019. Specific activation in vivo of HIV-1 by a bromodomain inhibitor from monocytic cells in humanized mice under antiretroviral therapy. J. Virol. 93:e00233-19
    [Google Scholar]
  103. 103. 
    Lu P, Shen Y, Yang H, Wang Y, Jiang Z et al. 2017. BET inhibitors RVX-208 and PFI-1 reactivate HIV-1 from latency. Sci. Rep. 7:16646
    [Google Scholar]
  104. 104. 
    Niu Q, Liu Z, Alamer E, Fan X, Chen H et al. 2019. Structure-guided drug design identifies a BRD4-selective small molecule that suppresses HIV. J. Clin. Invest. 129:3361–73
    [Google Scholar]
  105. 105. 
    Kumar H, Kawai T, Akira S. 2011. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30:16–34
    [Google Scholar]
  106. 106. 
    Carty M, Guy C, Bowie AG. 2021. Detection of viral infections by innate immunity. Biochem. Pharmacol. 183:114316
    [Google Scholar]
  107. 107. 
    Browne EP. 2020. The role of Toll-like receptors in retroviral infection. Microorganisms 8:1787
    [Google Scholar]
  108. 108. 
    Federico S, Pozzetti L, Papa A, Carullo G, Gemma S et al. 2020. Modulation of the innate immune response by targeting Toll-like receptors: a perspective on their agonists and antagonists. J. Med. Chem. 63:13466–513
    [Google Scholar]
  109. 109. 
    Thibault S, Imbeault M, Tardif MR, Tremblay MJ. 2009. TLR5 stimulation is sufficient to trigger reactivation of latent HIV-1 provirus in T lymphoid cells and activate virus gene expression in central memory CD4+ T cells. Virology 389:20–25
    [Google Scholar]
  110. 110. 
    Novis CL, Archin NM, Buzon MJ, Verdin E, Round JL et al. 2013. Reactivation of latent HIV-1 in central memory CD4+ T cells through TLR-1/2 stimulation. Retrovirology 10:119
    [Google Scholar]
  111. 111. 
    Offersen R, Nissen SK, Rasmussen TA, Østergaard L, Denton PW et al. 2016. A novel Toll-like receptor 9 agonist, MGN1703, enhances HIV-1 transcription and NK cell-mediated inhibition of HIV-1-infected autologous CD4+ T cells. J. Virol. 90:4441–53
    [Google Scholar]
  112. 112. 
    Tsai A, Irrinki A, Kaur J, Cihlar T, Kukolj G et al. 2017. Toll-like receptor 7 agonist GS-9620 induces HIV expression and HIV-specific immunity in cells from HIV-infected individuals on suppressive antiretroviral therapy. J. Virol. 91:e02166-16
    [Google Scholar]
  113. 113. 
    Lim S-Y, Osuna CE, Hraber PT, Hesselgesser J, Gerold JM et al. 2018. TLR7 agonists induce transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral therapy. Sci. Transl. Med. 10:eaao4521
    [Google Scholar]
  114. 114. 
    Gilead Sciences 2020. A phase 1b, randomized, blinded, placebo-controlled dose-escalation study of the safety and biological activity of GS-9620 in HIV-1 infected, virologically suppressed adults Study Results., US Natl. Libr. Med Bethesda, MD: https://clinicaltrials.gov/ct2/show/NCT02858401
  115. 115. 
    Vibholm L, Schleimann MH, Højen JF, Benfield T, Offersen R et al. 2017. Short-course Toll-like receptor 9 agonist treatment impacts innate immunity and plasma viremia in individuals with human immunodeficiency virus infection. Clin. Infect. Dis. 64:1686–95
    [Google Scholar]
  116. 116. 
    Vibholm LK, Konrad CV, Schleimann MH, Frattari G, Winckelmann A et al. 2019. Effects of 24-week Toll-like receptor 9 agonist treatment in HIV type 1+ individuals. AIDS 33:1315–25
    [Google Scholar]
  117. 117. 
    Kane LP, Shapiro VS, Stokoe D, Weiss A. 1999. Induction of NF-κB by the Akt/PKB kinase. Curr. Biol. 9:601–4
    [Google Scholar]
  118. 118. 
    Doyon G, Zerbato J, Mellors JW, Sluis-Cremer N. 2013. Disulfiram reactivates latent HIV-1 expression through depletion of the phosphatase and tensin homolog. AIDS 27:F7–11
    [Google Scholar]
  119. 119. 
    Xing S, Bullen CK, Shroff NS, Shan L, Yang HC et al. 2011. Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation. J. Virol. 85:6060–64
    [Google Scholar]
  120. 120. 
    Elliott JH, McMahon JH, Chang CC, Lee SA, Hartogensis W et al. 2015. Short-term disulfiram to reverse latent HIV infection: a phase 2 dose escalation study. Lancet HIV 2:e520–29
    [Google Scholar]
  121. 121. 
    Spivak AM, Andrade A, Eisele E, Hoh R, Bacchetti P et al. 2014. A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy. Clin. Infect. Dis. 58:883–90
    [Google Scholar]
  122. 122. 
    Lee SA, Elliott JH, McMahon J, Hartogenesis W, Bumpus NN et al. 2019. Population pharmacokinetics and pharmacodynamics of disulfiram on inducing latent HIV-1 transcription in a phase IIb trial. Clin. Pharmacol. Ther. 105:692–702
    [Google Scholar]
  123. 123. 
    Kula A, Delacourt N, Bouchat S, Darcis G, Avettand-Fenoel V et al. 2019. Heterogeneous HIV-1 reactivation patterns of disulfiram and combined disulfiram+romidepsin treatments. J. Acquir. Immune Defic. Syndr. 80:605–13
    [Google Scholar]
  124. 124. 
    Contreras X, Barboric M, Lenasi T, Peterlin BM. 2007. HMBA releases P-TEFb from HEXIM1 and 7SK snRNA via PI3K/Akt and activates HIV transcription. PLOS Pathog 3:e416
    [Google Scholar]
  125. 125. 
    Silke J, Meier P. 2013. Inhibitor of apoptosis (IAP) proteins—modulators of cell death and inflammation. Cold Spring Harb. Perspect. Biol. 5:a008730
    [Google Scholar]
  126. 126. 
    Sun S-C. 2017. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol. 17:545–58
    [Google Scholar]
  127. 127. 
    Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C et al. 2008. Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation. PNAS 105:11778–83
    [Google Scholar]
  128. 128. 
    Pache L, Dutra MS, Spivak AM, Marlett JM, Murry JP et al. 2015. BIRC2/cIAP1 is a negative regulator of HIV-1 transcription and can be targeted by Smac mimetics to promote reversal of viral latency. Cell Host Microbe 18:345–53
    [Google Scholar]
  129. 129. 
    Pache L, Marsden MD, Teriete P, Portillo AJ, Heimann D et al. 2020. Pharmacological activation of non-canonical NF-κB signaling activates latent HIV-1 reservoirs in vivo. Cell Rep. Med. 1:100037
    [Google Scholar]
  130. 130. 
    Nixon CC, Mavigner M, Sampey GC, Brooks AD, Spagnuolo RA et al. 2020. Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo. Nature 578:160–65
    [Google Scholar]
  131. 131. 
    Bosque A, Nilson KA, Macedo AB, Spivak AM, Archin NM et al. 2017. Benzotriazoles reactivate latent HIV-1 through inactivation of STAT5 SUMOylation. Cell Rep 18:1324–34
    [Google Scholar]
  132. 132. 
    Valeur E, Bradley M. 2009. Amide bond formation: beyond the myth of coupling reagents. Chem. Soc. Rev. 38:606–31
    [Google Scholar]
  133. 133. 
    Selliah N, Zhang M, DeSimone D, Kim H, Brunner M et al. 2006. The γc-cytokine regulated transcription factor, STAT5, increases HIV-1 production in primary CD4 T cells. Virology 344:283–91
    [Google Scholar]
  134. 134. 
    Gadina M, Stancato LM, Bacon CM, Larner AC, O'Shea JJ 1998. Cutting edge: involvement of SHP-2 in multiple aspects of IL-2 signaling: evidence for a positive regulatory role. J. Immunol. 160:104657–61
    [Google Scholar]
  135. 135. 
    Sorensen ES, Macedo AB, Resop RS, Howard JN, Nell R et al. 2020. Structure-activity relationship analysis of benzotriazine analogues as HIV-1 latency-reversing agents. Antimicrob. Agents Chemother. 64:e00888-20
    [Google Scholar]
  136. 136. 
    Chung TDY, Terry DB, Smith LH 2004. In vitro and in vivo assessment of ADME and PK properties during lead selection and lead optimization—guidelines, benchmarks and rules of thumb. Assay Guidance Manual S Markossian et al. 1285–87 Bethesda, MD: Eli Lilly
    [Google Scholar]
  137. 137. 
    Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D et al. 2008. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov. 7:255–70
    [Google Scholar]
  138. 138. 
    Palombo MS, Singh Y, Sinko PJ. 2009. Prodrug and conjugate drug delivery strategies for improving HIV/AIDS therapy. J. Drug Deliv. Sci. Technol. 19:3–14
    [Google Scholar]
  139. 139. 
    Wire MB, Shelton MJ, Studenberg S. 2006. Fosamprenavir : clinical pharmacokinetics and drug interactions of the amprenavir prodrug. Clin. Pharmacokinet. 45:137–68
    [Google Scholar]
  140. 140. 
    Fung HB, Stone EA, Piacenti FJ. 2002. Tenofovir disoproxil fumarate: a nucleotide reverse transcriptase inhibitor for the treatment of HIV infection. Clin. Ther. 24:1515–48
    [Google Scholar]
  141. 141. 
    De Clercq E. 2003. Clinical potential of the acyclic nucleoside phosphonates cidofovir, adefovir, and tenofovir in treatment of DNA virus and retrovirus infections. Clin. Microbiol. Rev. 16:569–96
    [Google Scholar]
  142. 142. 
    Sauvage A-S, Darcis G, Moutschen M. 2016. [Update in HIV therapy: tenofovir alafenamide]. Rev. Med. Suisse 12:1367–69
    [Google Scholar]
  143. 143. 
    Singh K, Sarafianos SG, Sönnerborg A. 2019. Long-acting anti-HIV drugs targeting HIV-1 reverse transcriptase and integrase. Pharmaceuticals 12:62
    [Google Scholar]
  144. 144. 
    Sloane JL, Benner NL, Keenan KN, Zang X, Soliman MS et al. 2020. Prodrugs of PKC modulators show enhanced HIV latency reversal and an expanded therapeutic window. PNA 117:10688–98
    [Google Scholar]
  145. 145. 
    Ott M, Emiliani S, Van Lint C, Herbein G, Lovett Jet al 1997. Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science 275:5305148185
    [Google Scholar]
  146. 146. 
    Spina CA, Anderson J, Archin NM, Bosque A, Chan J et al. 2013. An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLOS Pathog 9:e1003834
    [Google Scholar]
  147. 147. 
    Bui JK, Mellors JW, Cillo AR. 2016. HIV-1 virion production from single inducible proviruses following T-cell activation ex vivo. J. Virol. 90:1673–76
    [Google Scholar]
  148. 148. 
    Telwatte S, Kim P, Chen TH, Milush JM, Somsouk M et al. 2020. Mechanistic differences underlying HIV latency in the gut and blood contribute to differential responses to latency-reversing agents. AIDS 34:2013–24
    [Google Scholar]
  149. 149. 
    Klase Z, Yedavalli VS, Houzet L, Perkins M, Maldarelli F et al. 2014. Activation of HIV-1 from latent infection via synergy of RUNX1 inhibitor Ro5-3335 and SAHA. PLOS Pathog 10:e1003997
    [Google Scholar]
  150. 150. 
    Abdel-Mohsen M, Chavez L, Tandon R, Chew GM, Deng X et al. 2016. Human galectin-9 is a potent mediator of HIV transcription and reactivation. PLOS Pathog 12:e1005677
    [Google Scholar]
  151. 151. 
    Grau-Expósito J, Luque-Ballesteros L, Navarro J, Curran A, Burgos J et al. 2019. Latency reversal agents affect differently the latent reservoir present in distinct CD4+ T subpopulations. PLOS Pathog 15:e1007991
    [Google Scholar]
  152. 152. 
    Pardons M, Fromentin R, Pagliuzza A, Routy J-P, Chomont N. 2019. Latency reversing agents induce differential responses in distinct memory CD4 T cell subsets in individuals on antiretroviral therapy. Cell Rep 29:2783–95.e5
    [Google Scholar]
  153. 153. 
    Yukl SA, Kaiser P, Kim P, Telwatte S, Joshi SK et al. 2018. HIV latency in isolated patient CD4+ T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Sci. Transl. Med. 10:eaap9927
    [Google Scholar]
  154. 154. 
    Pace MJ, Graf EH, Agosto LM, Mexas AM, Male F et al. 2012. Directly infected resting CD4+ T cells can produce HIV Gag without spreading infection in a model of HIV latency. PLOS Pathog 8:e1002818
    [Google Scholar]
  155. 155. 
    Wong LM, Jiang G. 2020. NF-κB sub-pathways and HIV cure: a revisit. EBioMedicine 63:103159
    [Google Scholar]
  156. 156. 
    Li Z, Hajian C, Greene WC. 2020. Identification of unrecognized host factors promoting HIV-1 latency. PLOS Pathog 16:e1009055
    [Google Scholar]
  157. 157. 
    McBrien JB, Mavigner M, Franchitti L, Smith SA, White E et al. 2020. Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8+ cells. Nature 578:154–59
    [Google Scholar]
  158. 158. 
    Battivelli E, Dahabieh MS, Abdel-Mohsen M, Svensson JP, Da Silva IT et al. Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T cells. eLife 7:e34655
    [Google Scholar]
  159. 159. 
    Vansant G, Bruggemans A, Janssens J, Debyser Z. 2020. Block-and-lock strategies to cure HIV infection. Viruses 12:84
    [Google Scholar]
  160. 160. 
    Chen H-C, Martinez JP, Zorita E, Meyerhans A, Filion GJ. 2017. Position effects influence HIV latency reversal. Nat. Struct. Mol. Biol. 24:47–54
    [Google Scholar]
  161. 161. 
    Jiang C, Lian X, Gao C, Sun X, Einkauf KB et al. 2020. Distinct viral reservoirs in individuals with spontaneous control of HIV-1. Nature 585:7824261–67
    [Google Scholar]
  162. 162. 
    Besnard E, Hakre S, Kampmann M, Lim HW, Hosmane NN et al. 2016. The mTOR complex controls HIV latency. Cell Host Microbe 20:785–97
    [Google Scholar]
  163. 163. 
    Kessing CF, Nixon CC, Li C, Tsai P, Takata H et al. 2017. In vivo suppression of HIV rebound by didehydro-Cortistatin A, a “block-and-lock” strategy for HIV-1 cure. Cell Rep 21:600–11
    [Google Scholar]
  164. 164. 
    Kim H, Choi M-S, Inn K-S, Kim B-J. 2016. Inhibition of HIV-1 reactivation by a telomerase-derived peptide in a HSP90-dependent manner. Sci. Rep. 6:28896
    [Google Scholar]
  165. 165. 
    Vranckx LS, Demeulemeester J, Saleh S, Boll A, Vansant G et al. 2016. LEDGIN-mediated inhibition of integrase-LEDGF/p75 interaction reduces reactivation of residual latent HIV. EBioMedicine 8:248–64
    [Google Scholar]
  166. 166. 
    Chomont N. 2020. HIV enters deep sleep in people who naturally control the virus. Nature 585:190–91
    [Google Scholar]
/content/journals/10.1146/annurev-virology-091919-103029
Loading
/content/journals/10.1146/annurev-virology-091919-103029
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error