1932

Abstract

Intraocular pressure (IOP) is the cardinal and only modifiable risk factor for glaucoma, the leading cause of irreparable blindness worldwide. Twin and family studies estimate the heritability of IOP to be 40–70%, and linkage studies for IOP have identified numerous loci. Mutations in can cause markedly elevated IOP and aggressive glaucoma often requiring surgical intervention. However, the majority of the genetic basis for raised IOP and glaucoma in populations is complex, and recent large genome-wide association studies (GWASs) have identified over 100 common variants that contribute to IOP variation. In combination, these loci are predictive for primary open-angle glaucoma in independent populations, achieving an area under the receiver operating characteristic curve of 76% for high-pressure primary open-angle glaucoma; this suggests the possibility of targeted screening in the future. Additionally, GWAS findings have identified important biological pathways underlying IOP regulation, including lymphangiogenesis and lipid metabolism, providing novel targets for new therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-031021-095225
2021-09-15
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-031021-095225.html?itemId=/content/journals/10.1146/annurev-vision-031021-095225&mimeType=html&fmt=ahah

Literature Cited

  1. Acott TS, Kelley MJ, Keller KE, Vranka JA, Abu-Hassan DW et al. 2014. Intraocular pressure homeostasis: maintaining balance in a high-pressure environment. J. Ocul. Pharmacol. Ther. 30:94–101
    [Google Scholar]
  2. Alavi MV, Mao M, Pawlikowski BT, Kvezereli M, Duncan JL et al. 2016. Col4a1 mutations cause progressive retinal neovascular defects and retinopathy. Sci. Rep. 6:18602
    [Google Scholar]
  3. Ali M, McKibbin M, Booth A, Parry DA, Jain P et al. 2009. Null mutations in LTBP2 cause primary congenital glaucoma. Am. J. Hum. Genet. 84:664–71
    [Google Scholar]
  4. Allingham RR, Wiggs JL, Hauser ER, Larocque-Abramson KR, Santiago-Turla C et al. 2005. Early adult-onset POAG linked to 15q11–13 using ordered subset analysis. Investig. Ophthalmol. Vis. Sci. 46:2002–5
    [Google Scholar]
  5. Alm A, Nilsson SF. 2009. Uveoscleral outflow—a review. Exp. Eye Res. 88:760–68
    [Google Scholar]
  6. Andersen JS, Pralea AM, DelBono EA, Haines JL, Gorin MB et al. 1997. A gene responsible for the pigment dispersion syndrome maps to chromosome 7q35-q36. Arch. Ophthalmol. 115:384–88
    [Google Scholar]
  7. Anderson DR, Hendrickson A. 1974. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Investig. Ophthalmol. 13:771–83
    [Google Scholar]
  8. Asefa NG, Neustaeter A, Jansonius NM, Snieder H. 2019. Heritability of glaucoma and glaucoma-related endophenotypes: systematic review and meta-analysis. Surv. Ophthalmol. 64:835–51
    [Google Scholar]
  9. Aspelund A, Tammela T, Antila S, Nurmi H, Leppänen VM et al. 2014. The Schlemm's canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel. J. Clin. Investig. 124:3975–86
    [Google Scholar]
  10. Bailey JN, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P et al. 2016. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat. Genet. 48:189–94
    [Google Scholar]
  11. Banister R. 1622. Breviary of the Eyes: A Treatise of One Hundred and Thirteene Diseases of the Eye and the Eye-Lids London: Thomas Man:
  12. Bejjani BA, Lewis RA, Tomey KF, Anderson KL, Dueker DK et al. 1998. Mutations in CYP1B1, the gene for cytochrome P4501B1, are the predominant cause of primary congenital glaucoma in Saudi Arabia. Am. J. Hum. Genet. 62:325–33
    [Google Scholar]
  13. Burdon KP, Macgregor S, Hewitt AW, Sharma S, Chidlow G et al. 2011. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat. Genet. 43:574–78
    [Google Scholar]
  14. Burgoyne CF. 2011. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp. Eye Res. 93:120–32
    [Google Scholar]
  15. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT et al. 2018. The UK Biobank resource with deep phenotyping and genomic data. Nature 562:203–9
    [Google Scholar]
  16. Campeau E, Watkins D, Rouleau GA, Babul R, Buchanan JA et al. 1995. Linkage analysis of the nail-patella syndrome. Am. J. Hum. Genet. 56:243–47
    [Google Scholar]
  17. Carbonaro F, Andrew T, Mackey DA, Spector TD, Hammond CJ. 2008. Heritability of intraocular pressure: a classical twin study. Br. J. Ophthalmol. 92:1125–28
    [Google Scholar]
  18. Carbonaro F, Andrew T, Mackey DA, Young TL, Spector TD, Hammond CJ. 2009. Repeated measures of intraocular pressure result in higher heritability and greater power in genetic linkage studies. Investig. Ophthalmol. Vis. Sci. 50:5115–19
    [Google Scholar]
  19. Carreon TA, Edwards G, Wang H, Bhattacharya SK. 2017. Segmental outflow of aqueous humor in mouse and human. Exp. Eye Res. 158:59–66
    [Google Scholar]
  20. Chan MPY, Broadway DC, Khawaja AP, Yip JLY, Garway-Heath DF et al. 2017. Glaucoma and intraocular pressure in EPIC-Norfolk Eye Study: cross sectional study. BMJ 358:j3889
    [Google Scholar]
  21. Chan MPY, Grossi CM, Khawaja AP, Yip JL, Khaw KT et al. 2016. Associations with intraocular pressure in a large cohort: results from the UK Biobank. Ophthalmology 123:771–82
    [Google Scholar]
  22. Chang TC, Congdon NG, Wojciechowski R, Munoz B, Gilbert D et al. 2005. Determinants and heritability of intraocular pressure and cup-to-disc ratio in a defined older population. Ophthalmology 112:1186–91
    [Google Scholar]
  23. Charlesworth J, Kramer PL, Dyer T, Diego V, Samples JR et al. 2010. The path to open-angle glaucoma gene discovery: endophenotypic status of intraocular pressure, cup-to-disc ratio, and central corneal thickness. Investig. Ophthalmol. Vis. Sci. 51:3509–14
    [Google Scholar]
  24. Charlesworth JC, Dyer TD, Stankovich JM, Blangero J, Mackey DA et al. 2005. Linkage to 10q22 for maximum intraocular pressure and 1p32 for maximum cup-to-disc ratio in an extended primary open-angle glaucoma pedigree. Investig. Ophthalmol. Vis. Sci. 46:3723–29
    [Google Scholar]
  25. Chen H, Lun Y, Ovchinnikov D, Kokubo H, Oberg KC et al. 1998. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat. Genet. 19:51–55
    [Google Scholar]
  26. Chen X, Chen Y, Wang L, Jiang D, Wang W et al. 2011. Confirmation and further mapping of the GLC3C locus in primary congenital glaucoma. Front. Biosci. 16:2052–59
    [Google Scholar]
  27. Choquet H, Paylakhi S, Kneeland SC, Thai KK, Hoffmann TJ et al. 2018. A multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci. Nat. Commun. 9:2278
    [Google Scholar]
  28. Choquet H, Thai KK, Yin J, Hoffmann TJ, Kvale MN et al. 2017. A large multi-ethnic genome-wide association study identifies novel genetic loci for intraocular pressure. Nat. Commun. 8:2108
    [Google Scholar]
  29. Choquet H, Wiggs JL, Khawaja AP. 2020. Clinical implications of recent advances in primary open-angle glaucoma genetics. Eye 34:29–39
    [Google Scholar]
  30. Clee SM, Zwinderman AH, Engert JC, Zwarts KY, Molhuizen HO et al. 2001. Common genetic variation in ABCA1 is associated with altered lipoprotein levels and a modified risk for coronary artery disease. Circulation 103:1198–205
    [Google Scholar]
  31. Craig JE, Han X, Qassim A, Hassall M, Cooke Bailey JN et al. 2020. Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression. Nat. Genet. 52:160–66
    [Google Scholar]
  32. De Groef L, Andries L, Siwakoti A, Geeraerts E, Bollaerts I et al. 2016. Aberrant collagen composition of the trabecular meshwork results in reduced aqueous humor drainage and elevated IOP in MMP-9 null mice. Investig. Ophthalmol. Vis. Sci. 57:5984–95
    [Google Scholar]
  33. Duggal P, Klein AP, Lee KE, Iyengar SK, Klein R et al. 2005. A genetic contribution to intraocular pressure: the Beaver Dam Eye Study. Investig. Ophthalmol. Vis. Sci. 46:555–60
    [Google Scholar]
  34. Duggal P, Klein AP, Lee KE, Klein R, Klein BE, Bailey-Wilson JE. 2007. Identification of novel genetic loci for intraocular pressure: a genomewide scan of the Beaver Dam Eye Study. Arch. Ophthalmol. 125:74–79
    [Google Scholar]
  35. Eklund L, Kangas J, Saharinen P. 2017. Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems. Clin. Sci. 131:87–103
    [Google Scholar]
  36. Falconer D. 1981. Introduction to Quantitative Genetics London: Longman Group, 2nd ed..
  37. Fick A. 1888. Über messung des druckes im auge. Arch. Gesamte Physiol. Menschen Tiere 42:86–90
    [Google Scholar]
  38. Fingert JH, Heon E, Liebmann JM, Yamamoto T, Craig JE et al. 1999. Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum. Mol. Genet. 8:899–905
    [Google Scholar]
  39. Firasat S, Riazuddin SA, Hejtmancik JF, Riazuddin S. 2008. Primary congenital glaucoma localizes to chromosome 14q24.2–24.3 in two consanguineous Pakistani families. Mol. Vis. 14:1659–65
    [Google Scholar]
  40. Foster PJ, Broadway DC, Garway-Heath DF, Yip JL, Luben R et al. 2011. Intraocular pressure and corneal biomechanics in an adult British population: the EPIC-Norfolk eye study. Investig. Ophthalmol. Vis. Sci. 52:8179–85
    [Google Scholar]
  41. Freeman EE, Roy-Gagnon MH, Descovich D, Masse H, Lesk MR. 2013. The heritability of glaucoma-related traits corneal hysteresis, central corneal thickness, intraocular pressure, and choroidal blood flow pulsatility. PLOS ONE 8:e55573
    [Google Scholar]
  42. Gao XR, Huang H, Nannini DR, Fan F, Kim H 2018. Genome-wide association analyses identify new loci influencing intraocular pressure. Hum. Mol. Genet. 27:2205–13
    [Google Scholar]
  43. Garway-Heath DF, Crabb DP, Bunce C, Lascaratos G, Amalfitano F et al. 2015. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet 385:1295–304
    [Google Scholar]
  44. Ge T, Chen CY, Neale BM, Sabuncu MR, Smoller JW. 2017. Phenome-wide heritability analysis of the UK Biobank. PLOS Genet 13:e1006711
    [Google Scholar]
  45. Goel M, Picciani RG, RK Lee, Bhattacharya SK. 2010. Aqueous humor dynamics: a review. Open Ophthalmol. J. 4:52–59
    [Google Scholar]
  46. Goldmann H. 1955. Un nouveau tonometre d'applanation. Bull. Mem. Soc. Fr. Ophtalmol 67:474–77
    [Google Scholar]
  47. Gould DB, Mears AJ, Pearce WG, Walter MA. 1997. Autosomal dominant Axenfeld-Rieger anomaly maps to 6p25. Am. J. Hum. Genet. 61:765–68
    [Google Scholar]
  48. Gould DB, Miceli-Libby L, Savinova OV, Torrado M, Tomarev SI et al. 2004. Genetically increasing Myoc expression supports a necessary pathologic role of abnormal proteins in glaucoma. Mol. Cell. Biol. 24:9019–25
    [Google Scholar]
  49. Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K et al. 2006. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N. Engl. J. Med. 354:1489–96
    [Google Scholar]
  50. Hauser ER, Crossman DC, Granger CB, Haines JL, Jones CJ et al. 2004. A genomewide scan for early-onset coronary artery disease in 438 families: the GENECARD Study. Am. J. Hum. Genet. 75:436–47
    [Google Scholar]
  51. Hewitt AW, Bennett SL, Fingert JH, Cooper RL, Stone EM et al. 2007. The optic nerve head in myocilin glaucoma. Investig. Ophthalmol. Vis. Sci. 48:238–43
    [Google Scholar]
  52. Ho LTY, Osterwald A, Ruf I, Hunziker D, Mattei P et al. 2019. Role of the autotaxin-lysophosphatidic acid axis in glaucoma, aqueous humor drainage and fibrogenic activity. Biochim. Biophys. Acta Mol. Basis Dis. 1866:165560
    [Google Scholar]
  53. Hollows FC, Graham PA. 1966. Intra-ocular pressure, glaucoma, and glaucoma suspects in a defined population. Br. J. Ophthalmol. 50:570–86
    [Google Scholar]
  54. Hysi PG, Cheng CY, Springelkamp H, Macgregor S, Bailey JNC et al. 2014. Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nat. Genet. 46:1126–30
    [Google Scholar]
  55. Iglesias AI, Mishra A, Vitart V, Bykhovskaya Y, Hohn R et al. 2018. Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases. Nat. Commun. 9:1864
    [Google Scholar]
  56. Imbert DA. 1885. Théorie des ophtalmotonomètres. Arch. Ophthalmol. 5:358–63
    [Google Scholar]
  57. Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H et al. 2004. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology 111:1641–48
    [Google Scholar]
  58. Jiang X, Varma R, Wu S, Torres M, Azen SP et al. 2012. Baseline risk factors that predict the development of open-angle glaucoma in a population: the Los Angeles Latino Eye Study. Ophthalmology 119:2245–53
    [Google Scholar]
  59. Johnson AT, Drack AV, Kwitek AE, Cannon RL, Stone EM, Alward WL. 1993. Clinical features and linkage analysis of a family with autosomal dominant juvenile glaucoma. Ophthalmology 100:524–29
    [Google Scholar]
  60. Josephs EB, Stinchcombe JR, Wright SI. 2017. What can genome-wide association studies tell us about the evolutionary forces maintaining genetic variation for quantitative traits?. New Phytol 214:21–33
    [Google Scholar]
  61. Kalenak JW, Paydar F. 1995. Correlation of intraocular pressures in pairs of monozygotic and dizygotic twins. Ophthalmology 102:1559–64
    [Google Scholar]
  62. Karpinich NO, Caron KM. 2014. Schlemm's canal: more than meets the eye, lymphatics in disguise. J. Clin. Investig. 124:3701–3
    [Google Scholar]
  63. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL et al. 2002. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch. Ophthalmol. 120:701–13; discussion 829–30
    [Google Scholar]
  64. Kaufman PL, Gabelt B, Tian B, Liu X. 1999. Advances in glaucoma diagnosis and therapy for the next millennium: new drugs for trabecular and uveoscleral outflow. Semin. Ophthalmol. 14:130–43
    [Google Scholar]
  65. Keller KE, Acott TS. 2013. The juxtacanalicular region of ocular trabecular meshwork: a tissue with a unique extracellular matrix and specialized function. J. Ocul. Biol. 1:3
    [Google Scholar]
  66. Khawaja AP, Cooke Bailey JN, Wareham NJ, Scott RA, Simcoe M et al. 2018. Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma. Nat. Genet. 50:778–82
    [Google Scholar]
  67. Khawaja AP, Rojas Lopez KE, Hardcastle AJ, Hammond CJ, Liskova P et al. 2019. Genetic variants associated with corneal biomechanical properties and potentially conferring susceptibility to keratoconus in a genome-wide association study. JAMA Ophthalmol 137:1005–12
    [Google Scholar]
  68. Khawaja AP, Springelkamp H, Creuzot-Garcher C, Delcourt C, Hofman A et al. 2016. Associations with intraocular pressure across Europe: the European Eye Epidemiology (E3) Consortium. Eur. J. Epidemiol. 31:1101–11
    [Google Scholar]
  69. Khor CC, Do T, Jia H, Nakano M, George R et al. 2016. Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. Nat. Genet. 48:556–62
    [Google Scholar]
  70. Kim CS, Seong GJ, Lee NH, Song KCNamil Study Group, Korean Glaucoma Soc 2011. Prevalence of primary open-angle glaucoma in central South Korea the Namil study. Ophthalmology 118:1024–30
    [Google Scholar]
  71. Kim NR, Park HJ, Suh YJ, Chin HS, Kim CY. 2014. Heritabilities of intraocular pressure in the population of Korea: the Korean National Health and Nutrition Examination Survey 2008–2009. JAMA Ophthalmol 132:278–85
    [Google Scholar]
  72. Kizhatil K, Ryan M, Marchant JK, Henrich S, John SW. 2014. Schlemm's canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process. PLOS Biol 12:e1001912
    [Google Scholar]
  73. Klein BE, Klein R, Lee KE. 2004. Heritability of risk factors for primary open-angle glaucoma: the Beaver Dam Eye Study. Investig. Ophthalmol. Vis. Sci. 45:59–62
    [Google Scholar]
  74. Krug T, Manso H, Gouveia L, Sobral J, Xavier JM et al. 2010. Kalirin: a novel genetic risk factor for ischemic stroke. Hum. Genet. 127:513–23
    [Google Scholar]
  75. Le A, Mukesh BN, McCarty CA, Taylor HR. 2003. Risk factors associated with the incidence of open-angle glaucoma: the visual impairment project. Investig. Ophthalmol. Vis. Sci. 44:3783–89
    [Google Scholar]
  76. Lee MK, Cho SI, Kim H, Song YM, Lee K et al. 2012. Epidemiologic characteristics of intraocular pressure in the Korean and Mongolian populations: the Healthy Twin and the GENDISCAN study. Ophthalmology 119:450–57
    [Google Scholar]
  77. Lee MK, Woo SJ, Kim JI, Cho SI, Kim H et al. 2010. Replication of a glaucoma candidate gene on 5q22.1 for intraocular pressure in Mongolian populations: the GENDISCAN Project. Investig. Ophthalmol. Vis. Sci. 51:1335–40
    [Google Scholar]
  78. Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L et al. 2003. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch. Ophthalmol. 121:48–56
    [Google Scholar]
  79. Leske MC, Wu SY, Hennis A, Honkanen R, Nemesure BBESs Study Group 2008. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology 115:85–93
    [Google Scholar]
  80. Levene RZ, Workman PL, Broder SW, Hirschhorn K. 1970. Heritability of ocular pressure in normal and suspect ranges. Arch. Ophthalmol. 84:730–34
    [Google Scholar]
  81. Leydhecker W, Akiyama K, Neumann HG. 1958. [Intraocular pressure in normal human eyes]. Klin. Monbl. Augenheilkd. Augenarztl. Fortbild 133:662–70
    [Google Scholar]
  82. Li XA, Everson WV, Smart EJ. 2005. Caveolae, lipid rafts, and vascular disease. Trends Cardiovasc. Med. 15:92–96
    [Google Scholar]
  83. Loughna S, Sato TN. 2001. A combinatorial role of angiopoietin-1 and orphan receptor TIE1 pathways in establishing vascular polarity during angiogenesis. Mol. Cell 7:233–39
    [Google Scholar]
  84. MacGregor S, Ong JS, An J, Han X, Zhou T et al. 2018. Genome-wide association study of intraocular pressure uncovers new pathways to glaucoma. Nat. Genet. 50:1067–71
    [Google Scholar]
  85. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA et al. 2009. Finding the missing heritability of complex diseases. Nature 461:747–53
    [Google Scholar]
  86. Mirzayans F, Gould DB, Heon E, Billingsley GD, Cheung JC et al. 2000. Axenfeld-Rieger syndrome resulting from mutation of the FKHL7 gene on chromosome 6p25. Eur. J. Hum. Genet. 8:71–74
    [Google Scholar]
  87. Morissette J, Cote G, Anctil JL, Plante M, Amyot M et al. 1995. A common gene for juvenile and adult-onset primary open-angle glaucomas confined on chromosome 1q. Am. J. Hum. Genet. 56:1431–42
    [Google Scholar]
  88. Pang CP, Fan BJ, Canlas O, Wang DY, Dubois S et al. 2006. A genome-wide scan maps a novel juvenile-onset primary open angle glaucoma locus to chromosome 5q. Mol. Vis. 12:85–92
    [Google Scholar]
  89. Parssinen O, Era P, Tolvanen A, Kaprio J, Koskenvuo M, Rantanen T. 2007. Heritability of intraocular pressure in older female twins. Ophthalmology 114:2227–31
    [Google Scholar]
  90. Pasutto F, Mauri L, Popp B, Sticht H, Ekici A et al. 2015. Whole exome sequencing reveals a novel de novo FOXC1 mutation in a patient with unrecognized Axenfeld-Rieger syndrome and glaucoma. Gene 568:76–80
    [Google Scholar]
  91. Phillips JC, del Bono EA, Haines JL, Pralea AM, Cohen JS et al. 1996. A second locus for Rieger syndrome maps to chromosome 13q14. Am. J. Hum. Genet. 59:613–19
    [Google Scholar]
  92. Quigley H, Anderson DR. 1976. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Investig. Ophthalmol. 15:606–16
    [Google Scholar]
  93. Quigley HA, Addicks EM, Green WR, Maumenee AE. 1981. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch. Ophthalmol. 99:635–49
    [Google Scholar]
  94. Risch N, Merikangas K. 1996. The future of genetic studies of complex human diseases. Science 273:1516–17
    [Google Scholar]
  95. Rotimi CN, Chen G, Adeyemo AA, Jones LS, Agyenim-Boateng K et al. 2006. Genomewide scan and fine mapping of quantitative trait loci for intraocular pressure on 5q and 14q in West Africans. Investig. Ophthalmol. Vis. Sci. 47:3262–67
    [Google Scholar]
  96. Sanfilippo PG, Hewitt AW, Hammond CJ, Mackey DA. 2010. The heritability of ocular traits. Surv. Ophthalmol. 55:561–83
    [Google Scholar]
  97. Sarfarazi M, Akarsu AN, Hossain A, Turacli ME, Aktan SG et al. 1995. Assignment of a locus (GLC3A) for primary congenital glaucoma (Buphthalmos) to 2p21 and evidence for genetic heterogeneity. Genomics 30:171–77
    [Google Scholar]
  98. Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y et al. 1995. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74
    [Google Scholar]
  99. Sharafieh R, Child AH, Khaw PT, Fleck B, Sarfarazi M. 2013. LTBP2 gene analysis in the GLC3C-linked family and 94 CYP1B1-negative cases with primary congenital glaucoma. Ophthalmic Genet 34:14–20
    [Google Scholar]
  100. Sheffield VC, Stone EM, Alward WL, Drack AV, Johnson AT et al. 1993. Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nat. Genet. 4:47–50
    [Google Scholar]
  101. Simcoe MJ, Khawaja AP, Hysi PG, Hammond CJ, Biobank Eye Vis. Consort UK 2020a. Genome-wide association study of corneal biomechanical properties identifies over 200 loci providing insight into the genetic etiology of ocular diseases. Hum. Mol. Genet. 29:3154–64
    [Google Scholar]
  102. Simcoe MJ, Khawaja AP, Mahroo OA, Hammond CJ, Hysi PG et al. 2020b. The role of chromosome X in intraocular pressure variation and sex-specific effects. Investig. Ophthalmol. Vis. Sci. 61:20
    [Google Scholar]
  103. Simons YB, Bullaughey K, Hudson RR, Sella G 2018. A population genetic interpretation of GWAS findings for human quantitative traits. PLOS Biol 16:e2002985
    [Google Scholar]
  104. Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD et al. 1991. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans: the Baltimore Eye Survey. Arch. Ophthalmol. 109:1090–95
    [Google Scholar]
  105. Souma T, Tompson SW, Thomson BR, Siggs OM, Kizhatil K et al. 2016. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J. Clin. Investig. 126:2575–87
    [Google Scholar]
  106. Springelkamp H, Iglesias AI, Cuellar-Partida G, Amin N, Burdon KP et al. 2015. ARHGEF12 influences the risk of glaucoma by increasing intraocular pressure. Hum. Mol. Genet. 24:2689–99
    [Google Scholar]
  107. Springelkamp H, Iglesias AI, Mishra A, Hohn R, Wojciechowski R et al. 2017. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics. Hum. Mol. Genet. 26:438–53
    [Google Scholar]
  108. Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR et al. 1997. Identification of a gene that causes primary open angle glaucoma. Science 275:668–70
    [Google Scholar]
  109. Strouthidis NG, Girard MJ. 2013. Altering the way the optic nerve head responds to intraocular pressure—a potential approach to glaucoma therapy. Curr. Opin. Pharmacol. 13:83–89
    [Google Scholar]
  110. Suriyapperuma SP, Child A, Desai T, Brice G, Kerr A et al. 2007. A new locus (GLC1H) for adult-onset primary open-angle glaucoma maps to the 2p15-p16 region. Arch. Ophthalmol. 125:86–92
    [Google Scholar]
  111. Tamm ER, Braunger BM, Fuchshofer R. 2015. Intraocular pressure and the mechanisms involved in resistance of the aqueous humor flow in the trabecular meshwork outflow pathways. Prog. Mol. Biol. Transl. Sci. 134:301–14
    [Google Scholar]
  112. Thomson BR, Heinen S, Jeansson M, Ghosh AK, Fatima A et al. 2014. A lymphatic defect causes ocular hypertension and glaucoma in mice. J. Clin. Investig. 124:4320–24
    [Google Scholar]
  113. Thorleifsson G, Walters GB, Hewitt AW, Masson G, Helgason A et al. 2010. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat. Genet. 42:906–9
    [Google Scholar]
  114. van Koolwijk LM, Despriet DD, van Duijn CM, Pardo Cortes LM, Vingerling JR et al. 2007. Genetic contributions to glaucoma: heritability of intraocular pressure, retinal nerve fiber layer thickness, and optic disc morphology. Investig. Ophthalmol. Vis. Sci. 48:3669–76
    [Google Scholar]
  115. van Koolwijk LM, Ramdas WD, Ikram MK, Jansonius NM, Pasutto F et al. 2012. Common genetic determinants of intraocular pressure and primary open-angle glaucoma. PLOS Genet 8:e1002611
    [Google Scholar]
  116. Visscher PM, Hill WG, Wray NR. 2008. Heritability in the genomics era—concepts and misconceptions. Nat. Rev. Genet. 9:255–66
    [Google Scholar]
  117. Wang DY, Fan BJ, Chua JK, Tam PO, Leung CK et al. 2006. A genome-wide scan maps a novel juvenile-onset primary open-angle glaucoma locus to 15q. Investig. Ophthalmol. Vis. Sci. 47:5315–21
    [Google Scholar]
  118. Weber A. 1855. Ein Fall von partieller Hyperämie der Chorioidea bei einem Kaninchen. Arch. Ophthalmol. 2:133–57
    [Google Scholar]
  119. Weinreb RN, Aung T, Medeiros FA. 2014. The pathophysiology and treatment of glaucoma: a review. JAMA 311:1901–11
    [Google Scholar]
  120. Wiggs JL. 2015. Glaucoma genes and mechanisms. Prog. Mol. Biol. Transl. Sci. 134:315–42
    [Google Scholar]
  121. Wiggs JL, Haines JL, Paglinauan C, Fine A, Sporn C, Lou D. 1994. Genetic linkage of autosomal dominant juvenile glaucoma to 1q21-q31 in three affected pedigrees. Genomics 21:299–303
    [Google Scholar]
  122. Wiggs JL, Kang JH, Yaspan BL, Mirel DB, Laurie C et al. 2011. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum. Mol. Genet. 20:4707–13
    [Google Scholar]
  123. Wiggs JL, Lynch S, Ynagi G, Maselli M, Auguste J et al. 2004. A genomewide scan identifies novel early-onset primary open-angle glaucoma loci on 9q22 and 20p12. Am. J. Hum. Genet. 74:1314–20
    [Google Scholar]
  124. Wirtz MK, Samples JR, Kramer PL, Rust K, Topinka JR et al. 1997. Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q. Am. J. Hum. Genet. 60:296–304
    [Google Scholar]
  125. Wirtz MK, Samples JR, Rust K, Lie J, Nordling L et al. 1999. GLC1F, a new primary open-angle glaucoma locus, maps to 7q35-q36. Arch. Ophthalmol. 117:237–41
    [Google Scholar]
  126. Wolfs RC, Borger PH, Ramrattan RS, Klaver CC, Hulsman CA et al. 2000. Changing views on open-angle glaucoma: definitions and prevalences—the Rotterdam Study. Investig. Ophthalmol. Vis. Sci. 41:3309–21
    [Google Scholar]
  127. Wolfs RC, Klaver CC, Ramrattan RS, van Duijn CM, Hofman A, de Jong PT. 1998. Genetic risk of primary open-angle glaucoma: population-based familial aggregation study. Arch. Ophthalmol. 116:1640–45
    [Google Scholar]
  128. Yang J, Zeng J, Goddard ME, Wray NR, Visscher PM. 2017. Concepts, estimation and interpretation of SNP-based heritability. Nat. Genet. 49:1304–10
    [Google Scholar]
  129. Zheng Y, Ge J, Huang G, Zhang J, Liu B et al. 2008. Heritability of central corneal thickness in Chinese: the Guangzhou Twin Eye Study. Investig. Ophthalmol. Vis. Sci. 49:4303–7
    [Google Scholar]
  130. Zhou T, Souzeau E, Siggs OM, Landers J, Mills R et al. 2017. Contribution of mutations in known Mendelian glaucoma genes to advanced early-onset primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 58:1537–44
    [Google Scholar]
/content/journals/10.1146/annurev-vision-031021-095225
Loading
/content/journals/10.1146/annurev-vision-031021-095225
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error