1932

Abstract

Mammalian polyomaviruses are characterized by establishing persistent infections in healthy hosts and generally causing clinical disease only in hosts whose immune systems are compromised. Despite the fact that these viruses were discovered decades ago, our knowledge of the mechanisms that govern viral persistence and reactivation is limited. Whereas mouse polyomavirus has been studied in a fair amount of detail, our understanding of the human viruses in particular is mostly inferred from experiments aimed at addressing other questions. In this review, we summarize the state of our current knowledge, draw conclusions when possible, and suggest areas that are in need of further study.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-110615-042226
2016-09-29
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/virology/3/1/annurev-virology-110615-042226.html?itemId=/content/journals/10.1146/annurev-virology-110615-042226&mimeType=html&fmt=ahah

Literature Cited

  1. Gross L. 1.  1953. A filterable agent, recovered from Ak leukemic extracts, causing salivary gland carcinomas in C3H mice. Proc. Soc. Exp. Biol. Med. 83:414–21 [Google Scholar]
  2. Stewart SE, Eddy BE, Borgese N. 2.  1958. Neoplasms in mice inoculated with a tumor agent carried in tissue culture. J. Natl. Cancer Inst. 20:1223–43 [Google Scholar]
  3. DeCaprio JA, Imperiale MJ, Major EO. 3.  2013. Polyomaviruses. Fields Virology DM Knipe, PM Howley, JI Cohen, DE Griffin, RA Lamb et al. Philadelphia: Lippincott Williams & Wilkins [Google Scholar]
  4. Garren SB, Kondaveeti Y, Duff MO, Carmichael GG. 4.  2015. Global analysis of mouse polyomavirus infection reveals dynamic regulation of viral and host gene expression and promiscuous viral RNA editing. PLOS Pathog 11:e1005166 [Google Scholar]
  5. Balakrishnan L, Gefroh A, Milavetz B. 5.  2010. Histone H4 lysine 20 mono- and tri-methylation define distinct biological processes in SV40 minichromosomes. Cell Cycle 9:1320–32 [Google Scholar]
  6. Kallestad L, Woods E, Christensen K, Gefroh A, Balakrishnan L, Milavetz B. 6.  2013. Transcription and replication result in distinct epigenetic marks following repression of early gene expression. Front. Genet. 4:140 [Google Scholar]
  7. Kallestad L, Christensen K, Woods E, Milavetz B. 7.  2014. Transcriptional repression is epigenetically marked by H3K9 methylation during SV40 replication. Clin. Epigenet. 6:21 [Google Scholar]
  8. Imperiale MJ. 8.  2014. Polyomavirus miRNAs: the beginning. Curr. Opin. Virol. 7:29–32 [Google Scholar]
  9. Alwine JC, Dhar R, Khoury G. 9.  1980. A small RNA induced late in simian virus 40 infection can associate with early viral mRNAs. PNAS 77:1379–83 [Google Scholar]
  10. Alwine JC, Khoury G. 10.  1980. Simian virus 40-associated small RNA: mapping on the simian virus 40 genome and characterization of its synthesis. J. Virol. 36:701–8 [Google Scholar]
  11. Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D. 11.  2005. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435:682–86 [Google Scholar]
  12. van Gorder MA, Della Pelle P, Henson JW, Sachs DH, Cosimi AB, Colvin RB. 12.  1999. Cynomolgus polyoma virus infection: a new member of the polyoma virus family causes interstitial nephritis, ureteritis, and enteritis in immunosuppressed cynomolgus monkeys. Am. J. Pathol. 154:1273–84 [Google Scholar]
  13. Zaragoza C, Li RM, Fahle GA, Fischer SH, Raffeld M. 13.  et al. 2005. Squirrel monkeys support replication of BK virus more efficiently than simian virus 40: an animal model for human BK virus infection. J. Virol. 79:1320–26 [Google Scholar]
  14. McCance DJ. 14.  1981. Growth and persistence of polyoma early region deletion mutants in mice. J. Virol. 39:958–62 [Google Scholar]
  15. Fluck MM, Schaffhausen BS. 15.  2009. Lessons in signaling and tumorigenesis from polyomavirus middle T antigen. Microbiol. Mol. Biol. Rev. 73:542–63 [Google Scholar]
  16. Dubensky TW, Villarreal LP. 16.  1984. The primary site of replication alters the eventual site of persistent infection by polyomavirus in mice. J. Virol. 50:541–46 [Google Scholar]
  17. Rochford R, Moreno JP, Peake ML, Villarreal LP. 17.  1992. Enhancer dependence of polyomavirus persistence in mouse kidneys. J. Virol. 66:3287–97 [Google Scholar]
  18. Gardner SD, Field AM, Coleman DV, Hulme B. 18.  1971. New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet 1:1253–57 [Google Scholar]
  19. Padgett BL, Walker DL, ZuRhein GM, Eckroade RJ, Dessel BH. 19.  1971. Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 1:1257–60 [Google Scholar]
  20. Doerries K. 20.  2006. Human polyomavirus JC and BK persistent infection. Adv. Exp. Med. Biol. 577:102–16 [Google Scholar]
  21. Egli A, Infanti L, Dumoulin A, Buser A, Samaridis J. 21.  et al. 2009. Prevalence of polyomavirus BK and JC infection and replication in 400 healthy blood donors. J. Infect. Dis. 199:837–46 [Google Scholar]
  22. Bethge T, Hachemi HA, Manzetti J, Gosert R, Schaffner W, Hirsch HH. 22.  2015. Sp1 sites in the noncoding control region of BK polyomavirus are key regulators of bidirectional viral early and late gene expression. J. Virol. 89:3396–411 [Google Scholar]
  23. Yogo Y, Kitamura T, Sugimoto C, Ueki T, Aso Y. 23.  et al. 1990. Isolation of a possible archetypal JC virus DNA sequence from nonimmunocompromised individuals. J. Virol. 64:3139–43 [Google Scholar]
  24. Dorries K, Sbiera S, Drews K, Arendt G, Eggers C, Dorries R. 24.  2003. Association of human polyomavirus JC with peripheral blood of immunoimpaired and healthy individuals. J. Neurovirol. 9:Suppl. 181–87 [Google Scholar]
  25. Chesters PM, Heritage J, McCance DJ. 25.  1983. Persistence of DNA sequences of BK virus and JC virus in normal human tissues and in diseased tissues. J. Infect. Dis. 147:676–84 [Google Scholar]
  26. Heritage J, Chesters PM, McCance DJ. 26.  1981. The persistence of papovavirus BK DNA sequences in normal human renal tissue. J. Med. Virol. 8:143–50 [Google Scholar]
  27. Randhawa P, Shapiro R, Vats A. 27.  2005. Quantitation of DNA of polyomaviruses BK and JC in human kidneys. J. Infect. Dis. 192:504–9 [Google Scholar]
  28. Koralnik IJ, Boden D, Mai VX, Lord CI, Letvin NL. 28.  1999. JC virus DNA load in patients with and without progressive multifocal leukoencephalopathy. Neurology 52:253–60 [Google Scholar]
  29. Kling CL, Wright AT, Katz SE, McClure GB, Gardner JS. 29.  et al. 2012. Dynamics of urinary polyomavirus shedding in healthy adult women. J. Med. Virol. 84:1459–63 [Google Scholar]
  30. McClure GB, Gardner JS, Williams JT, Copeland CM, Sylvester SK. 30.  et al. 2012. Dynamics of pregnancy-associated polyomavirus urinary excretion: a prospective longitudinal study. J. Med. Virol. 84:1312–22 [Google Scholar]
  31. Coleman DV, Gardner SD, Mulholland C, Fridiksdottir V, Porter AA. 31.  et al. 1983. Human polyomavirus in pregnancy: a model for the study of defence mechanisms to virus reactivation. Clin. Exp. Immunol. 53:289–96 [Google Scholar]
  32. Randhawa PS, Finkelstein S, Scantlebury V, Shapiro R, Vivas C. 32.  et al. 1999. Human polyoma virus-associated interstitial nephritis in the allograft kidney. Transplantation 67:103–9 [Google Scholar]
  33. Kitamura T, Sugimoto C, Kato A, Ebihara H, Suzuki M. 33.  et al. 1997. Persistent JC virus (JCV) infection is demonstrated by continuous shedding of the same JCV strains. J. Clin. Microbiol. 35:1255–57 [Google Scholar]
  34. Pastrana DV, Brennan DC, Cuburu N, Storch GA, Viscidi RP. 34.  et al. 2012. Neutralization serotyping of BK polyomavirus infection in kidney transplant recipients. PLOS Pathog 8:e1002650 [Google Scholar]
  35. Atencio IA, Villarreal LP. 35.  1994. Polyomavirus replicates in differentiating but not in proliferating tubules of adult mouse polycystic kidneys. Virology 201:26–35 [Google Scholar]
  36. Atencio IA, Shadan FF, Zhou XJ, Vaziri ND, Villarreal LP. 36.  1993. Adult mouse kidneys become permissive to acute polyomavirus infection and reactivate persistent infections in response to cellular damage and regeneration. J. Virol. 67:1424–32 [Google Scholar]
  37. Liang B, Tikhanovich I, Nasheuer HP, Folk WR. 37.  2012. Stimulation of BK virus DNA replication by NFI family transcription factors. J. Virol. 86:3264–75 [Google Scholar]
  38. Coleman DV, Mackenzie EF, Gardner SD, Poulding JM, Amer B, Russell WJ. 38.  1978. Human polyomavirus (BK) infection and ureteric stenosis in renal allograft recipients. J. Clin. Pathol. 31:338–47 [Google Scholar]
  39. Hirsch HH, Drachenberg CB, Steiger J, Ramos E. 39.  2006. Polyomavirus-associated nephropathy in renal transplantation: critical issues of screening and management. Adv. Exp. Med. Biol. 577:160–73 [Google Scholar]
  40. Tan CS, Ellis LC, Wuthrich C, Ngo L, Broge TA Jr. 40.  2010. JC virus latency in the brain and extraneural organs of patients with and without progressive multifocal leukoencephalopathy. J. Virol. 84:9200–9 [Google Scholar]
  41. Perez-Liz G, Del Valle L, Gentilella A, Croul S, Khalili K. 41.  2008. Detection of JC virus DNA fragments but not proteins in normal brain tissue. Ann. Neurol. 64:379–87 [Google Scholar]
  42. Elsner C, Dorries K. 42.  1992. Evidence of human polyomavirus BK and JC infection in normal brain tissue. Virology 191:72–80 [Google Scholar]
  43. Bayliss J, Karasoulos T, McLean CA. 43.  2012. Frequency and large T (LT) sequence of JC polyomavirus DNA in oligodendrocytes, astrocytes and granular cells in non-PML brain. Brain Pathol 22:329–36 [Google Scholar]
  44. Watanabe I, Preskorn SH. 44.  1976. Virus-cell interaction in oligodendroglia, astroglia and phagocyte in progressive multifocal leukoencephalopathy: an electron microscopic study. Acta Neuropathol 36:101–15 [Google Scholar]
  45. Ryschkewitsch CF, Jensen PN, Monaco MC, Major EO. 45.  2010. JC virus persistence following progressive multifocal leukoencephalopathy in multiple sclerosis patients treated with natalizumab. Ann. Neurol. 68:384–91 [Google Scholar]
  46. Van Loy T, Thys K, Ryschkewitsch C, Lagatie O, Monaco MC. 46.  et al. 2015. JC virus quasispecies analysis reveals a complex viral population underlying progressive multifocal leukoencephalopathy and supports viral dissemination via the hematogenous route. J. Virol. 89:1340–47 [Google Scholar]
  47. Ciappi S, Azzi A, De Santis R, Leoncini F, Sterrantino G. 47.  et al. 1999. Archetypal and rearranged sequences of human polyomavirus JC transcription control region in peripheral blood leukocytes and in cerebrospinal fluid. J. Gen. Virol. 80:Pt. 41017–23 [Google Scholar]
  48. Goudsmit J, Wertheim–van Dillen P, van Strien A, van der Noordaa J. 48.  1982. The role of BK virus in acute respiratory tract disease and the presence of BKV DNA in tonsils. J. Med. Virol. 10:91–99 [Google Scholar]
  49. Dorries K, Vogel E, Gunther S, Czub S. 49.  1994. Infection of human polyomaviruses JC and BK in peripheral blood leukocytes from immunocompetent individuals. Virology 198:59–70 [Google Scholar]
  50. Monaco MC, Atwood WJ, Gravell M, Tornatore CS, Major EO. 50.  1996. JC virus infection of hematopoietic progenitor cells, primary B lymphocytes, and tonsillar stromal cells: implications for viral latency. J. Virol. 70:7004–12 [Google Scholar]
  51. Monaco MC, Jensen PN, Hou J, Durham LC, Major EO. 51.  1998. Detection of JC virus DNA in human tonsil tissue: evidence for site of initial viral infection. J. Virol. 72:9918–23 [Google Scholar]
  52. Wollebo HS, White MK, Gordon J, Berger JR, Khalili K. 52.  2015. Persistence and pathogenesis of the neurotropic polyomavirus JC. Ann. Neurol. 77:560–70 [Google Scholar]
  53. Johnson EM, Wortman MJ, Dagdanova AV, Lundberg PS, Daniel DC. 53.  2013. Polyomavirus JC in the context of immunosuppression: a series of adaptive, DNA replication-driven recombination events in the development of progressive multifocal leukoencephalopathy. Clin. Dev. Immunol. 2013:197807 [Google Scholar]
  54. Chapagain ML, Verma S, Mercier F, Yanagihara R, Nerurkar VR. 54.  2007. Polyomavirus JC infects human brain microvascular endothelial cells independent of serotonin receptor 2A. Virology 364:55–63 [Google Scholar]
  55. Del Valle L, White MK, Enam S, Pina Oviedo S, Bromer MQ. 55.  et al. 2005. Detection of JC virus DNA sequences and expression of viral T antigen and agnoprotein in esophageal carcinoma. Cancer 103:516–27 [Google Scholar]
  56. Vanchiere JA, Abudayyeh S, Copeland CM, Lu LB, Graham DY, Butel JS. 56.  2009. Polyomavirus shedding in the stool of healthy adults. J. Clin. Microbiol. 47:2388–91 [Google Scholar]
  57. Jeffers LK, Madden V, Webster-Cyriaque J. 57.  2009. BK virus has tropism for human salivary gland cells in vitro: implications for transmission. Virology 394:183–93 [Google Scholar]
  58. White MK, Gordon J, Khalili K. 58.  2013. The rapidly expanding family of human polyomaviruses: recent developments in understanding their life cycle and role in human pathology. PLOS Pathog. 9:e1003206 [Google Scholar]
  59. DeCaprio JA, Garcea RL. 59.  2013. A cornucopia of human polyomaviruses. Nat. Rev. Microbiol. 11:264–76 [Google Scholar]
  60. Kean JM, Rao S, Wang M, Garcea RL. 60.  2009. Seroepidemiology of human polyomaviruses. PLOS Pathog. 5:e1000363 [Google Scholar]
  61. Sroller V, Hamsikova E, Ludvikova V, Musil J, Nemeckova S, Salakova M. 61.  2016. Seroprevalence rates of HPyV6, HPyV7, TSPyV, HPyV9, MWPyV and KIPyV polyomaviruses among the healthy blood donors. J. Med. Virol. 88:1254–61 [Google Scholar]
  62. Feng H, Shuda M, Chang Y, Moore PS. 62.  2008. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–100 [Google Scholar]
  63. van der Meijden E, Janssens RW, Lauber C, Bouwes Bavinck JN, Gorbalenya AE, Feltkamp MC. 63.  2010. Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromized patient. PLOS Pathog. 6:e1001024 [Google Scholar]
  64. Chang Y, Moore PS. 64.  2012. Merkel cell carcinoma: a virus-induced human cancer. Annu. Rev. Pathol. 7:123–44 [Google Scholar]
  65. Schowalter RM, Pastrana DV, Pumphrey KA, Moyer AL, Buck CB. 65.  2010. Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. Cell Host Microbe 7:509–15 [Google Scholar]
  66. Tolstov YL, Pastrana DV, Feng H, Becker JC, Jenkins FJ. 66.  et al. 2009. Human Merkel cell polyomavirus infection. II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. Int. J. Cancer 125:1250–56 [Google Scholar]
  67. Pancaldi C, Corazzari V, Maniero S, Mazzoni E, Comar M. 67.  et al. 2011. Merkel cell polyomavirus DNA sequences in the buffy coats of healthy blood donors. Blood 117:7099–101 [Google Scholar]
  68. Shuda M, Arora R, Kwun HJ, Feng H, Sarid R. 68.  et al. 2009. Human Merkel cell polyomavirus infection. I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues and lymphoid tumors. Int. J. Cancer 125:1243–49 [Google Scholar]
  69. Mertz KD, Junt T, Schmid M, Pfaltz M, Kempf W. 69.  2010. Inflammatory monocytes are a reservoir for Merkel cell polyomavirus. J. Investig. Dermatol. 130:1146–51 [Google Scholar]
  70. Kantola K, Sadeghi M, Lahtinen A, Koskenvuo M, Aaltonen LM. 70.  et al. 2009. Merkel cell polyomavirus DNA in tumor-free tonsillar tissues and upper respiratory tract samples: implications for respiratory transmission and latency. J. Clin. Virol. 45:292–95 [Google Scholar]
  71. Toracchio S, Foyle A, Sroller V, Reed JA, Wu J. 71.  et al. 2010. Lymphotropism of Merkel cell polyomavirus infection, Nova Scotia, Canada. Emerg. Infect. Dis. 16:1702–9 [Google Scholar]
  72. Campello C, Comar M, D'Agaro P, Minicozzi A, Rodella L, Poli A. 72.  2011. A molecular case-control study of the Merkel cell polyomavirus in colon cancer. J. Med. Virol. 83:721–24 [Google Scholar]
  73. Rouanet J, Aubin F, Gaboriaud P, Berthon P, Feltkamp MC. 73.  et al. 2016. Trichodysplasia spinulosa: a polyomavirus infection specifically targeting follicular keratinocytes in immunocompromised patients. Br. J. Dermatol. 174:629–63 [Google Scholar]
  74. Kazem S, van der Meijden E, Feltkamp MC. 74.  2013. The trichodysplasia spinulosa-associated polyomavirus: virological background and clinical implications. APMIS 121:770–82 [Google Scholar]
  75. Sadeghi M, Aaltonen LM, Hedman L, Chen T, Soderlund-Venermo M, Hedman K. 75.  2014. Detection of TS polyomavirus DNA in tonsillar tissues of children and adults: evidence for site of viral latency. J. Clin. Virol. 59:55–58 [Google Scholar]
  76. Rockett RJ, Sloots TP, Bowes S, O'Neill N, Ye S. 76.  et al. 2013. Detection of novel polyomaviruses, TSPyV, HPyV6, HPyV7, HPyV9 and MWPyV in feces, urine, blood, respiratory swabs and cerebrospinal fluid. PLOS ONE 8:e62764 [Google Scholar]
  77. Gaynor AM, Nissen MD, Whiley DM, Mackay IM, Lambert SB. 77.  et al. 2007. Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLOS Pathog. 3:e64 [Google Scholar]
  78. Allander T, Andreasson K, Gupta S, Bjerkner A, Bogdanovic G. 78.  et al. 2007. Identification of a third human polyomavirus. J. Virol. 81:4130–36 [Google Scholar]
  79. Siebrasse EA, Pastrana DV, Nguyen NL, Wang A, Roth MJ. 79.  et al. 2015. WU polyomavirus in respiratory epithelial cells from lung transplant patient with Job syndrome. Emerg. Infect. Dis. 21:103–6 [Google Scholar]
  80. Csoma E, Meszaros B, Asztalos L, Gergely L. 80.  2015. WU and KI polyomaviruses in respiratory, blood and urine samples from renal transplant patients. J. Clin. Virol. 64:28–33 [Google Scholar]
  81. Comar M, Zanotta N, Rossi T, Pelos G, D'Agaro P. 81.  2011. Secondary lymphoid tissue as an important site for WU polyomavirus infection in immunocompetent children. J. Med. Virol. 83:1446–50 [Google Scholar]
  82. Carter JJ, Daugherty MD, Qi X, Bheda-Malge A, Wipf GC. 82.  et al. 2013. Identification of an overprinting gene in Merkel cell polyomavirus provides evolutionary insight into the birth of viral genes. PNAS 110:12744–49 [Google Scholar]
  83. van der Meijden E, Kazem S, Dargel CA, van Vuren N, Hensbergen PJ, Feltkamp MC. 83.  2015. Characterization of T antigens, including middle T and alternative T, expressed by the human polyomavirus associated with trichodysplasia spinulosa. J. Virol. 89:9427–39 [Google Scholar]
  84. Sroller V, Vilchez RA, Stewart AR, Wong C, Butel JS. 84.  2008. Influence of the viral regulatory region on tumor induction by simian virus 40 in hamsters. J. Virol. 82:871–79 [Google Scholar]
  85. Zhang S, Sroller V, Zanwar P, Chen CJ, Halvorson SJ. 85.  et al. 2014. Viral microRNA effects on pathogenesis of polyomavirus SV40 infections in Syrian golden hamsters. PLOS Pathog. 10:e1003912 [Google Scholar]
  86. Wollebo HS, Bellizzi A, Cossari DH, Safak M, Khalili K, White MK. 86.  2015. Epigenetic regulation of polyomavirus JC involves acetylation of specific lysine residues in NF-κB p65. J. Neurovirol. 21:679–87 [Google Scholar]
  87. Tempera I, Lieberman PM. 87.  2014. Epigenetic regulation of EBV persistence and oncogenesis. Semin. Cancer Biol. 26:22–29 [Google Scholar]
  88. Kumar A, Herbein G. 88.  2014. Epigenetic regulation of human cytomegalovirus latency: an update. Epigenomics 6:533–46 [Google Scholar]
  89. Knipe DM. 89.  2015. Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity. Virology 479–80:153–59 [Google Scholar]
  90. Knipe DM, Lieberman PM, Jung JU, McBride AA, Morris KV. 90.  et al. 2013. Snapshots: chromatin control of viral infection. Virology 435:141–56 [Google Scholar]
  91. Kristie TM. 91.  2015. Dynamic modulation of HSV chromatin drives initiation of infection and provides targets for epigenetic therapies. Virology 479–80:555–61 [Google Scholar]
  92. Sullivan CS, Sung CK, Pack CD, Grundhoff A, Lukacher AE. 92.  et al. 2009. Murine polyomavirus encodes a microRNA that cleaves early RNA transcripts but is not essential for experimental infection. Virology 387:157–67 [Google Scholar]
  93. Broekema NM, Imperiale MJ. 93.  2013. miRNA regulation of BK polyomavirus replication during early infection. PNAS 110:8200–5 [Google Scholar]
  94. Theiss JM, Gunther T, Alawi M, Neumann F, Tessmer U. 94.  et al. 2015. A comprehensive analysis of replicating Merkel cell polyomavirus genomes delineates the viral transcription program and suggests a role for mcv-miR-M1 in episomal persistence. PLOS Pathog 11:e1004974 [Google Scholar]
  95. Nickeleit V, Hirsch HH, Binet IF, Gudat F, Prince O. 95.  et al. 1999. Polyomavirus infection of renal allograft recipients: from latent infection to manifest disease. J. Am. Soc. Nephrol. 10:1080–89 [Google Scholar]
  96. Howell DN, Smith SR, Butterly DW, Klassen PS, Krigman HR. 96.  et al. 1999. Diagnosis and management of BK polyomavirus interstitial nephritis in renal transplant recipients. Transplantation 68:1279–88 [Google Scholar]
  97. Nickeleit V, Hirsch HH, Zeiler M, Gudat F, Prince O. 97.  et al. 2000. BK-virus nephropathy in renal transplants—tubular necrosis, MHC-class II expression and rejection in a puzzling game. Nephrol. Dial. Transplant. 15:324–32 [Google Scholar]
  98. Kindzelskii AL, Huang JB, Chaiworapongsa T, Fahmy RM, Kim YM. 98.  et al. 2002. Pregnancy alters glucose-6-phosphate dehydrogenase trafficking, cell metabolism, and oxidant release of maternal neutrophils. J. Clin. Investig. 110:1801–11 [Google Scholar]
  99. Wuthrich C, Kesari S, Kim WK, Williams K, Gelman R. 99.  et al. 2006. Characterization of lymphocytic infiltrates in progressive multifocal leukoencephalopathy: co-localization of CD8+ T cells with JCV-infected glial cells. J. Neurovirol. 12:116–28 [Google Scholar]
  100. Daha MR, van Kooten C. 100.  2000. Is the proximal tubular cell a proinflammatory cell?. Nephrol. Dial. Transplant. 15:Suppl. 641–43 [Google Scholar]
  101. Abend JR, Low JA, Imperiale MJ. 101.  2010. Global effects of BKV infection on gene expression in human primary kidney epithelial cells. Virology 397:73–79 [Google Scholar]
  102. Justice JL, Verhalen B, Kumar R, Lefkowitz EJ, Imperiale MJ, Jiang M. 102.  2015. Quantitative proteomic analysis of enriched nuclear fractions from BK Polyomavirus-infected primary renal proximal tubule epithelial cells. J. Proteome Res. 14:4413–24 [Google Scholar]
  103. Giacobbi NS, Gupta T, Coxon AT, Pipas JM. 103.  2015. Polyomavirus T antigens activate an antiviral state. Virology 476:377–85 [Google Scholar]
  104. Shahzad N, Shuda M, Gheit T, Kwun HJ, Cornet I. 104.  et al. 2013. The T antigen locus of Merkel cell polyomavirus downregulates human Toll-like receptor 9 expression. J. Virol. 87:13009–19 [Google Scholar]
  105. Lau L, Gray EE, Brunette RL, Stetson DB. 105.  2015. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 350:568–71 [Google Scholar]
  106. Ganusov VV, Lukacher AE, Byers AM. 106.  2010. Persistence of viral infection despite similar killing efficacy of antiviral CD8+ T cells during acute and chronic phases of infection. Virology 405:193–200 [Google Scholar]
  107. Wilson JJ, Pack CD, Lin E, Frost EL, Albrecht JA. 107.  et al. 2012. CD8 T cells recruited early in mouse polyomavirus infection undergo exhaustion. J. Immunol. 188:4340–48 [Google Scholar]
  108. Du Pasquier RA, Kuroda MJ, Zheng Y, Jean-Jacques J, Letvin NL, Koralnik IJ. 108.  2004. A prospective study demonstrates an association between JC virus-specific cytotoxic T lymphocytes and the early control of progressive multifocal leukoencephalopathy. Brain 127:1970–78 [Google Scholar]
  109. Lima MA, Bernal-Cano F, Clifford DB, Gandhi RT, Koralnik IJ. 109.  2010. Clinical outcome of long-term survivors of progressive multifocal leukoencephalopathy. J. Neurol. Neurosurg. Psychiatry 81:1288–91 [Google Scholar]
  110. Ferenczy MW, Marshall LJ, Nelson CD, Atwood WJ, Nath A. 110.  et al. 2012. Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin. Microbiol. Rev. 25:471–506 [Google Scholar]
  111. Tan K, Roda R, Ostrow L, McArthur J, Nath A. 111.  2009. PML-IRIS in patients with HIV infection: clinical manifestations and treatment with steroids. Neurology 72:1458–64 [Google Scholar]
  112. Drummond JE, Shah KV, Donnenberg AD. 112.  1985. Cell-mediated immune responses to BK virus in normal individuals. J. Med. Virol. 17:237–47 [Google Scholar]
  113. Comoli P, Binggeli S, Ginevri F, Hirsch HH. 113.  2006. Polyomavirus-associated nephropathy: update on BK virus-specific immunity. Transpl. Infect. Dis. 8:86–94 [Google Scholar]
  114. Gorelik L, Lerner M, Bixler S, Crossman M, Schlain B. 114.  et al. 2010. Anti-JC virus antibodies: implications for PML risk stratification. Ann. Neurol. 68:295–303 [Google Scholar]
  115. Ray U, Cinque P, Gerevini S, Longo V, Lazzarin A. 115.  et al. 2015. JC polyomavirus mutants escape antibody-mediated neutralization. Sci. Transl. Med. 7:306ra151 [Google Scholar]
  116. Carson KR, Evens AM, Richey EA, Habermann TM, Focosi D. 116.  et al. 2009. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood 113:4834–40 [Google Scholar]
  117. Binggeli S, Egli A, Schaub S, Binet I, Mayr M. 117.  et al. 2007. Polyomavirus BK-specific cellular immune response to VP1 and large T-antigen in kidney transplant recipients. Am. J. Transplant. 7:1131–39 [Google Scholar]
  118. Wilson JJ, Lin E, Pack CD, Frost EL, Hadley A. 118.  et al. 2011. Gamma interferon controls mouse polyomavirus infection in vivo. J. Virol. 85:10126–34 [Google Scholar]
  119. Abend JR, Low JA, Imperiale MJ. 119.  2007. Inhibitory effect of gamma interferon on BK virus gene expression and replication. J. Virol. 81:272–79 [Google Scholar]
/content/journals/10.1146/annurev-virology-110615-042226
Loading
/content/journals/10.1146/annurev-virology-110615-042226
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error