1932

Abstract

Severe loss of photoreceptor cells in inherited or acquired retinal degenerative diseases can result in partial loss of sight or complete blindness. The optogenetic strategy for restoration of vision utilizes optogenetic tools to convert surviving inner retinal neurons into photosensitive cells; thus, light sensitivity is imparted to the retina after the death of photoreceptor cells. Proof-of-concept studies, especially those using microbial rhodopsins, have demonstrated restoration of light responses in surviving retinal neurons and visually guided behaviors in animal models. Significant progress has also been made in improving microbial rhodopsin-based optogenetic tools, developing virus-mediated gene delivery, and targeting specific retinal neurons and subcellular compartments of retinal ganglion cells. In this article, we review the current status of the field and outline further directions and challenges to the advancement of this strategy toward clinical application and improvement in the outcomes of restored vision.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-082114-035532
2015-11-24
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/vision/1/1/annurev-vision-082114-035532.html?itemId=/content/journals/10.1146/annurev-vision-082114-035532&mimeType=html&fmt=ahah

Literature Cited

  1. Adesnik H, Nicoll RA, England PM. 2005. Photoinactivation of native AMPA receptors reveals their real-time trafficking. Neuron 48:977–85 [Google Scholar]
  2. Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH. 2004. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7:1381–86 [Google Scholar]
  3. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R. et al. 2008. Effect of gene therapy on visual function in Leber's congenital amaurosis. N. Engl. J. Med. 358:2231–39 [Google Scholar]
  4. Barrett JM, Berlinguer-Palmini R, Degenaar P. 2014. Optogenetic approaches to retinal prosthesis. Vis. Neurosci. 31:345–54 [Google Scholar]
  5. Berndt A, Lee SY, Ramakrishnan C, Deisseroth K. 2014. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344:420–24 [Google Scholar]
  6. Berndt A, Schoenenberger P, Mattis J, Tye KM, Deisseroth K. et al. 2011. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. PNAS 108:7595–600 [Google Scholar]
  7. Berson DM, Dunn FA, Takao M. 2002. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–73 [Google Scholar]
  8. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Willett WC. 2012. Omega-3 intake and visual acuity in patients with retinitis pigmentosa receiving vitamin A. Arch. Ophthalmol. 130:707–11 [Google Scholar]
  9. Bi A, Cui J, Ma YP, Olshevskaya E, Pu M. et al. 2006. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33 [Google Scholar]
  10. Boycott B, Wassle H. 1999. Parallel processing in the mammalian retina: the Proctor Lecture. Investig. Ophthalmol. Vis. Sci. 40:1313–27 [Google Scholar]
  11. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8:1263–68 [Google Scholar]
  12. Boye SE, Boye SL, Lewin AS, Hauswirth WW. 2013. A comprehensive review of retinal gene therapy. Mol. Ther. J. Am. Soc. Gene Ther. 21:509–19 [Google Scholar]
  13. Broichhagen J, Trauner D. 2014. The in vivo chemistry of photoswitched tethered ligands. Curr. Opin. Chem. Biol. 21:121–27 [Google Scholar]
  14. Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ. et al. 2010. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–17 [Google Scholar]
  15. Cai J, Nelson KC, Wu M, Sternberg P Jr, Jones DP. 2000. Oxidative damage and protection of the RPE. Prog. Retin. Eye Res. 19:205–21 [Google Scholar]
  16. Caporale N, Kolstad KD, Lee T, Tochitsky I, Dalkara D. et al. 2011. LiGluR restores visual responses in rodent models of inherited blindness. Mol. Ther. 19:1212–19 [Google Scholar]
  17. Chader GJ, Weiland J, Humayun MS. 2009. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog. Brain Res. 175:317–32 [Google Scholar]
  18. Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR. 2002. Retinal degeneration mutants in the mouse. Vis. Res. 42:517–25 [Google Scholar]
  19. Chow BY, Han X, Dobry AS, Qian X, Chuong AS. et al. 2010. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102 [Google Scholar]
  20. Chuong AS, Miri ML, Busskamp V, Matthews GA, Acker LC. et al. 2014. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17:1123–29 [Google Scholar]
  21. Cideciyan AV. 2010. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog. Retin. Eye Res. 29:398–427 [Google Scholar]
  22. Cideciyan AV, Rachel RA, Aleman TS, Swider M, Schwartz SB. et al. 2011. Cone photoreceptors are the main targets for gene therapy of NPHP5 (IQCB1) or NPHP6 (CEP290) blindness: generation of an all-cone Nphp6 hypomorph mouse that mimics the human retinal ciliopathy. Hum. Mol. Genet. 20:1411–23 [Google Scholar]
  23. Cronin T, Vandenberghe LH, Hantz P, Juttner J, Reimann A. et al. 2014. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol. Med. 6:1175–90 [Google Scholar]
  24. Cuenca N, Fernandez-Sanchez L, Campello L, Maneu V, De la Villa P. et al. 2014. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog. Retin. Eye Res. 43:17–75 [Google Scholar]
  25. Dacey DM, Liao H-W, Peterson BB, Robinson FR, Smith VC. et al. 2005. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433:749–54 [Google Scholar]
  26. Dalkara D, Kolstad KD, Caporale N, Visel M, Klimczak RR. et al. 2009. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol. Ther. 17:2096–102 [Google Scholar]
  27. Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L. et al. 2013. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci. Transl. Med. 5:189ra76 [Google Scholar]
  28. Damiani D, Novelli E, Mazzoni F, Strettoi E. 2012. Undersized dendritic arborizations in retinal ganglion cells of the rd1 mutant mouse: a paradigm of early onset photoreceptor degeneration. J. Comp. Neurol. 520:1406–23 [Google Scholar]
  29. de Jong PT. 2006. Age-related macular degeneration. N. Engl. J. Med. 355:1474–85 [Google Scholar]
  30. Doroudchi MM, Greenberg KP, Liu J, Silka KA, Boyden ES. et al. 2011. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol. Ther. 19:1220–29 [Google Scholar]
  31. Fariss RN, Li ZY, Milam AH. 2000. Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa. Am. J. Ophthalmol. 129:215–23 [Google Scholar]
  32. Fenno L, Yizhar O, Deisseroth K. 2011. The development and application of optogenetics. Annu. Rev. Neurosci. 34:389–412 [Google Scholar]
  33. Flannery JG, Greenberg KP. 2006. Looking within for vision. Neuron 50:1–3 [Google Scholar]
  34. Fortin DL, Dunn TW, Fedorchak A, Allen D, Montpetit R. et al. 2011. Optogenetic photochemical control of designer K+ channels in mammalian neurons. J. Neurophysiol. 106:488–96 [Google Scholar]
  35. Gaub BM, Berry MH, Holt AE, Reiner A, Kienzler MA. et al. 2014. Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells. PNAS 111:E5574–83 [Google Scholar]
  36. Govorunova EG, Sineshchekov OA, Li H, Janz R, Spudich JL. 2013. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis. J. Biol. Chem. 288:29911–22 [Google Scholar]
  37. Gradinaru V, Thompson KR, Deisseroth K. 2008. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36:129–39 [Google Scholar]
  38. Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R. et al. 2010. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–65 [Google Scholar]
  39. Greenberg KP, Pham A, Werblin FS. 2011. Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism. Neuron 69:713–20 [Google Scholar]
  40. Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P. 2010. Ultrafast optogenetic control. Nat. Neurosci. 13:387–92 [Google Scholar]
  41. Han X, Boyden ES. 2007. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLOS ONE 2:e299 [Google Scholar]
  42. Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A. et al. 2011. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front. Syst. Neurosci. 5:18 [Google Scholar]
  43. Hartong DT, Berson EL, Dryja TP. 2006. Retinitis pigmentosa. Lancet 368:1795–809 [Google Scholar]
  44. Hatori M, Panda S. 2010. The emerging roles of melanopsin in behavioral adaptation to light. Trends Mol. Med. 16:435–46 [Google Scholar]
  45. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. 2002. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–70 [Google Scholar]
  46. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB. et al. 2008. Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum. Gene Ther. 19:979–90 [Google Scholar]
  47. Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–78 [Google Scholar]
  48. Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Sahel JA. et al. 2012. Interim results from the international trial of Second Sight's visual prosthesis. Ophthalmology 119:779–88 [Google Scholar]
  49. Huxlin KR. 2008. Perceptual plasticity in damaged adult visual systems. Vis. Res. 48:2154–66 [Google Scholar]
  50. Ivanova E, Hwang G-S, Pan Z-H, Troilo D. 2010. Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Investig. Ophthalmol. Vis. Sci. 51:5288–96 [Google Scholar]
  51. Ivanova E, Pan Z-H. 2009. Evaluation of the adeno-associated virus mediated long-term expression of channelrhodopsin-2 in the mouse retina. Mol. Vis. 15:1680–89 [Google Scholar]
  52. Jacobs AL, Werblin FS. 1998. Spatiotemporal patterns at the retinal output. J. Neurophysiol. 80:447–51 [Google Scholar]
  53. Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB. et al. 2012. Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch. Ophthalmol. 130:9–24 [Google Scholar]
  54. Jacobson SG, Cideciyan AV, Peshenko IV, Sumaroka A, Olshevskaya EV. et al. 2013. Determining consequences of retinal membrane guanylyl cyclase (RetGC1) deficiency in human Leber congenital amaurosis en route to therapy: residual cone-photoreceptor vision correlates with biochemical properties of the mutants. Hum. Mol. Genet. 22:168–83 [Google Scholar]
  55. Jiang L, Frederick JM, Baehr W. 2014. RNA interference gene therapy in dominant retinitis pigmentosa and cone-rod dystrophy mouse models caused by GCAP1 mutations. Front. Mol. Neurosci. 7:25 [Google Scholar]
  56. Jiang L, Zhang H, Dizhoor AM, Boye SE, Hauswirth WW. et al. 2011. Long-term RNA interference gene therapy in a dominant retinitis pigmentosa mouse model. PNAS 108:18476–81 [Google Scholar]
  57. Jones BW, Kondo M, Terasaki H, Lin Y, McCall M, Marc RE. 2012. Retinal remodeling. Jpn. J. Ophthalmol. 56:289–306 [Google Scholar]
  58. Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T. et al. 2012. Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–74 [Google Scholar]
  59. Kay CN, Ryals RC, Aslanidi GV, Min SH, Ruan Q. et al. 2013. Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors. PLOS ONE 8:e62097 [Google Scholar]
  60. Kim DS, Matsuda T, Cepko CL. 2008. A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression. J. Neurosci. 28:7748–64 [Google Scholar]
  61. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A. et al. 2014. Independent optical excitation of distinct neural populations. Nat. Methods 11:338–46 [Google Scholar]
  62. Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG. et al. 2011. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat. Neurosci. 14:513–18 [Google Scholar]
  63. Koenekoop RK, Traboulsi EI. 1998. Leber's congenital amaurosis, Stargardt disease, and pattern dystrophies. Genetic Diseases of the Eye EI Traboulsi 373–87 New York: Oxford Univ. Press [Google Scholar]
  64. Kramer RH, Fortin DL, Trauner D. 2009. New photochemical tools for controlling neuronal activity. Curr. Opin. Neurobiol. 19:544–52 [Google Scholar]
  65. Lagali PS, Balya D, Awatramani GB, Munch TA, Kim DS. et al. 2008. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat. Neurosci. 11:667–75 [Google Scholar]
  66. Lamba DA, Karl MO, Reh TA. 2009. Strategies for retinal repair: cell replacement and regeneration. Prog. Brain Res. 175:23–31 [Google Scholar]
  67. Lechner HA, Lein ES, Callaway EM. 2002. A genetic method for selective and quickly reversible silencing of mammalian neurons. J. Neurosci. 22:5287–90 [Google Scholar]
  68. Levitt ES, Hunnicutt BJ, Knopp SJ, Williams JT, Bissonnette JM. 2013. A selective 5-HT1a receptor agonist improves respiration in a mouse model of Rett syndrome. J. Appl. Physiol. 115:1626–33 [Google Scholar]
  69. Li X, Gutierrez DV, Hanson MG, Han J, Mark MD. et al. 2005. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. PNAS 102:17816–21 [Google Scholar]
  70. Lin B, Koizumi A, Tanaka N, Panda S, Masland RH. 2008. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. PNAS 105:16009–14 [Google Scholar]
  71. Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY. 2013. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16:1499–508 [Google Scholar]
  72. Lin JY, Lin MZ, Steinbach P, Tsien RY. 2009. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 96:1803–14 [Google Scholar]
  73. Lucas RJ, Douglas RH, Foster RG. 2001. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat. Neurosci. 4:621–26 [Google Scholar]
  74. Lund RD, Kwan AS, Keegan DJ, Sauve Y, Coffey PJ, Lawrence JM. 2001. Cell transplantation as a treatment for retinal disease. Prog. Retin. Eye Res. 20:415–49 [Google Scholar]
  75. Mace E, Caplette R, Marre O, Sengupta A, Chaffiol A. et al. 2015. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol. Ther. 23:7–16 [Google Scholar]
  76. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F. et al. 2008. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N. Engl. J. Med. 358:2240–48 [Google Scholar]
  77. Makino CL, Wen XH, Olshevskaya EV, Peshenko IV, Savchenko AB, Dizhoor AM. 2012. Enzymatic relay mechanism stimulates cyclic GMP synthesis in rod photoresponse: biochemical and physiological study in guanylyl cyclase activating protein 1 knockout mice. PLOS ONE 7:e47637 [Google Scholar]
  78. Marc RE, Jones BW, Watt CB, Strettoi E. 2003. Neural remodeling in retinal degeneration. Prog. Retin. Eye Res. 22:607–55 [Google Scholar]
  79. Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O’Shea DJ. et al. 2012. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 9:159–72 [Google Scholar]
  80. Mazzoni F, Novelli E, Strettoi E. 2008. Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. J. Neurosci. 28:14282–92 [Google Scholar]
  81. Mihelec M, Pearson RA, Robbie SJ, Buch PK, Azam SA. et al. 2011. Long-term preservation of cones and improvement in visual function following gene therapy in a mouse model of Leber congenital amaurosis caused by guanylate cyclase-1 deficiency. Hum. Gene Ther. 22:1179–90 [Google Scholar]
  82. Milam AH, Li ZY, Fariss RN. 1998. Histopathology of the human retina in retinitis pigmentosa. Prog. Retin. Eye Res. 17:175–205 [Google Scholar]
  83. Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A. 2005. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15:2279–84 [Google Scholar]
  84. Nagel G, Möckel B, Büldt G, Bamberg E. 1995. Functional expression of bacteriorhodopsin in oocytes allows direct measurement of voltage dependence of light induced H+ pumping. FEBS Lett. 377:263–66 [Google Scholar]
  85. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM. et al. 2002. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–98 [Google Scholar]
  86. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N. et al. 2003. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. PNAS 100:13940–45 [Google Scholar]
  87. Nirenberg S, Pandarinath C. 2012. Retinal prosthetic strategy with the capacity to restore normal vision. PNAS 109:15012–17 [Google Scholar]
  88. Oesterhelt D. 1998. The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr. Opin. Struct. Biol. 8:489–500 [Google Scholar]
  89. Oesterhelt D, Stoeckenius W. 1973. Functions of a new photoreceptor membrane. PNAS 70:2853–57 [Google Scholar]
  90. Olshevskaya EV, Calvert PD, Woodruff ML, Peshenko IV, Savchenko AB. et al. 2004. The Y99C mutation in guanylyl cyclase-activating protein 1 increases intracellular Ca2+ and causes photoreceptor degeneration in transgenic mice. J. Neurosci. 24:6078–85 [Google Scholar]
  91. Palczewski K. 2006. G protein–coupled receptor rhodopsin. Annu. Rev. Biochem. 75:743–67 [Google Scholar]
  92. Pan Z-H, Ganjawala TH, Lu Q, Ivanova E, Zhang Z. 2014a. ChR2 mutants at L132 and T159 with improved operational light sensitivity for vision restoration. PLOS ONE 9:e98924 [Google Scholar]
  93. Pan Z-H, Lu Q, Ganjawala TH, Cheng J. 2014b. AAV-mediated expression targeting of retinal rod bipolar cells with an optimized mGluR6 promoter. Investig. Ophthalmol. Vis. Sci. 55:132638 [Google Scholar]
  94. Petrs-Silva H, Dinculescu A, Li Q, Deng WT, Pang JJ. et al. 2011. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol. Ther. 19:293–301 [Google Scholar]
  95. Petrs-Silva H, Dinculescu A, Li Q, Min SH, Chiodo V. et al. 2009. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol. Ther. 17:463–71 [Google Scholar]
  96. Polosukhina A, Litt J, Tochitsky I, Nemargut J, Sychev Y. et al. 2012. Photochemical restoration of visual responses in blind mice. Neuron 75:271–82 [Google Scholar]
  97. Prigge M, Schneider F, Tsunoda SP, Shilyansky C, Wietek J. et al. 2012. Color-tuned channelrhodopsins for multiwavelength optogenetics. J. Biol. Chem. 287:31804–12 [Google Scholar]
  98. Puthussery T, Taylor WR. 2010. Functional changes in inner retinal neurons in animal models of photoreceptor degeneration. Adv. Exp. Med. Biol. 664:525–32 [Google Scholar]
  99. Reutsky-Gefen I, Golan L, Farah N, Schejter A, Tsur L. et al. 2013. Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nat. Commun. 4:1509 [Google Scholar]
  100. Sandoz G, Levitz J, Kramer RH, Isacoff EY. 2012. Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABAB signaling. Neuron 74:1005–14 [Google Scholar]
  101. Santos A, Humayun MS, de Juan E Jr, Greenburg RJ, Marsh MJ. et al. 1997. Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch. Ophthalmol. 115:511–15 [Google Scholar]
  102. Schiller PH, Sandell JH, Maunsell JH. 1986. Functions of the ON and OFF channels of the visual system. Nature 322:824–25 [Google Scholar]
  103. Spudich EN, Spudich JL. 1982. Control of transmembrane ion fluxes to select halorhodopsin-deficient and other energy-transduction mutants of Halobacterium halobium. PNAS 79:4308–12 [Google Scholar]
  104. Spudich JL. 2006. The multitalented microbial sensory rhodopsins. Trends Microbiol. 14:480–87 [Google Scholar]
  105. Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A. et al. 2013. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. R. Soc. B 280:20130077 [Google Scholar]
  106. Stone EM. 2007. Macular degeneration. Annu. Rev. Med. 58:477–90 [Google Scholar]
  107. Stone JL, Barlow WE, Humayun MS, de Juan E Jr, Milam AH. 1992. Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch. Ophthalmol. 110:1634–39 [Google Scholar]
  108. Strettoi E, Pignatelli V. 2000. Modifications of retinal neurons in a mouse model of retinitis pigmentosa. PNAS 97:11020–25 [Google Scholar]
  109. Sugano E, Isago H, Wang Z, Murayama N, Tamai M, Tomita H. 2011. Immune responses to adeno-associated virus type 2 encoding channelrhodopsin-2 in a genetically blind rat model for gene therapy. Gene Ther. 18:266–74 [Google Scholar]
  110. Surace EM, Auricchio A. 2008. Versatility of AAV vectors for retinal gene transfer. Vis. Res. 48:353–59 [Google Scholar]
  111. Tan EM, Yamaguchi Y, Horwitz GD, Gosgnach S, Lein ES. et al. 2006. Selective and quickly reversible inactivation of mammalian neurons in vivo using the Drosophila allatostatin receptor. Neuron 51:157–70 [Google Scholar]
  112. Testa F, Maguire AM, Rossi S, Pierce EA, Melillo P. et al. 2013. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital amaurosis type 2. Ophthalmology 120:1283–91 [Google Scholar]
  113. Tochitsky I, Banghart MR, Mourot A, Yao JZ, Gaub B. et al. 2012. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors. Nat. Chem. 4:105–11 [Google Scholar]
  114. Tochitsky I, Polosukhina A, Degtyar VE, Gallerani N, Smith CM. et al. 2014. Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron 81:800–13 [Google Scholar]
  115. Tomita H, Sugano E, Isago H, Hiroi T, Wang Z. et al. 2010. Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp. Eye Res. 90:429–36 [Google Scholar]
  116. Tomita H, Sugano E, Murayama N, Ozaki T, Nishiyama F. et al. 2014. Restoration of the majority of the visual spectrum by using modified Volvox channelrhodopsin-1. Mol. Ther. 22:1434–40 [Google Scholar]
  117. Tomita H, Sugano E, Yawo H, Ishizuka T, Isago H. et al. 2007. Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer. Investig. Ophthalmol. Vis. Sci. 48:3821–26 [Google Scholar]
  118. Volgraf M, Gorostiza P, Szobota S, Helix MR, Isacoff EY, Trauner D. 2007. Reversibly caged glutamate: a photochromic agonist of ionotropic glutamate receptors. J. Am. Chem. Soc. 129:260–61 [Google Scholar]
  119. Wassle H. 2004. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5:747–57 [Google Scholar]
  120. Weiland JD, Liu W, Humayun MS. 2005. Retinal prosthesis. Annu. Rev. Biomed. Eng. 7:361–401 [Google Scholar]
  121. Wen L, Wang H, Tanimoto S, Egawa R, Matsuzaka Y. et al. 2010. Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin. PLOS ONE 5:e12893 [Google Scholar]
  122. Wen R, Tao W, Li Y, Sieving PA. 2012. CNTF and retina. Prog. Retin. Eye Res. 31:136–51 [Google Scholar]
  123. West EL, Pearson RA, MacLaren RE, Sowden JC, Ali RR. 2009. Cell transplantation strategies for retinal repair. Prog. Brain Res. 175:3–21 [Google Scholar]
  124. Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H. et al. 2014. Conversion of channelrhodopsin into a light-gated chloride channel. Science 344:409–12 [Google Scholar]
  125. Woodruff ML, Olshevskaya EV, Savchenko AB, Peshenko IV, Barrett R. et al. 2007. Constitutive excitation by Gly90Asp rhodopsin rescues rods from degeneration caused by elevated production of cGMP in the dark. J. Neurosci. 27:8805–15 [Google Scholar]
  126. Wu C, Ivanova E, Zhang Y, Pan Z-H. 2013. AAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells. PLOS ONE 8:e66332 [Google Scholar]
  127. Yang RB, Robinson SW, Xiong WH, Yau KW, Birch DG, Garbers DL. 1999. Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J. Neurosci. 19:5889–97 [Google Scholar]
  128. Yin L, Greenberg K, Hunter JJ, Dalkara D, Kolstad KD. et al. 2011. Intravitreal injection of AAV2 transduces macaque inner retina. Investig. Ophthalmol. Vis. Sci. 52:2775–83 [Google Scholar]
  129. Yue L, Pawlowski M, Dellal SS, Xie A, Feng F. et al. 2012. Robust photoregulation of GABAA receptors by allosteric modulation with a propofol analogue. Nat. Commun. 3:1095 [Google Scholar]
  130. Zemelman BV, Lee GA, Ng M, Miesenbock G. 2002. Selective photostimulation of genetically chARGed neurons. Neuron 33:15–22 [Google Scholar]
  131. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K. et al. 2007. Multimodal fast optical interrogation of neural circuitry. Nature 446:633–39 [Google Scholar]
  132. Zhang Y, Ivanova E, Bi A, Pan Z-H. 2009. Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in the retina after photoreceptor degeneration. J. Neurosci. 29:9186–96 [Google Scholar]
  133. Zrenner E. 2002. Will retinal implants restore vision?. Science 295:1022–25 [Google Scholar]
  134. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A. et al. 2011. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. R. Soc. B 278:1489–97 [Google Scholar]
/content/journals/10.1146/annurev-vision-082114-035532
Loading
/content/journals/10.1146/annurev-vision-082114-035532
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error