1932

Abstract

With modern neurophysiological methods able to record neural activity throughout the visual pathway in the context of arbitrarily complex visual stimulation, our understanding of visual system function is becoming limited by the available models of visual neurons that can be directly related to such data. Different forms of statistical models are now being used to probe the cellular and circuit mechanisms shaping neural activity, understand how neural selectivity to complex visual features is computed, and derive the ways in which neurons contribute to systems-level visual processing. However, models that are able to more accurately reproduce observed neural activity often defy simple interpretations. As a result, rather than being used solely to connect with existing theories of visual processing, statistical modeling will increasingly drive the evolution of more sophisticated theories.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091718-014731
2019-09-15
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091718-014731.html?itemId=/content/journals/10.1146/annurev-vision-091718-014731&mimeType=html&fmt=ahah

Literature Cited

  1. Abadi M, Barham P, Chen J, Chen Z, Davis A et al. 2016. TensorFlow: a system for large-scale machine learning. OSDI’16: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation265–83 Berkeley, CA: USENIX Assoc.
    [Google Scholar]
  2. Adelson EH, Bergen JR. 1985. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2:2284–99
    [Google Scholar]
  3. Agrawal P, Stansbury D, Malik J, Gallant JL 2014. Pixels to voxels: modeling visual representation in the human brain. arXiv:1407.5104 [q-bio.NC]
  4. Antolik J, Hofer SB, Bednar JA, Mrsic-Flogel TD 2016. Model constrained by visual hierarchy improves prediction of neural responses to natural scenes. PLOS Comput. Biol. 12:6e1004927
    [Google Scholar]
  5. Baccus SA, Meister M. 2002. Fast and slow contrast adaptation in retinal circuitry. Neuron 36:5909–19
    [Google Scholar]
  6. Bashivan P, Kar K, DiCarlo JJ 2019. Neural population control via deep image synthesis. Science 364:6439eaav9436
    [Google Scholar]
  7. Batty E, Merel J, Brackbill N, Heitman A, Sher A et al. 2016. Multilayer recurrent network models of primate retinal ganglion cell responses Paper presented at the International Conference on Learning Representations, Toulon France: April 24–26
  8. Bengio Y. 2009. Learning deep architectures for AI. Found. Trends Mach. Learn. 2:11–127
    [Google Scholar]
  9. Benjamin AS, Fernandes HL, Tomlinson T, Ramkumar P, VerSteeg C et al. 2018. Modern machine learning as a benchmark for fitting neural responses. Front. Comput. Neurosci. 12:56
    [Google Scholar]
  10. Berry MJ II, Meister M 1998. Refractoriness and neural precision. J. Neurosci. 18:62200–11
    [Google Scholar]
  11. Bishop CM. 2006. Pattern Recognition and Machine Learning Berlin: Springer
  12. Bondy AG, Haefner RM, Cumming BG 2018. Feedback determines the structure of correlated variability in primary visual cortex. Nat. Neurosci. 21:4598–606
    [Google Scholar]
  13. Butts DA, Bartsch F, Whiteway MR, Cumming BG 2018. Characterizing hierarchical computation in primary visual cortex Prog. 141.28 Neurosci. Meet. Plan., Soc. Neurosci. Online Washington, DC:
  14. Butts DA, Cui Y, Casti ARR 2016. Nonlinear computations shaping temporal processing of precortical vision. J. Neurophysiol. 116:31344–57
    [Google Scholar]
  15. Butts DA, Weng C, Jin JZ, Alonso J-M, Paninski L 2011. Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. J. Neurosci. 31:3111313–27
    [Google Scholar]
  16. Butts DA, Weng C, Jin JZ, Yeh C-I, Lesica NA et al. 2007. Temporal precision in the neural code and the timescales of natural vision. Nature 449:715892–95
    [Google Scholar]
  17. Cadena SA, Denfield GH, Walker EY, Gatys LA, Tolias AS et al. 2019. Deep convolutional models improve predictions of macaque V1 responses to natural images. PLOS Comput. Biol. 15:4e1006897
    [Google Scholar]
  18. Cadieu CF, Hong H, Yamins DLK, Pinto N, Ardila D et al. 2014. Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLOS Comput. Biol. 10:12e1003963
    [Google Scholar]
  19. Calabrese A, Schumacher JW, Schneider DM, Paninski L, Woolley SMN 2011. A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds. PLOS ONE 6:1e16104
    [Google Scholar]
  20. Carandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y et al. 2005. Do we know what the early visual system does. ? J. Neurosci. 25:4610577–97
    [Google Scholar]
  21. Carandini M, Heeger DJ. 2012. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13:151–62
    [Google Scholar]
  22. Chance FS, Abbott LF, Reyes AD 2002. Gain modulation from background synaptic input. Neuron 35:4773–82
    [Google Scholar]
  23. Chang L, Tsao DY. 2017. The code for facial identity in the primate brain. Cell 169:61013–14
    [Google Scholar]
  24. Chichilnisky EJ. 2001. A simple white noise analysis of neuronal light responses. Network 12:2199–213
    [Google Scholar]
  25. Coen-Cagli R, Kohn A, Schwartz O 2015. Flexible gating of contextual influences in natural vision. Nat. Neurosci. 18:111648–55
    [Google Scholar]
  26. Cui Y, Liu LD, Khawaja FA, Pack CC, Butts DA 2013. Diverse suppressive influences in area MT and selectivity to complex motion features. J. Neurosci. 33:4216715–28
    [Google Scholar]
  27. Cui Y, Liu LD, McFarland JM, Pack CC, Butts DA 2016a. Inferring cortical variability from local field potentials. J. Neurosci. 36:144121–35
    [Google Scholar]
  28. Cui Y, Wang YV, Park SJH, Demb JB, Butts DA 2016b. Divisive suppression explains high-precision firing and contrast adaptation in retinal ganglion cells. eLife 5:e19460
    [Google Scholar]
  29. Cumming BG, DeAngelis GC. 2001. The physiology of stereopsis. Annu. Rev. Neurosci 24:203–38
    [Google Scholar]
  30. Cybenko G. 1989. Approximation by superpositions of a sigmoidal function. Math. Control Signal Syst. 2:4303–14
    [Google Scholar]
  31. David SV, Gallant JL. 2005. Predicting neuronal responses during natural vision. Network 16:2–3239–60
    [Google Scholar]
  32. David SV, Vinje WE, Gallant JL 2004. Natural stimulus statistics alter the receptive field structure of V1 neurons. J. Neurosci. 24:316991–7006
    [Google Scholar]
  33. de Ruyter van Steveninck R, Bialek W 1988. Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences. Proc. R. Soc. B 234:1277379–414
    [Google Scholar]
  34. de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W 1997. Reproducibility and variability in neural spike trains. Science 275:53071805–8
    [Google Scholar]
  35. DiCarlo JJ, Zoccolan D, Rust NC 2012. How does the brain solve visual object recognition. ? Neuron 73:3415–34
    [Google Scholar]
  36. DiMattina C, Zhang K. 2011. Active data collection for efficient estimation and comparison of nonlinear neural models. Neural Comput 23:92242–88
    [Google Scholar]
  37. Emerson RC, Bergen JR, Adelson EH 1992. Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vis. Res. 32:2203–18
    [Google Scholar]
  38. Fairhall AL, Burlingame CA, Narasimhan R, Harris RA, Puchalla JL, Berry MJ II 2006. Selectivity for multiple stimulus features in retinal ganglion cells. J. Neurophysiol. 96:52724–38
    [Google Scholar]
  39. Fournier J, Monier C, Levy M, Marre O, Sári K et al. 2014. Hidden complexity of synaptic receptive fields in cat V1. J. Neurosci. 34:165515–28
    [Google Scholar]
  40. Fournier J, Monier C, Pananceau M, Frégnac Y 2011. Adaptation of the simple or complex nature of V1 receptive fields to visual statistics. Nat. Neurosci. 14:81053–60
    [Google Scholar]
  41. Franke K, Berens P, Schubert T, Bethge M, Euler T, Baden T 2017. Inhibition decorrelates visual feature representations in the inner retina. Nature 542:7642439–44
    [Google Scholar]
  42. Freeman J, Field GD, Li PH, Greschner M, Gunning DE 2015. Mapping nonlinear receptive field structure in primate retina at single cone resolution. eLife 4:e05241
    [Google Scholar]
  43. Froudarakis E, Fahey PG, Reimer J, Smirnakis SM, Tehovnik EJ, Tolias AS 2019. The visual cortex in context. Annu. Rev. Vis. Sci. 5:317–39
    [Google Scholar]
  44. Gao P, Ganguli S. 2015. On simplicity and complexity in the brave new world of large-scale neuroscience. Curr. Opin. Neurobiol. 32:148–55
    [Google Scholar]
  45. Glaser JI, Chowdhury RH, Perich MG, Miller LE, Körding KP 2017. Machine learning for neural decoding. arXiv:1708.00909 [q-bio.NC]
  46. Gollisch T, Meister M. 2008a. Modeling convergent ON and OFF pathways in the early visual system. Biol. Cybern. 99:4–5263–78
    [Google Scholar]
  47. Gollisch T, Meister M. 2008b. Rapid neural coding in the retina with relative spike latencies. Science 319:58661108–11
    [Google Scholar]
  48. Henriksen S, Tanabe S, Cumming BG 2016. Disparity processing in primary visual cortex. Philos. Trans. R. Soc. Lond. B 371:169720150255
    [Google Scholar]
  49. Hong H, Yamins DLK, Majaj NJ, DiCarlo JJ 2016. Explicit information for category-orthogonal object properties increases along the ventral stream. Nat. Neurosci. 19:4613–22
    [Google Scholar]
  50. Hornik K. 1991. Approximation capabilities of multilayer feedforward networks. Neural Netw 4:2251–57
    [Google Scholar]
  51. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54
    [Google Scholar]
  52. Izhikevich EM. 2007. Dynamical Systems in Neuroscience Cambridge, MA: MIT Press
  53. Jarsky T, Cembrowski MS, Logan SM, Kath WL, Riecke H et al. 2011. A synaptic mechanism for retinal adaptation to luminance and contrast. J. Neurosci. 31:3011003–15
    [Google Scholar]
  54. Jazayeri M, Afraz A. 2017. Navigating the neural space in search of the neural code. Neuron 93:51003–14
    [Google Scholar]
  55. Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M et al. 2017. Fully integrated silicon probes for high-density recording of neural activity. Nature 551:7679232–36
    [Google Scholar]
  56. Kafaligonul H, Breitmeyer BG, Öğmen H 2015. Feedforward and feedback processes in vision. Front. Psychol. 6:279
    [Google Scholar]
  57. Kar K, Kubilius J, Schmidt K, Issa EB, DiCarlo JJ 2019. Evidence that recurrent circuits are critical to the ventral stream's execution of core object recognition behavior. Nat. Neurosci. 22:974–83
    [Google Scholar]
  58. Keat J, Reinagel P, Reid RC, Meister M 2001. Predicting every spike: a model for the responses of visual neurons. Neuron 30:3803–17
    [Google Scholar]
  59. Kelly RC, Kass RE, Smith MA, Lee TS 2010. Accounting for network effects in neuronal responses using L1 regularized point process models. Adv. Neural Inf. Process. Syst. 23:21099–107
    [Google Scholar]
  60. Khaligh-Razavi S-M, Kriegeskorte N. 2014. Deep supervised, but not unsupervised, models may explain IT cortical representation. PLOS Comput. Biol. 10:11e1003915
    [Google Scholar]
  61. Kindel WF, Christensen ED, Zylberberg J 2017. Using deep learning to reveal the neural code for images in primary visual cortex. arXiv:1706.06208 [q-bio.NC]
  62. Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. arXiv:1412.6980 [cs.LG]
  63. Klindt DA, Ecker AS, Euler T, Bethge M 2017. Neural system identification for large populations separating “what” and “where.”. Adv. Neural Inf. Process. 31:3509–19
    [Google Scholar]
  64. Kouh M, Poggio TA. 2008. A canonical neural circuit for cortical nonlinear operations. Neural Comput 20:61427–51
    [Google Scholar]
  65. Kouh M, Sharpee TO. 2009. Estimating linear-nonlinear models using Renyi divergences. Network 20:249–68
    [Google Scholar]
  66. Kriegeskorte N. 2015. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vis. Sci. 1:417–46
    [Google Scholar]
  67. Krizhevsky A, Sutskever I, Hinton GE 2012. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25:1097–105
    [Google Scholar]
  68. Lau B, Stanley GB, Dan Y 2002. Computational subunits of visual cortical neurons revealed by artificial neural networks. PNAS 99:138974–79
    [Google Scholar]
  69. LeCun Y, Bengio Y, Hinton G 2015. Deep learning. Nature 521:7553436–44
    [Google Scholar]
  70. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE et al. 1989. Backpropagation applied to handwritten zip code recognition. Neural Comput 1:4541–51
    [Google Scholar]
  71. Levy M, Fournier J, Frégnac Y 2013. The role of delayed suppression in slow and fast contrast adaptation in V1 simple cells. J. Neurosci. 33:156388–400
    [Google Scholar]
  72. Lewi J, Schneider DM, Woolley SMN, Paninski L 2011. Automating the design of informative sequences of sensory stimuli. J. Comput. Neurosci. 30:1181–200
    [Google Scholar]
  73. Liao Q, Poggio TA. 2016. Bridging the gaps between residual learning, recurrent neural networks and visual cortex. arXiv:1604.03640 [cs.LG]
  74. Liu JK, Gollisch T. 2015. Spike-triggered covariance analysis reveals phenomenological diversity of contrast adaptation in the retina. PLOS Comput. Biol. 11:7e1004425
    [Google Scholar]
  75. Liu JK, Schreyer HM, Onken A, Rozenblit F, Khani MH et al. 2017. Inference of neuronal functional circuitry with spike-triggered non-negative matrix factorization. Nat. Commun. 8:149
    [Google Scholar]
  76. Lochmann T, Blanche TJ, Butts DA 2013. Construction of direction selectivity through local energy computations in primary visual cortex. PLOS ONE 8:3e58666
    [Google Scholar]
  77. Maheswaranathan N, Kastner DB, Baccus SA, Ganguli S 2018a. Inferring hidden structure in multilayered neural circuits. PLOS Comput. Biol. 14:8e1006291
    [Google Scholar]
  78. Maheswaranathan N, McIntosh LT, Kastner DB, Melander J, Brezovec L et al. 2018b. Deep learning models reveal internal structure and diverse computations in the retina under natural scenes. bioRxiv 340943
  79. Mante V, Bonin V, Carandini M 2008. Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli. Neuron 58:4625–38
    [Google Scholar]
  80. Marblestone AH, Wayne G, Körding KP 2016. Toward an integration of deep learning and neuroscience. Front. Comput. Neurosci. 10:94
    [Google Scholar]
  81. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M et al. 2015. Reconstruction and simulation of neocortical microcircuitry. Cell 163:2456–92
    [Google Scholar]
  82. Marmarelis VZ. 2004. Nonlinear Dynamic Modeling of Physiological Systems Hoboken, NJ: Wiley
  83. Marr D, Poggio TA. 1976. From understanding computation to understanding neural circuitry AI Memo 357 Artif. Intell. Lab. Mass. Inst. Technol Cambridge, MA:
  84. McFarland JM, Bondy AG, Cumming BG, Butts DA 2014. High-resolution eye tracking using V1 neuron activity. Nat. Commun. 5:4605
    [Google Scholar]
  85. McFarland JM, Cui Y, Butts DA 2013. Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLOS Comput. Biol. 9:7e1003143
    [Google Scholar]
  86. McFarland JM, Cumming BG, Butts DA 2016. Variability and correlations in primary visual cortical neurons driven by fixational eye movements. J. Neurosci. 36:236225–41
    [Google Scholar]
  87. McMahon DBT, Jones AP, Bondar IV, Leopold DA 2014. Face-selective neurons maintain consistent visual responses across months. PNAS 111:228251–56
    [Google Scholar]
  88. Mineault PJ, Khawaja FA, Butts DA, Pack CC 2012. Hierarchical processing of complex motion along the primate dorsal visual pathway. PNAS 109:16E972–80
    [Google Scholar]
  89. Mineault PJ, Zanos TP, Pack CC 2014. Converging encoding strategies in dorsal and ventral visual streams Prog. 236.19 Neurosci. Meet. Plan., Soc. Neurosci. Online Washington, DC:
  90. Mohanty D, Scholl B, Priebe NJ 2012. The accuracy of membrane potential reconstruction based on spiking receptive fields. J. Neurophysiol. 107:82143–53
    [Google Scholar]
  91. Moskovitz TH, Roy NA, Pillow JW 2018. A comparison of deep learning and linear-nonlinear cascade approaches to neural encoding. bioRxiv 463422
  92. Movshon JA, Newsome WT. 1996. Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J. Neurosci. 16:237733–41
    [Google Scholar]
  93. Movshon JA, Thompson ID, Tolhurst DJ 1978a. Receptive field organization of complex cells in the cat's striate cortex. J. Physiol. 283:79–99
    [Google Scholar]
  94. Movshon JA, Thompson ID, Tolhurst DJ 1978b. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J. Physiol. 283:53–77
    [Google Scholar]
  95. Musall S, Kaufman MT, Gluf S, Churchland A 2018. Movement-related activity dominates cortex during sensory-guided decision making. bioRxiv 308288
  96. Naselaris T, Prenger RJ, Kay KN, Oliver M, Gallant JL 2009. Bayesian reconstruction of natural images from human brain activity. Neuron 63:6902–15
    [Google Scholar]
  97. Ni AM, Ruff DA, Alberts JJ, Symmonds J, Cohen MR 2018. Learning and attention reveal a general relationship between population activity and behavior. Science 359:6374463–65
    [Google Scholar]
  98. Nienborg H, Cohen MR, Cumming BG 2012. Decision-related activity in sensory neurons: correlations among neurons and with behavior. Annu. Rev. Neurosci. 35:463–83
    [Google Scholar]
  99. Nishimoto S, Gallant JL. 2011. A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies. J. Neurosci. 31:4114551–64
    [Google Scholar]
  100. Okun M, Steinmetz NA, Cossell L, Iacaruso MF, Ko H et al. 2015. Diverse coupling of neurons to populations in sensory cortex. Nature 521:7553511–15
    [Google Scholar]
  101. Oliver MD, Gallant JL. 2013. High-order Volterra models of area V4 capture complex selectivity Prog. 406.02 Neurosci. Meet. Plan., Soc. Neurosci. Online Washington, DC:
  102. Oliver MD, Gallant JL. 2017. A deep convolutional energy model of ventral stream areas V1, V2 and V4 Prog. 312.06 Neurosci. Meet. Plan., Soc. Neurosci. Online Washington, DC:
  103. Olsen SR, Wilson RI. 2008. Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452:7190956–60
    [Google Scholar]
  104. Olshausen BA, Field DJ. 2005. How close are we to understanding V1?. Neural Comput 17:81665–99
    [Google Scholar]
  105. Optican LM, Richmond BJ. 1987. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. J. Neurophysiol. 57:1162–78
    [Google Scholar]
  106. Orban GA. 2008. Higher order visual processing in macaque extrastriate cortex. Physiol. Rev. 88:159–89
    [Google Scholar]
  107. Ozuysal Y, Baccus SA. 2012. Linking the computational structure of variance adaptation to biophysical mechanisms. Neuron 73:51002–15
    [Google Scholar]
  108. Pandarinath C, O'Shea DJ, Collins J, Jozefowicz R, Stavisky SD et al. 2018. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 15:10805–15
    [Google Scholar]
  109. Paninski L. 2004. Maximum likelihood estimation of cascade point-process neural encoding models. Network 15:4243–62
    [Google Scholar]
  110. Paninski L, Cunningham JP. 2018. Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience. Curr. Opin. Neurobiol. 50:232–41
    [Google Scholar]
  111. Paninski L, Pillow JW, Lewi J 2007. Statistical models for neural encoding, decoding, and optimal stimulus design. Prog. Brain Res. 165:493–507
    [Google Scholar]
  112. Paninski L, Pillow JW, Simoncelli EP 2004. Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Comput 16:122533–61
    [Google Scholar]
  113. Park IM, Archer EW, Priebe NJ, Pillow JW 2013. Spectral methods for neural characterization using generalized quadratic models. Adv. Neural Inf. Process. 26:2454–62
    [Google Scholar]
  114. Park IM, Pillow JW. 2011. Bayesian spike-triggered covariance analysis. Adv. Neural Inf. Process. 24:1692–700
    [Google Scholar]
  115. Park M, Horwitz G, Pillow JW 2011. Active learning of neural response functions with Gaussian processes. Adv. Neural Inf. Process. 26:2043–51
    [Google Scholar]
  116. Park M, Pillow JW. 2013. Bayesian inference for low rank spatiotemporal neural receptive fields. Adv. Neural Inf. Process. 26:2688–96
    [Google Scholar]
  117. Pascanu R, Gulcehre C, Cho K, Bengio Y 2013. How to construct deep recurrent neural networks. arXiv:1312.6026 [cs.NE]
  118. Paszke A, Gross S, Chintala S, Chanan G, Yang E et al. 2017. Automatic differentiation in PyTorch Paper presented at the 31st Conference on Neural Information Processing Systems (NIPS 2017) Long Beach, CA:
  119. Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP, Chichilnisky EJ 2005. Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J. Neurosci. 25:4711003–13
    [Google Scholar]
  120. Pillow JW, Shlens J, Paninski L, Sher A, Litke AM et al. 2008. Spatio-temporal correlations and visual signaling in a complete neuronal population. Nature 454:7207995–99
    [Google Scholar]
  121. Pillow JW, Simoncelli EP. 2006. Dimensionality reduction in neural models: an information-theoretic generalization of spike-triggered average and covariance analysis. J. Vis. 6:4414–28
    [Google Scholar]
  122. Poirazi P, Brannon T, Mel BW 2003. Pyramidal neuron as two-layer neural network. Neuron 37:6989–99
    [Google Scholar]
  123. Ponce CR, Xiao W, Schade PF, Hartmann TS, Kreiman G, Livingstone MS 2019. Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences. Cell 177:4999–1009.e10
    [Google Scholar]
  124. Prenger R, Wu MCK, David SV, Gallant JL 2004. Nonlinear V1 responses to natural scenes revealed by neural network analysis. Neural Netw 17:5–6663–79
    [Google Scholar]
  125. Rabinowitz NC, Goris RLT, Cohen MR, Simoncelli EP 2015. Attention stabilizes the shared gain of V4 populations. eLife 4:e08998
    [Google Scholar]
  126. Rajan K, Marre O, Tkačik G 2013. Learning quadratic receptive fields from neural responses to natural stimuli. Neural Comput 25:71661–92
    [Google Scholar]
  127. Rasch MJ, Gretton A, Murayama Y, Maass W, Logothetis NK 2008. Inferring spike trains from local field potentials. J. Neurophysiol. 99:31461–76
    [Google Scholar]
  128. Reid RC, Victor JD, Shapley RM 1997. The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis. Neurosci. 14:61015–27
    [Google Scholar]
  129. Robinson DA. 1992. Implications of neural networks for how we think about brain function. Brain Behav. Sci. 15:4644–55
    [Google Scholar]
  130. Ruder S. 2016. An overview of gradient descent optimization algorithms. arXiv:1609.04747 [cs.CV]
  131. Russ BE, Leopold DA. 2015. Functional MRI mapping of dynamic visual features during natural viewing in the macaque. NeuroImage 109:84–94
    [Google Scholar]
  132. Rust NC, Mante V, Simoncelli EP, Movshon JA 2006. How MT cells analyze the motion of visual patterns. Nat. Neurosci. 9:111421–31
    [Google Scholar]
  133. Rust NC, Movshon JA. 2005. In praise of artifice. Nat. Neurosci. 8:121647–50
    [Google Scholar]
  134. Rust NC, Schwartz O, Movshon JA, Simoncelli EP 2005. Spatiotemporal elements of macaque V1 receptive fields. Neuron 46:6945–56
    [Google Scholar]
  135. Sahani M, Linden JF. 2003. Evidence optimization techniques for estimating stimulus-response functions. Adv. Neural Inf. Process. Syst. 15:317–24
    [Google Scholar]
  136. Schmidhuber J. 2015. Deep learning in neural networks: an overview. Neural Netw 61:85–117
    [Google Scholar]
  137. Schwartz GW, Okawa H, Dunn FA, Morgan JL, Kerschensteiner D et al. 2012. The spatial structure of a nonlinear receptive field. Nat. Neurosci. 15:111572–80
    [Google Scholar]
  138. Schwartz O, Pillow JW, Rust NC, Simoncelli EP 2006. Spike-triggered neural characterization. J. Vis. 6:4484–507
    [Google Scholar]
  139. Serre T. 2015. Hierarchical models of the visual system. Encyclopedia of Computational Neuroscience D Jaeger, R Jung 1309–18 Berlin: Springer
    [Google Scholar]
  140. Serre T. 2019. Deep learning: the good, the bad, and the ugly. Annu. Rev. Vis. Sci. 5:399–426
    [Google Scholar]
  141. Shapley RM. 2009. Linear and nonlinear systems analysis of the visual system: Why does it seem so linear? A review dedicated to the memory of Henk Spekreijse. Vis. Res. 49:9907–21
    [Google Scholar]
  142. Shapley RM, Victor JD. 1978. The effect of contrast on the transfer properties of cat retinal ganglion cells. J. Physiol. 285:275–98
    [Google Scholar]
  143. Sharpee TO. 2013. Computational identification of receptive fields. Annu. Rev. Neurosci. 36:103–20
    [Google Scholar]
  144. Sharpee TO, Rust NC, Bialek W 2004. Analyzing neural responses to natural signals: maximally informative dimensions. Neural Comput 16:2223–50
    [Google Scholar]
  145. Shi Q, Gupta P, Boukhvalova A, Singer JH, Butts DA 2019. Functional characterization of retinal ganglion cells using tailored nonlinear modeling. Sci. Rep. 9:8713
    [Google Scholar]
  146. Shou T-D. 2010. The functional roles of feedback projections in the visual system. Neurosci. Bull. 26:5401–10
    [Google Scholar]
  147. Simoncelli EP, Pillow JW, Paninski L, Schwartz O 2004. Characterization of neural responses with stochastic stimuli. The New Cognitive Neurosciences M Gazzaniga 327–38 Cambridge, MA: MIT Press
    [Google Scholar]
  148. Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 [cs.CV]
  149. Sinz FH, Ecker AS, Fahey PG, Erick C, Froudarakis E et al. 2018. Stimulus domain transfer in recurrent models for large scale cortical population prediction on video. Adv. Neural Inf. Process. Syst. 31:7199–210
    [Google Scholar]
  150. Stevenson IH, Körding KP. 2011. How advances in neural recording affect data analysis. Nat. Neurosci. 14:2139–42
    [Google Scholar]
  151. Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD 2019. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364:6437eaav7893
    [Google Scholar]
  152. Talebi V, Baker CL. 2012. Natural versus synthetic stimuli for estimating receptive field models: a comparison of predictive robustness. J. Neurosci. 32:51560–76
    [Google Scholar]
  153. Touryan J, Felsen G, Dan Y 2005. Spatial structure of complex cell receptive fields measured with natural images. Neuron 45:5781–91
    [Google Scholar]
  154. Touryan J, Lau B, Dan Y 2002. Isolation of relevant visual features from random stimuli for cortical complex cells. J. Neurosci. 22:2410811–18
    [Google Scholar]
  155. Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN 2005. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J. Neurophysiol. 93:21074–89
    [Google Scholar]
  156. Turner MH, Rieke F. 2016. Synaptic rectification controls nonlinear spatial integration of natural visual inputs. Neuron 90:61257–71
    [Google Scholar]
  157. Uzzell VJ, Chichilnisky EJ. 2004. Precision of spike trains in primate retinal ganglion cells. J. Neurophysiol. 92:2780–89
    [Google Scholar]
  158. VanRullen R, Thorpe SJ. 2001. Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput 13:61255–83
    [Google Scholar]
  159. Victor JD, Shapley RM. 1979. The nonlinear pathway of Y ganglion cells in the cat retina. J. Gen. Physiol. 74:6671–89
    [Google Scholar]
  160. Vinck M, Batista-Brito R, Knoblich U, Cardin JA 2015. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86:3740–54
    [Google Scholar]
  161. Weber AI, Pillow JW. 2017. Capturing the dynamical repertoire of single neurons with generalized linear models. Neural Comput 29:123260–89
    [Google Scholar]
  162. Whiteway MR, Butts DA. 2019. The quest for interpretable models of neural population activity. Curr. Opin. Neurobiol. 58:86–93
    [Google Scholar]
  163. Williamson RS, Ahrens MB, Linden JF, Sahani M 2016. Input-specific gain modulation by local sensory context shapes cortical and thalamic responses to complex sounds. Neuron 91:2467–81
    [Google Scholar]
  164. Williamson RS, Sahani M, Pillow JW 2013. Equating information-theoretic and likelihood-based methods for neural dimensionality reduction. arXiv:1308.3542 [q-bio.NC]
  165. Williamson RS, Sahani M, Pillow JW 2015. The equivalence of information-theoretic and likelihood-based methods for neural dimensionality reduction. PLOS Comput. Biol. 11:4e1004141
    [Google Scholar]
  166. Wilson DE, Whitney DE, Scholl B, Fitzpatrick D 2016. Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nat. Neurosci. 19:81003–9
    [Google Scholar]
  167. Wu MCK, David SV, Gallant JL 2006. Complete functional characterization of sensory neurons by system identification. Annu. Rev. Neurosci. 29:477–505
    [Google Scholar]
  168. Yamins DLK, DiCarlo JJ. 2016. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19:3356–65
    [Google Scholar]
  169. Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ 2014. Performance-optimized hierarchical models predict neural responses in higher visual cortex. PNAS 111:238619–24
    [Google Scholar]
  170. Yates JL, Park IM, Katz LN, Pillow JW, Huk AC 2017. Functional dissection of signal and noise in MT and LIP during decision-making. Nat. Neurosci. 20:91285–92
    [Google Scholar]
  171. Zhang Y, Lee TS, Li M, Liu F, Tang S 2019. Convolutional neural network models of V1 responses to complex patterns. J. Comput. Neurosci. 46:133–54
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091718-014731
Loading
/content/journals/10.1146/annurev-vision-091718-014731
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error