1932

Abstract

Viruses must establish an intimate relationship with their hosts and vectors in order to infect, replicate, and disseminate; hence, viruses can be considered as symbionts with their hosts. Symbiotic relationships encompass different lifestyles, including antagonistic (or pathogenic, the most well-studied lifestyle for viruses), commensal (probably the most common lifestyle), and mutualistic (important beneficial partners). Symbiotic relationships can shape the evolution of the partners in a holobiont, and placing viruses in this context provides an important framework for understanding virus-host relationships and virus ecology. Although antagonistic relationships are thought to lead to coevolution, this is not always clear in virus-host interactions, and impacts on evolution may be complex. Commensalism implies a hitchhiking role for viruses—selfish elements just along for the ride. Mutualistic relationships have been described in detail in the past decade, and they reveal how important viruses are in considering host ecology. Ultimately, symbiosis can lead to symbiogenesis, or speciation through fusion, and the presence of large amounts of viral sequence in the genomes of everything from bacteria to humans, including some important functional genes, illustrates the significance of viral symbiogenesis in the evolution of all life on Earth.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-110615-042323
2017-09-29
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/virology/4/1/annurev-virology-110615-042323.html?itemId=/content/journals/10.1146/annurev-virology-110615-042323&mimeType=html&fmt=ahah

Literature Cited

  1. de Bary HA. 1.  1879. Die Erscheinung der Symbiose Strassburg, Ger: Verlag von Karl J. Trübner
  2. Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L. 2.  et al. 2008. Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–16 [Google Scholar]
  3. Bao X, Roossinck MJ. 3.  2013. A life history view of mutualistic viral symbioses: quantity or quality for cooperation?. Curr. Opin. Microbiol. 16:514–18 [Google Scholar]
  4. Hussa EA, Goodrich-Blair H. 4.  2013. It takes a village: ecological and fitness impacts of multipartite mutualism. Annu. Rev. Microbiol. 67:161–78 [Google Scholar]
  5. Roossinck MJ. 5.  2015. Plants, viruses and the environment: ecology and mutualism. Virology 479–80:271–77 [Google Scholar]
  6. Margulis L, Hall J, McFall-Ngai M. 6.  2007. Our discipline comes of age. Symbiosis 44:ii–iv [Google Scholar]
  7. Zablocki O, Ardriaenssens EM, Cowan D. 7.  2016. Diversity and ecology of viruses in hyperarid desert soils. Appl. Environ. Microbiol. 82:770–77 [Google Scholar]
  8. Williamson KE, Radosevich M, Wommack KE. 8.  2005. Abundance and diversity of viruses in six Delaware soils. Appl. Environ. Microbiol. 71:3119–25 [Google Scholar]
  9. Cowan DA, Makhalanyane TP, Dennis PG, Hopkins DW. 9.  2014. Microbial ecology and biogeochemistry of continental Antarctic soils. Front. Microbiol. 5:154 [Google Scholar]
  10. Cadwell K. 10.  2015. Expanding the role of the virome: commensalism in the gut. J. Virol. 89:1951–53 [Google Scholar]
  11. Breitbart M, Rohwer F. 11.  2005. Here a virus, there a virus, everywhere the same virus?. Trends Microbiol 13:278–84 [Google Scholar]
  12. Roossinck MJ. 12.  2012. Plant virus metagenomics: biodiversity and ecology. Annu. Rev. Genet. 46:357–67 [Google Scholar]
  13. Suttle CA. 13.  2005. Viruses in the sea. Nature 437:356–61 [Google Scholar]
  14. Roossinck MJ. 14.  2014. Metagenomics of plant and fungal viruses reveals an abundance of persistent lifestyles. Front. Microbiol. 5:767 [Google Scholar]
  15. Wren JD, Roossinck MJ, Nelson RS, Sheets K, Palmer MW, Melcher U. 15.  2006. Plant virus biodiversity and ecology. PLOS Biol 4:e80 [Google Scholar]
  16. Beijerinck MW. 16.  1942 (1898). Concerning a contagium vivum fluidum as cause of the spot disease of tobacco leaves. Phytopathol. Class. 7:33–52 [Google Scholar]
  17. Roossinck MJ. 17.  2015. Move over, bacteria! Viruses make their mark as mutualistic microbial symbionts. J. Virol. 89:1–3 [Google Scholar]
  18. Cavalier-Smith T. 18.  2013. Symbiogenesis: mechanisms, evolutionary consequences, and systemic implications. Annu. Rev. Ecol. Evol. Syst. 44:145–72 [Google Scholar]
  19. Roossinck MJ. 19.  2005. Symbiosis versus competition in the evolution of plant RNA viruses. Nat. Rev. Microbiol. 3:917–24 [Google Scholar]
  20. Aiewsakun P, Katzourakis A. 20.  2015. Endogenous viruses: connecting recent and ancient viral evolution. Virology 479–80:26–37 [Google Scholar]
  21. Feschotte C, Gilbert C. 21.  2012. Endogenous viruses: insights into viral evolution and impact on host biology. Nat. Rev. Genet. 13:283–96 [Google Scholar]
  22. Koonin EV. 22.  2006. On the origin of cells and viruses: a comparative-genomic perspective. Isr. J. Ecol. Evol. 52:299–318 [Google Scholar]
  23. Guerrero R, Margulis L, Berlanga M. 23.  2013. Symbiogenesis: the holobiont as a unit of evolution. Int. Microbiol. 16:133–43 [Google Scholar]
  24. Meyerson NR, Sawyer SL. 24.  2011. Two-stepping through time: mammals and viruses. Trends Microbiol 19:286–94 [Google Scholar]
  25. Chen X. 25.  2012. Small RNAs in development—insights from plants. Curr. Opin. Genet. Dev. 22:361–67 [Google Scholar]
  26. Castel SE, Martienssen RA. 26.  2013. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 14:100–12 [Google Scholar]
  27. Dunoyer P, Melnyk C, Molnar A, Slotkin RK. 27.  2013. Plant mobile small RNAs. Cold Spring Harb. Perspect. Biol. 5:a017897 [Google Scholar]
  28. Hoffmann HH, Schneider WM, Rice CM. 28.  2015. Interferons and viruses: an evolutionary arms race of molecular interactions. Trends Immunol 36:124–38 [Google Scholar]
  29. Fritsch SD, Weichhart T. 29.  2016. Effects of interferons and viruses on metabolism. Front. Immunol. 7:630 [Google Scholar]
  30. Hembry DH, Yoder JB, Goodman KR. 30.  2014. Coevolution and the diversification of life. Am. Nat. 184:425–38 [Google Scholar]
  31. Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR. 31.  2002. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat. Genet. 32:569–77 [Google Scholar]
  32. Martiny JBH, Riemann L, Marston MF, Middelboe M. 32.  2014. Antagonistic coevolution of marine planktonic viruses and their hosts. Annu. Rev. Mar. Sci. 6:391–414 [Google Scholar]
  33. Avrani S, Schwartz DA, Lindell D. 33.  2012. Virus-host swinging party in the oceans. Mob. Genet. Elem. 2:88–95 [Google Scholar]
  34. Dennehy JJ. 34.  2012. What can phages tell us about host-pathogen coevolution?. Int. J. Evol. Biol. 2012:396165 [Google Scholar]
  35. Gustavsen JA, Winget DM, Tian X, Suttle CA. 35.  2014. High temporal and spatial diversity in marine RNA viruses implies that they have an important role in mortality and structuring plankton communities. Front. Microbiol. 5:703 [Google Scholar]
  36. Lehnherr H, Maguin E, Jafri S, Yarmolinsky MB. 36.  1993. Plasmid addition genes of bacteriophage P1: doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J. Mol. Biol. 233:414–28 [Google Scholar]
  37. Engelberg-Kulka H, Glaser G. 37.  1999. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu. Rev. Microbiol. 53:43–70 [Google Scholar]
  38. Schmitt MJ, Breinig F. 38.  2006. Yeast viral killer toxins: lethality and self-protection. Nat. Rev. Microbiol. 4:212–21 [Google Scholar]
  39. Villarreal LP. 39.  2016. Persistent virus and addition modules: an engine of symbiosis. Curr. Opin. Microbiol. 31:70–79 [Google Scholar]
  40. Koonin EV, Dolja VV. 40.  2013. A virocentric perspective on the evolution of life. Curr. Opin. Virol. 3:546–57 [Google Scholar]
  41. Reyes A, Blanton LV, Cao S, Zhao G, Manary M. 41.  et al. 2015. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. PNAS 112:11941–46 [Google Scholar]
  42. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC. 42.  et al. 2010. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466:334–38 [Google Scholar]
  43. Holtz LR, Cao S, Zhao G, Bauer IK, Denno DM. 43.  et al. 2014. Geographic variation in the eukaryotic virome of human diarrhea. Virology 468–70:556–64 [Google Scholar]
  44. Roossinck MJ, Martin DP, Roumagnac P. 44.  2015. Plant virus metagenomics: advances in virus discovery. Phytopathology 105:716–27 [Google Scholar]
  45. Simmonds P, Adams MJ, Benkő M, Breitbart M, Briste JR. 45.  et al. 2017. Consensus statement: virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15:161–68 [Google Scholar]
  46. Li C, Shi M, Tian J, Lin X, Kang Y. 46.  et al. 2015. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestor of negative sense RNA viruses. eLife 4:e05378 [Google Scholar]
  47. Suttle CA. 47.  2013. Viruses: unlocking the greatest biodiversity on Earth. Genome 56:542–44 [Google Scholar]
  48. Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M. 48.  et al. 2016. Uncovering Earth's virome. Nature 536:425–30 [Google Scholar]
  49. Wommack KE, Nasko DJ, Chopyk J, Sakowski EG. 49.  2015. Counts and sequences, observations that continue to change our understanding of viruses in nature. J. Microbiol. 53:181–92 [Google Scholar]
  50. Lecuit M, Eloit M. 50.  2013. The human virome: new tools and concepts. Trends Microbiol 21:510–15 [Google Scholar]
  51. Lim ES, Zhou Y, Zhao G, Bauer IK, Droit L. 51.  et al. 2015. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21:1228–34 [Google Scholar]
  52. Roossinck MJ. 52.  2011. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9:99–108 [Google Scholar]
  53. Virgin HW. 53.  2014. The virome in mammalian physiology and disease. Cell 157:142–50 [Google Scholar]
  54. Donnenberg MS. 54.  2000. Pathogenic strategies of enteric bacteria. Nature 406:768–74 [Google Scholar]
  55. Boyd EF. 55.  2012. Bacteriphage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv. Virus Res. 82:91–118 [Google Scholar]
  56. Keen EC, Bliskovsky VV, Malagon F, Baker JD, Prince JS. 56.  et al. 2017. Novel “superspreader” bacteriophages promote horizontal gene transfer by transformation. mBio 8:e02115–16 [Google Scholar]
  57. Gilbert C, Peccoud J, Chateigner A, Moumen B, Cordauz R, Herniou EA. 57.  2016. Continuous influx of genetic material from host to virus populations. PLOS Genet 12:e1005838 [Google Scholar]
  58. Lynch KH, Stothard P, Dennis JJ. 58.  2010. Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex. BMC Genom 11:599 [Google Scholar]
  59. Matos RC, Lapaque M, Rigottier-Gois L, Debarbieux L, Meylheuc T. 59.  et al. 2013. Enterococcus faecalis prophage dynamics and contributions to pathogenic traits. PLOS Genet 9:6 [Google Scholar]
  60. Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. 60.  2005. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438:86–89 [Google Scholar]
  61. Wang X, Kim Y, Ma Q, Hong SH, Polusaeva K. 61.  et al. 2010. Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 1:147 [Google Scholar]
  62. Sekulovic O, Fortier LC. 62.  2015. Global transcriptional response of Clostridium difficile carrying the φCD38-2 prophage. Appl. Environ. Microbiol. 81:1364–74 [Google Scholar]
  63. Brum JR, Hurwitz BL, Schofield O, Ducklow HW, Sullivan MB. 63.  2016. Seasonal time bombs: Dominant temperate viruses affect Sourthern Ocean microbial dynamics. ISME J 10:437–49 [Google Scholar]
  64. Secor PR, Sweere JM, Michaels LA, Malkovskiy AV, Lazzareschi D. 64.  et al. 2015. Filamentous bacteriophage promote biofilm assembly and function. Cell Host Microbe 18:549–59 [Google Scholar]
  65. Mai-Prochnow A, Hui JGK, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 65.  2015. Big things in small packages: the genetics of filamentous phage and effects on fitness of their host. FEMS Microbiol. Rev. 39:465–87 [Google Scholar]
  66. Hadas E, Marie D. 66.  2006. Virus predation by sponges is a new nutrient-flow pathway in coral reef food webs. Limnol. Oceangr. 51:1458–550 [Google Scholar]
  67. Brown SP, LeChat L, DePaepe M, Taddei F. 67.  2006. Ecology of microbial invasions: Amplification allows virus carriers to invade more rapidly when rare. Curr. Biol. 16:2048–52 [Google Scholar]
  68. Obeng N, Pratama AA, van Elsas JD. 68.  2016. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol 24:440–49 [Google Scholar]
  69. Nedialkova LP, Sidstedt M, Koeppel MB, Spriewald S, Ring D. 69.  et al. 2016. Temperate phages promote colicin-dependent fitness of Salmonella enterica serovar Typhimurium. Environ. Microbiol. 18:1591–603 [Google Scholar]
  70. Márquez LM, Roossinck MJ. 70.  2012. Do persistent RNA viruses fit the trade-off hypothesis of virulence evolution?. Curr. Opin. Virol. 2:556–60 [Google Scholar]
  71. Hartley MA, Bourreau E, Rossi M, Castiglioni P, Eren RO. 71.  et al. 2016. Leishmaniavirus-dependent metastatic leishmaniasis is prevented by blocking IL-17A. PLOS Pathog 12:e1005852 [Google Scholar]
  72. Goodman RP, Freret TS, Kula T, Geller AM, Talkington MWT. 72.  et al. 2011. Clinical isolates of Trichomonas vaginalis concurrently infected by strains of up to four trichomonasvirus species (family Totiviridae). J. Virol. 85:4258–70 [Google Scholar]
  73. Goodman RP, Ghabrial SA, Fichorova RN, Nibert ML. 73.  2011. Trichomonasvirus: a new genus of protozoan viruses in the family Totiviridae. Arch. Virol. 156:171–79 [Google Scholar]
  74. van Molken T, de Caluwe H, Hordijk CA, Leon-Reyes A, Snoeren TAL. 74.  et al. 2012. Virus infection decreases the attractiveness of white clover plants for a non-vectoring herbivore. Oecologia 170:433–44 [Google Scholar]
  75. Shapiro LR, Salvaudon L, Mauck KE, Pulido H, De Moraes CM. 75.  et al. 2013. Disease interactions in a shared host plant: effects of pre-existing viral infection on cucurbit plant defense responses and resistance to bacterial wilt disease. PLOS ONE 8:e77393 [Google Scholar]
  76. Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ. 76.  2008. Virus infection improves drought tolerance. New Phytol 180:911–21 [Google Scholar]
  77. Davis TS, Pérez NAB, Foote NE, Magney T, Eigenbrode SD. 77.  2015. Environmentally dependent host-pathogen and vector-pathogen interactions in the Barley yellow dwarf virus pathosystem. J. Appl. Ecol. 52:1392–401 [Google Scholar]
  78. Westwood JH, McCann L, Naish M, Dixon H, Murphy AM. 78.  et al. 2013. A viral RNA silencing suppressor interferes with abscisic acid-mediated signalling and induces drought tolerance in Arabidopsis thaliana. Mol. Plant Pathol. 14:158–70 [Google Scholar]
  79. Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ. 79.  2007. A virus in a fungus in a plant—three-way symbiosis required for thermal tolerance. Science 315:513–15 [Google Scholar]
  80. Nakatsukasa-Akune M, Yamashita K, Shimoda Y, Uchiumi T, Abe M. 80.  et al. 2005. Suppression of root nodule formation by artificial expression of the TrEnodDR1 (coat protein of White clover cryptic virus 1) gene in Lotus japonicus. Mol. Plant-Microbe Interact. 181069–80
  81. Xu P, Liu Y, Graham RI, Wilson K, Wu K. 81.  2014. Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a baculovirus and Bt biopesticide. PLOS Pathog 10:e1004490 [Google Scholar]
  82. Ryabov EV, Keane G, Naish N, Evered C, Winstanley D. 82.  2009. Densovirus induces winged morphs in asexual clones of the rosy apple aphid. Dysaphis plantaginea. PNAS 106:8465–70 [Google Scholar]
  83. Abe H, Tomitaka Y, Shimoda T, Seo S, Sakurai T. 83.  et al. 2012. Anatagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus. Plant Cell Physiol 53:204–12 [Google Scholar]
  84. Belliure B, Sabelis MW, Janssen A. 84.  2010. Vector and virus induce plant responses that benefit a non-vector herbivore. Basic Appl. Ecol. 11:162–69 [Google Scholar]
  85. Bhattarai N, Stapleton JT. 85.  2012. GB virus C: the good boy virus?. Trends Microbiol 20:124–30 [Google Scholar]
  86. Kernbauer E, Ding Y, Cadwell K. 86.  2014. An enteric virus can replace the beneficial function of commensal bacteria. Nature 516:94–98 [Google Scholar]
  87. Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M. 87.  et al. 2007. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447:326–30 [Google Scholar]
  88. White DW, Keppel CR, Schnieder SE, Reese TA, Coler J. 88.  et al. 2010. Latent herpesvirus infection arms NK cells. Blood 115:4377–83 [Google Scholar]
  89. Furman D, Jojic V, Sharma S, Shen-Orr SS, Angel CJ. 89.  et al. 2015. Cytomegalovirus infection improves the immune responses to influenza. Sci. Transl. Med. 7:281ra43 [Google Scholar]
  90. Sandalova E, Laccabue D, Boni C, Tan AT, Fink K. 90.  et al. 2010. Contribution of herpesvirus specific CD8 T cells to antiviral T cell response in humans. PLOS Pathog 6:e1001051 [Google Scholar]
  91. Patel MR, Emerman M, Malik HS. 91.  2011. Paleovirology—ghosts and gifts of viruses past. Curr. Opin. Virol. 1:304–9 [Google Scholar]
  92. Katzourakis A. 92.  2013. Paleovirology: inferring viral evolution from host genome sequence data. Philos. Trans. R. Soc. B 369:20120493 [Google Scholar]
  93. Strand MR, Burke GR. 93.  2015. Polydnaviruses: from discovery to current insights. Virology 479–80:393–402 [Google Scholar]
  94. Whitfield JB. 94.  2002. Estimating the age of the polydnavirus/braconid wasp symbiosis. PNAS 99:7508–13 [Google Scholar]
  95. Burke GR, Strand MR. 95.  2012. Polydnaviruses of parasitic wasps: domestication of viruses to act as gene delivery vectors. Insects 3:91–119 [Google Scholar]
  96. Bézier A, Annaheim M, Herbinière J, Wetterwald C, Gyapay G. 96.  et al. 2009. Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323:926–30 [Google Scholar]
  97. Volkoff AN, Jouan V, Urbach S, Samain S, Bergoin M. 97.  et al. 2010. Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. PLOS Pathog 6:e1000923 [Google Scholar]
  98. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC. 98.  et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921 [Google Scholar]
  99. Stoye JP. 99.  2012. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nat. Rev. Microbiol. 10:395 [Google Scholar]
  100. Johnson WE. 100.  2015. Endogenous retroviruses in the genomics era. Annu. Rev. Virol. 2:135–59 [Google Scholar]
  101. Chuong EB, Elde NC, Feschotte C. 101.  2016. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351:1083–87 [Google Scholar]
  102. Esnault C, Cornelis G, Heidmann O, Heidmann T. 102.  2013. Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV syncytin, captured for a function in placentation. PLOS Genet 9:e1003400 [Google Scholar]
  103. Lavialle C, Cornelis G, Dupressoir A, Esnault C, Heidmann O. 103.  et al. 2013. Paleovirology of ‘syncitins’, retroviral env genes exapted for a role in placentation. Philos. Trans. R. Soc. B 368:20120507 [Google Scholar]
  104. Roberts RM, Green JA, Schulz LC. 104.  2016. The evolution of the placenta. Reproduction 152:R179–89 [Google Scholar]
  105. Aswad A, Katzourakis A. 105.  2012. Paleovirology and virally derived immunity. Trends Ecol. Evol. 27:627–36 [Google Scholar]
  106. Malfavon-Borja R, Feschotte C. 106.  2015. Fighting fire with fire: endogenous retrovirus envelopes as restriction factors. J. Virol. 89:4047–50 [Google Scholar]
  107. Ryan F. 107.  2009. Virolution London: HarperCollins
  108. Xu W, Eiden MV. 108.  2015. Koala retroviruses: evolution and disease dynamics. Annu. Rev. Virol. 2:119–34 [Google Scholar]
  109. Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C. 109.  et al. 2009. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 41:562–71 [Google Scholar]
  110. Maksakova IA, Mager DL, Reiss D. 110.  2008. Keeping active endogenous retroviral-like elements in check: the epigenetic perspective. Cell. Mol. Life Sci. 65:3329–47 [Google Scholar]
  111. Meisler MH, Ting C. 111.  1993. The remarkable evolutionary history of the human amylase genes. Crit. Rev. Oral Biol. Med. 4:503–9 [Google Scholar]
  112. Johnson R, Guigó R. 112.  2014. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 20:959–76 [Google Scholar]
  113. Fatico A, Bozzoni I. 113.  2014. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15:7–21 [Google Scholar]
  114. Kassiotis G. 114.  2014. Endogenous retroviruses and the development of cancer. J. Immunol. 192:1343–49 [Google Scholar]
  115. Gibb EA, Warren RL, Wilson GW, Brown SD, Robertson GA. 115.  et al. 2015. Activation of an endogenous retrovirus-associated long non-coding RNA in human adenocarcinoma. Genome Med 7:22 [Google Scholar]
  116. Lamprecht B, Walter K, Kreher S, Kumar R, Hummel M. 116.  et al. 2010. Depression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat. Med. 16:571–79 [Google Scholar]
  117. Trela M, Nelson PN, Rylance PB. 117.  2016. The role of molecular mimicry and other factors in the association of human endogenous retroviruses and autoimmunity. APMIS 124:88–104 [Google Scholar]
  118. Chabannes M, Iskra-Caruana ML. 118.  2013. Endogenous pararetroviruses—a reservoir of virus infection in plants. Curr. Opin. Virol. 3:615–20 [Google Scholar]
  119. Geering ADW, Maumus F, Copetti D, Choisne N, Zwicki DJ. 119.  et al. 2014. Endogenous florendoviruses are major components of plant genomes and hallmarks of virus evolution. Nat. Commun. 5:5269 [Google Scholar]
  120. Chen S, Kishima Y. 120.  2016. Endogenous pararetroviruses in rice genomes as a fossil record useful for the emerging field of palaeovirology. Mol. Plant Pathol. 17:1317–20 [Google Scholar]
  121. Staginnus C, Gregor W, Mette MF, Teo CH, Borroto-Fernández EG. 121.  et al. 2007. Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species. BMC Plant Biol 7:24 [Google Scholar]
  122. Noreen F, Akbergenov R, Hohn T, Richert-Pöggeler KR. 122.  2007. Distinct expression of endogenous Petunia vein clearing virus and the DNA transposon dTph1 in two Petunia hybrida lines is correlated with differences in histone modification and siRNA production. Plant J. 50:219–29 [Google Scholar]
  123. Kazazian HH Jr. 123.  2004. Mobile elements: drivers of genome evolution. Science 303:1626–32 [Google Scholar]
  124. Kim A, Terzian C, Santamaria P, Pélisson A, Prud'homme N, Bucheton A. 124.  1994. Retroviruses in invertebrates: The gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. PNAS 91:1285–89 [Google Scholar]
  125. Touret F, Guiguen F, Terzian C. 125.  2014. Wolbachia influences the maternal transmission of the gypsy endogenous retrovirus in Drosophila melanogaster. mBio 5:e01529–14 [Google Scholar]
  126. Malik HS, Henikoff S. 126.  2005. Positive selection of Iris, a retroviral envelope-derived host gene in Drosophila melanogaster. PLOS Genet. 1:e44 [Google Scholar]
  127. Nefedova LN, Kuzmin IV, Makhnovskii PA, Kim AI. 127.  2014. Domesticated retroviral GAG gene in Drosophila: new functions for an old gene. Virology 450–51:196–204 [Google Scholar]
  128. Touret F, Guiguen F, Greenland T, Terzian C. 128.  2014. In between: gypsy in Drosophila melanogaster reveals new insights into endogenous retrovirus evolution. Viruses 6:4914–26 [Google Scholar]
  129. Frank AC, Wolfe KH. 129.  2009. Evolutionary capture of viral and plasmid DNA by yeast nuclear chromosomes. Eukaryot. Cell 8:1521–31 [Google Scholar]
  130. Aurélio Soares M, Amália de Carvalho Araújo R, Mendes Marini M, Márcia de Oliveira L, Gomes de Lima L. 130.  et al. 2015. Identification and characterization of expressed retrotransposons in the genome of the Paracoccidioides species complex. BMC Genom 16:376 [Google Scholar]
  131. Esnault C, Levin HL. 131.  2015. The long terminal repeat retrotransposons Tf1 and Tf2 of Schizosaccharomyces pombe. Microbiol. Spectr. 3: https://doi.org/10.1128/microbiolspec.MDNA3-0040-2014 [Crossref] [Google Scholar]
  132. Ashby MK, Warry A, Bejarano ER, Khashoggi A, Burrell M, Lichtenstein CP. 132.  1997. Analysis of multiple copies of geminiviral DNA in the genome of four closely related Nicotiana species suggest a unique integration event. Plant Mol. Biol. 35:313–21 [Google Scholar]
  133. Crochu S, Cook S, Attoui H, Charrel RN, De Chesse R. 133.  et al. 2004. Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J. Gen. Virol. 85:1971–80 [Google Scholar]
  134. Katzourakis A, Gifford RJ. 134.  2010. Endogenous viral elements in animal genomes. PLOS Genet 6:e1001191 [Google Scholar]
  135. Liu H, Fu Y, Jiang D, Li G, Xie J. 135.  et al. 2010. Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes. J. Virol. 84:11879–87 [Google Scholar]
  136. Chiba S, Kondo H, Tani A, Saisho D, Sakamoto W. 136.  et al. 2011. Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes. PLOS Pathog 7:e1002146 [Google Scholar]
  137. Belyi VA, Levine AJ, Skalka AM. 137.  2010. Sequences from ancestral single-stranded DNA viruses in vertebrate genomes: The Parvoviridae and Circoviridae are more than 40 to 50 million years old. J. Virol. 84:12458–62 [Google Scholar]
  138. Belyi VA, Levine AJ, Skalka AM. 138.  2010. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLOS Pathog 6:e1001030 [Google Scholar]
  139. Horie M, Kobayashi Y, Suzuki Y, Tomonaga K. 139.  2013. Comprehensive analysis of endogenous bornavirus-like elements in eukaryote genomes. Philos. Trans. R. Soc. B 368:20120499 [Google Scholar]
  140. Fujino K, Horie M, Honda T, Merriman DK, Tomonaga K. 140.  2014. Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome. PNAS 111:13175–80 [Google Scholar]
  141. Chu H, Jo Y, Cho WK. 141.  2014. Evolution of endogenous non-retroviral genes integrated into plant genomes. Curr. Plant Biol. 1:55–59 [Google Scholar]
  142. Roossinck MJ. 142.  2012. Persistent plant viruses: molecular hitchhikers or epigenetic elements?. Viruses: Essential Agents of Life G Witzany 177–86 Dordrecht, Neth.: Springer [Google Scholar]
  143. Thézé J, Leclercq S, Moumen B, Cordaux R, Gilbert C. 143.  2014. Remarkable diversity of endogenous viruses in a crustacean genome. Genome Biol. Evol. 6:2129–40 [Google Scholar]
  144. Taylor DJ, Bruenn J. 144.  2009. The evolution of novel fungus genes from non-retroviral RNA viruses. BMC Biol 7:88 [Google Scholar]
  145. Bell-Sakyi L, Attoui H. 145.  2013. Endogenous tick viruses and modulation of tick-borne pathogen growth. Front. Cell. Infect. Microbiol. 3:25 [Google Scholar]
  146. Feng G, Leem YE, Levin HL. 146.  2012. Transposon integration enhances expression of stress response genes. Nucleic Acids Res 41:775–89 [Google Scholar]
/content/journals/10.1146/annurev-virology-110615-042323
Loading
/content/journals/10.1146/annurev-virology-110615-042323
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error