1932

Abstract

Adaptation is a common principle that recurs throughout the nervous system at all stages of processing. This principle manifests in a variety of phenomena, from spike frequency adaptation, to apparent changes in receptive fields with changes in stimulus statistics, to enhanced responses to unexpected stimuli. The ubiquity of adaptation leads naturally to the question: What purpose do these different types of adaptation serve? A diverse set of theories, often highly overlapping, has been proposed to explain the functional role of adaptive phenomena. In this review, we discuss several of these theoretical frameworks, highlighting relationships among them and clarifying distinctions. We summarize observations of the varied manifestations of adaptation, particularly as they relate to these theoretical frameworks, focusing throughout on the visual system and making connections to other sensory systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091718-014818
2019-09-15
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091718-014818.html?itemId=/content/journals/10.1146/annurev-vision-091718-014818&mimeType=html&fmt=ahah

Literature Cited

  1. Adibi M, McDonald JS, Clifford CWG, Arabzadeh E 2013. Adaptation improves neural coding efficiency despite increasing correlations in variability. J. Neurosci. 33:52108–20
    [Google Scholar]
  2. Aitchison L, Lengyel M. 2017. With or without you: predictive coding and Bayesian inference in the brain. Curr. Opin. Neurobiol. 46:219–27
    [Google Scholar]
  3. Aljadeff J, Lansdell BJ, Fairhall AL, Kleinfeld D 2016. Analysis of neuronal spike trains, deconstructed. Neuron 91:2221–59
    [Google Scholar]
  4. Appleby TR, Manookin MB. 2018. Neural sensitization improves encoding fidelity in the primate retina. bioRxiv 482190
    [Google Scholar]
  5. Aschner A, Solomon SG, Heeger DJ, Kohn A, Aschner A 2018. Temporal contingencies determine whether adaptation strengthens or weakens normalization. J. Neurosci. 38:4710129–42
    [Google Scholar]
  6. Atick J, Redlich A. 1990. Towards a theory of early visual processing. Neural Comput 2:3308–20
    [Google Scholar]
  7. Atick J, Redlich A. 1992. What does the retina know about natural scenes. ? Neural Comput 4:2196–210Uses the information maximization principle to explain adaptation of ganglion cell receptive fields to different environments.
    [Google Scholar]
  8. Attneave F. 1954. Some informational aspects of visual perception. Psychol. Rev. 61:3183–93
    [Google Scholar]
  9. Averbeck BB, Latham P, Pouget A 2006. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7:5358–66
    [Google Scholar]
  10. Baccus SA, Meister M. 2002. Fast and slow contrast adaptation in retinal circuitry. Neuron 36:5909–19
    [Google Scholar]
  11. Bachatene L, Bharmauria V, Cattan S, Rouat J, Molotchnikoff S 2015. Modulation of functional connectivity following visual adaptation: homeostasis in V1. Brain Res 1594:136–53
    [Google Scholar]
  12. Bair W, Movshon JA. 2004. Adaptive temporal integration of motion in direction-selective neurons in macaque visual cortex. J. Neurosci. 24:337305–23
    [Google Scholar]
  13. Barlow H. 1961. Possible principles underlying the transformations of sensory messages. Sensory Communication WA Rosenblith 217–34 Cambridge, MA: MIT PressPosits redundancy reduction as a design principle for sensory systems.
    [Google Scholar]
  14. Barlow H, Levick WR. 1969. Changes in the maintained discharge with adaptation level in the cat retina. J. Physiol. 202:3699–718
    [Google Scholar]
  15. Benucci A, Saleem AB, Carandini M 2013. Adaptation maintains population homeostasis in primary visual cortex. Nat. Neurosci. 16:6724–29
    [Google Scholar]
  16. Berkes P, Orbán G, Lengyel M, Fiser J 2011. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331:601383–87
    [Google Scholar]
  17. Bharioke A, Chklovskii DB. 2015. Automatic adaptation to fast input changes in a time-invariant neural circuit. PLOS Comput. Biol. 11:8e1004315
    [Google Scholar]
  18. Bonin V, Mante V, Carandini M 2006. The statistical computation underlying contrast gain control. J. Neurosci. 26:236346–53
    [Google Scholar]
  19. Borst A, Flanagin VL, Sompolinsky H 2005. Adaptation without parameter change: dynamic gain control in motion detection. PNAS 102:176172–76
    [Google Scholar]
  20. Brenner N, Bialek W, Van Steveninck R 2000. Adaptive rescaling maximizes information transmission. Neuron 26:695–702
    [Google Scholar]
  21. Brette R, Gerstner W. 2005. Neuronal activity. J. Neurophysiol. 94:3637–42
    [Google Scholar]
  22. Brinkman BAW, Weber AI, Rieke F, Shea-Brown E 2016. How do efficient coding strategies depend on origins of noise in neural circuits. ? PLOS Comput. Biol. 12:10e1005150
    [Google Scholar]
  23. Bullock TH, Hofmann MH, Nahm FK, New JG, Prechtl JC 1990. Event-related potentials in the retina and optic tectum of fish. J. Neurophysiol. 64:3903–14
    [Google Scholar]
  24. Butts DA, Weng C, Jin J, Yeh CI, Lesica NA et al. 2007. Temporal precision in the neural code and the timescales of natural vision. Nature 449:715892–95
    [Google Scholar]
  25. Cafaro J. 2016. Multiple sites of adaptation lead to contrast encoding in the Drosophila olfactory system. Physiol. Rep. 4:7e12762
    [Google Scholar]
  26. Carandini M, Heeger D. 2012. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13:151–62
    [Google Scholar]
  27. Castro-Alamancos MA, Connors BW. 1996. Short-term plasticity of a thalamocortical pathway dynamically modulated by behavioral state. Science 272:5259274–77
    [Google Scholar]
  28. Chalk M, Marre O, Tkačik G 2018. Toward a unified theory of efficient, predictive, and sparse coding. PNAS 115:1186–91Aims to unify several theoretical approaches to sensory processing under a common information theoretic framework.
    [Google Scholar]
  29. Chander D, Chichilnisky EJ. 2001. Adaptation to temporal contrast in primate and salamander retina. J. Neurosci. 21:249904–16
    [Google Scholar]
  30. Clemens J, Ozeri-Engelhard N, Murthy M 2018. Fast intensity adaptation enhances the encoding of sound in Drosophila. Nat. Commun. 9:134
    [Google Scholar]
  31. Cooke JE, King AJ, Willmore BDB, Schnupp JWH 2018. Contrast gain control in mouse auditory cortex. J. Neurophysiol. 120:41872–84
    [Google Scholar]
  32. Cortes JM, Marinazzo D, Series P, Oram MW, Sejnowski TJ, Van Rossum MCW 2012. The effect of neural adaptation on population coding accuracy. J. Comput. Neurosci. 32:3387–402
    [Google Scholar]
  33. Cui Y, Wang YV, Park SJH, Demb JB, Butts DA 2016. Divisive suppression explains high-precision firing and contrast adaptation in retinal ganglion cells. eLife 5:e19460
    [Google Scholar]
  34. Dean I, Harper NS, McAlpine D 2005. Neural population coding of sound level adapts to stimulus statistics. Nat. Neurosci. 8:121684–89
    [Google Scholar]
  35. Dean I, Robinson BL, Harper NS, McAlpine D 2008. Rapid neural adaptation to sound level statistics. J. Neurosci. 28:256430–38
    [Google Scholar]
  36. DeWeese MR, Zador AM. 1998. Asymmetric dynamics in optimal variance adaptation. Neural Comput 10:51179–202Models the dynamics of contrast adaptation as arising from the dynamics of an optimal estimator.
    [Google Scholar]
  37. Doiron B, Litwin-Kumar A, Rosenbaum R, Ocker GK, Josić K 2016. The mechanics of state-dependent neural correlations. Nat. Neurosci. 19:3383–93
    [Google Scholar]
  38. Downer JD, Niwa M, Sutter ML 2015. Task engagement selectively modulates neural correlations in primary auditory cortex. J. Neurosci. 35:197565–74
    [Google Scholar]
  39. Drew PJ, Abbott LF. 2006. Models and properties of power-law adaptation in neural systems. J. Neurophysiol. 96:2826–33
    [Google Scholar]
  40. Enroth-Cugell C, Lennie P. 1975. The control of retinal ganglion cell discharge by receptive field surrounds. J. Physiol. 247:551–78
    [Google Scholar]
  41. Enroth-Cugell C, Robson J. 1966. Contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187:517–52
    [Google Scholar]
  42. Eytan D, Brenner N, Marom S 2003. Selective adaptation in networks of cortical neurons. J. Neurosci. 23:289349–56
    [Google Scholar]
  43. Fairhall AL. 2014. Adaptation and natural stimulus statistics. The Cognitive Neurosciencesed. MS Gazzaniga, GR Mangun283–94 Cambridge, MA: MIT Press. , 5th ed..
    [Google Scholar]
  44. Fairhall AL, Lewen G, Bialek W, de Ruyter Van Steveninck RR 2001. Efficiency and ambiguity in an adaptive neural code. Nature 412:6849787–92Studies diverse timescales of adaptation in fly H1 neurons and suggests a multiplexed neural code.
    [Google Scholar]
  45. Famulare M, Fairhall AL. 2010. Feature selection in simple neurons: how coding depends on spiking dynamics. Neural Comput 22:3581–98
    [Google Scholar]
  46. Fusi S, Drew PJ, Abbott LF 2005. Cascade models of synaptically stored memories. Neuron 45:4599–611
    [Google Scholar]
  47. Garvert MM, Gollisch T. 2013. Local and global contrast adaptation in retinal ganglion cells. Neuron 77:5915–28
    [Google Scholar]
  48. Gaudry KS, Reinagel P. 2007. Contrast adaptation in a nonadapting LGN model. J. Neurophysiol. 98:31287–96
    [Google Scholar]
  49. Gavornik JP, Bear MF. 2014. Learned spatiotemporal sequence recognition and prediction in primary visual cortex. Nat. Neurosci. 17:5732–37
    [Google Scholar]
  50. Grimes W, Schwartz G, Rieke F 2014. The synaptic and circuit mechanisms underlying a change in spatial encoding in the retina. Neuron 82:2460–73
    [Google Scholar]
  51. Gutierrez GJ, Denève S. 2018. Population adaptation in efficient balanced networks. bioRxiv 211748
    [Google Scholar]
  52. Gutnisky DA, Dragoi V. 2008. Adaptive coding of visual information in neural populations. Nature 452:7184220–24
    [Google Scholar]
  53. Hamm JP, Shymkiv Y, Han S, Yang W, Yuste R 2018. Cortical subnetworks encode context of visual stimulus. bioRxiv 452219
    [Google Scholar]
  54. Hamm JP, Yuste R. 2016. Somatostatin interneurons control a key component of mismatch negativity in mouse visual cortex. Cell Rep 16:3597–604
    [Google Scholar]
  55. Higley MJ. 2006. Balanced excitation and inhibition determine spike timing during frequency adaptation. J. Neurosci. 26:2448–57
    [Google Scholar]
  56. Hinton GE. 1989. Connectionist learning procedures. Artif. Intell. 401989:185–234
    [Google Scholar]
  57. Homann J, Koay SA, Glidden AM, Tank DW, Berry MJ 2017. Predictive coding of novel versus familiar stimuli in the primary visual cortex. bioRxiv 197608Studies predictive coding by a population of neurons in mouse V1, showing complex feature detection.
    [Google Scholar]
  58. Hong S, Agüera y, Arcas B, Fairhall AL 2007. Single neuron computation: from dynamical system to feature detector. Neural Comput 19:123133–72
    [Google Scholar]
  59. Hosoya T, Baccus SA, Meister M 2005. Dynamic predictive coding by the retina. Nature 436:704771–77
    [Google Scholar]
  60. Hu Y, Zylberberg J, Shea-Brown E 2014. The sign rule and beyond: boundary effects, flexibility, and noise correlations in neural population codes. PLOS Comput. Biol. 10:2e1003469
    [Google Scholar]
  61. Huang CG, Zhang ZD, Chacron MJ 2016. Temporal decorrelation by SK channels enables efficient neural coding and perception of natural stimuli. Nat. Commun. 7:11353
    [Google Scholar]
  62. Jeanne JM, Sharpee TO, Gentner TQ 2013. Associative learning enhances population coding by inverting interneuronal correlation patterns. Neuron 78:2352–63
    [Google Scholar]
  63. Joris PX, Schreiner CE, Rees A 2004. Neural processing of amplitude-modulated sounds. Physiol. Rev. 84:2541–77
    [Google Scholar]
  64. Karklin Y, Simoncelli EP. 2011. Efficient coding of natural images with a population of noisy linear-nonlinear neurons. Advances in Neural Information Processing Systems 24 (NIPS 2011)1–9 San Diego, CA: NeurIPS Found.
    [Google Scholar]
  65. Kastner DB, Baccus SA. 2011. Coordinated dynamic encoding in the retina using opposing forms of plasticity. Nat. Neurosci. 14:101317–22Shows evidence for qualitatively different types of contrast adaptation dynamics in retinal ganglion cells.
    [Google Scholar]
  66. Kastner DB, Baccus SA. 2013. Spatial segregation of adaptation and predictive sensitization in retinal ganglion cells. Neuron 79:3541–54
    [Google Scholar]
  67. Kastner DB, Baccus SA, Sharpee TO 2015. Critical and maximally informative encoding between neural populations in the retina. PNAS 112:82533–38
    [Google Scholar]
  68. Keller GB, Mrsic-Flogel TD. 2018. Predictive processing: a canonical cortical computation. Neuron 100:2424–35
    [Google Scholar]
  69. Kim KJ, Rieke F. 2001. Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. J. Neurosci. 21:1287–99
    [Google Scholar]
  70. Kvale MN, Schreiner CE. 2003. Short-term adaptation of auditory receptive fields to dynamic stimuli. J. Neurophysiol. 91:2604–12
    [Google Scholar]
  71. Latimer KW, Barbera D, Sokoletsky M, Awwad B, Katz T, et al. 2019. Multiple timescales account for adaptive responses across sensory cortices. bioRxiv 700062. https://www.biorxiv.org/content/10.1101/700062v1
    [Google Scholar]
  72. Latimer KW, Rieke F, Pillow JW 2018. Inferring synaptic inputs from spikes with a conductance-based neural encoding model. bioRxiv 281089
    [Google Scholar]
  73. Laughlin S. 1981. A simple coding procedure enhances a neuron's information capacity. Z. Naturforsch. 36c:910–12
    [Google Scholar]
  74. Laughlin S. 1989. The role of sensory adaptation in the retina. J. Exp. Biol. 146:39–62
    [Google Scholar]
  75. Lesica NA, Jin J, Weng C, Yeh CI, Butts DA et al. 2007. Adaptation to stimulus contrast and correlations during natural visual stimulation. Neuron 55:3479–91
    [Google Scholar]
  76. Leugering J, Pipa G. 2018. A unifying framework of synaptic and intrinsic plasticity in neural populations. Neural Comput 30:4945–86
    [Google Scholar]
  77. Lundstrom BN. 2006. Decoding stimulus variance from a distributional neural code of interspike intervals. J. Neurosci. 26:359030–37
    [Google Scholar]
  78. Lundstrom BN, Fairhall AL, Maravall M 2010. Multiple timescale encoding of slowly varying whisker stimulus envelope in cortical and thalamic neurons in vivo. J. Neurosci. 30:145071–77
    [Google Scholar]
  79. Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL 2008. Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11:111335–42Dynamics of contrast adaptation in isolated cortical neurons are quantitatively explained by fractional differentiation.
    [Google Scholar]
  80. Maheswaranathan N, Kastner DB, Baccus SA, Ganguli S 2018. Inferring hidden structure in multilayered neural circuits. PLOS Comput. Biol. 14:8e1006291
    [Google Scholar]
  81. Maravall M, Petersen RS, Fairhall AL, Arabzadeh E, Diamond ME 2007. Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLOS Biol 5:2e19
    [Google Scholar]
  82. Marder E, Goeritz ML, Otopalik AG 2015. Robust circuit rhythms in small circuits arise from variable circuit components and mechanisms. Curr. Opin. Neurobiol. 31:156–63
    [Google Scholar]
  83. McIntosh LT, Maheswaranathan N, Nayebi A, Ganguli S, Baccus SA 2016. Deep learning models of the retinal response to natural scenes. Advances in Neural Information Processing Systems 29 (NIPS 2016)1–9 San Diego, CA: NeurIPS Found.
    [Google Scholar]
  84. Mease RA, Famulare M, Gjorgjieva J, Moody WJ, Fairhall AL 2013. Emergence of adaptive computation by single neurons in the developing cortex. J. Neurosci. 33:3012154–70
    [Google Scholar]
  85. Mease RA, Lee S, Moritz AT, Powers RK, Binder MD, Fairhall AL 2014. Context-dependent coding in single neurons. J. Comput. Neurosci. 37:3459–80
    [Google Scholar]
  86. Miller GA. 1953. What is information measurement. ? Am. Psychol. 8:13–11
    [Google Scholar]
  87. Młynarski WF, Hermundstad AM. 2018. Adaptive coding for dynamic sensory inference. eLife 7:e32055
    [Google Scholar]
  88. Moreno-Bote R, Beck J, Kanitscheider I, Pitkow X, Latham P, Pouget A 2014. Information-limiting correlations. Nat. Neurosci. 17:101410–17
    [Google Scholar]
  89. Näätänen R, Paavilainen P, Rinne T, Alho K 2007. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin. Neurophysiol. 118:122544–90
    [Google Scholar]
  90. Nagel K, Doupe A. 2006. Temporal processing and adaptation in the songbird auditory forebrain. Neuron 51:6845–59
    [Google Scholar]
  91. Natan RG, Briguglio JJ, Mwilambwe-Tshilobo L, Jones SI, Aizenberg M et al. 2015. Complementary control of sensory adaptation by two types of cortical interneurons. eLife 4:e09868
    [Google Scholar]
  92. Nelken I. 2014. Stimulus-specific adaptation and deviance detection in the auditory system: experiments and models. Biol. Cybern. 108:5655–63
    [Google Scholar]
  93. Nirenberg S, Bomash I, Pillow JW, Victor JD 2010. Heterogeneous response dynamics in retinal ganglion cells: the interplay of predictive coding and adaptation. J. Neurophysiol. 103:3184–94
    [Google Scholar]
  94. Normann RA, Perlman I. 1979. The effects of background illumination on the photoresponses of red and green cones. J. Physiol. 286:491–507
    [Google Scholar]
  95. Okun M, Lampl I. 2008. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat. Neurosci. 11:5535–37
    [Google Scholar]
  96. Ozuysal Y, Baccus SA. 2012. Linking the computational structure of variance adaptation to biophysical mechanisms. Neuron 73:51002–15
    [Google Scholar]
  97. Padoa-Schioppa C. 2009. Range-adapting representation of economic value in the orbitofrontal cortex. J. Neurosci. 29:4414004–14
    [Google Scholar]
  98. Palmer SE, Marre O, Berry MJ, Bialek W 2015. Predictive information in a sensory population. PNAS 112:226908–13
    [Google Scholar]
  99. Panzeri S, Brunel N, Logothetis NK, Kayser C 2010. Sensory neural codes using multiplexed temporal scales. Trends Neurosci 33:3111–20
    [Google Scholar]
  100. Park IM, Pillow JW. 2017. Bayesian efficient coding. bioRxiv 178418
    [Google Scholar]
  101. Patterson CA, Wissig SC, Kohn A 2013. Distinct effects of brief and prolonged adaptation on orientation tuning in primary visual vortex. J. Neurosci. 33:2532–43
    [Google Scholar]
  102. Pérez-González D, Malmierca MS, Covey E 2005. Novelty detector neurons in the mammalian auditory midbrain. Eur. J. Neurosci. 22:112879–85
    [Google Scholar]
  103. Phillips EAK, Schreiner CE, Hasenstaub AR 2017. Cortical interneurons differentially regulate the effects of acoustic context. Cell Rep 20:4771–78
    [Google Scholar]
  104. Pitkow X, Meister M. 2012. Decorrelation and efficient coding by retinal ganglion cells. Nat. Neurosci. 15:4628–35
    [Google Scholar]
  105. Podlubny I. 1998. Fractional Differential Equations, Vol. 198: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications Amsterdam: Elsevier
  106. Pozzorini C, Naud R, Mensi S, Gerstner W 2013. Temporal whitening by power-law adaptation in neocortical neurons. Nat. Neurosci. 16:7942–48
    [Google Scholar]
  107. Prescott SA, Sejnowski TJ. 2008. Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms. J. Neurosci. 28:5013649–61
    [Google Scholar]
  108. Rao RPN, Ballard DH. 1999. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2:179–87
    [Google Scholar]
  109. Rasmussen RG, Schwartz A, Chase SM 2017. Dynamic range adaptation in primary motor cortical populations. eLife 6:e21409
    [Google Scholar]
  110. Rivlin-Etzion M, Grimes WN, Rieke F 2018. Flexible neural hardware supports dynamic computations in retina. Trends Neurosci 41:4224–37
    [Google Scholar]
  111. Rivlin-Etzion M, Wei W, Feller MB 2012. Visual stimulation reverses the directional preference of direction-selective retinal ganglion cells. Neuron 76:3518–25
    [Google Scholar]
  112. Robinson BL, Harper NS, McAlpine D 2016. Meta-adaptation in the auditory midbrain under cortical influence. Nat. Commun. 7:13442
    [Google Scholar]
  113. Sanchez-Vives MV, Nowak LG, McCormick DA 2000. Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J. Neurosci. 20:114286–99
    [Google Scholar]
  114. Schneidman E, Berry MJ, Segev R, Bialek W 2006. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440:70871007–12
    [Google Scholar]
  115. Schwartz G, Berry MJ. 2008. Sophisticated temporal pattern recognition in retinal ganglion cells. J. Neurophysiol. 99:41787–98
    [Google Scholar]
  116. Schwartz G, Harris R, Shrom D, Berry MJ 2007. Detection and prediction of periodic patterns by the retina. Nat. Neurosci. 10:5552–54
    [Google Scholar]
  117. Schwartz O, Simoncelli EP. 2000. Natural sound statistics and divisive normalization in the auditory system. Advances in Neural Information Processing Systems 13 (NIPS 2000)27–30 San Diego, CA: NeurIPS Found.
    [Google Scholar]
  118. Schwartz O, Simoncelli EP. 2001. Natural signal statistics and sensory gain control. Nat. Neurosci. 4:8819–25
    [Google Scholar]
  119. Shapley RM, Victor JD. 1978. The effect of contrast on the transfer properties of cat retinal ganglion cells. J. Physiol. 285:275–98
    [Google Scholar]
  120. Sharpee TO, Calhoun AJ, Chalasani SH 2014. Information theory of adaptation in neurons, behavior, and mood. Curr. Opin. Neurobiol. 25:47–53
    [Google Scholar]
  121. Sharpee TO, Miller KD, Stryker M 2008. On the importance of the static nonlinearity in estimating spatiotemporal neural filters with natural stimuli. J. Neurophysiol. 99:52496–509
    [Google Scholar]
  122. Sharpee TO, Rust N, Bialek W 2004. Analyzing neural responses to natural signals: maximally informative dimensions. Neural Comput 16:2223–50
    [Google Scholar]
  123. Sharpee TO, Sugihara H, Kurgansky AV, Rebrik SP, Stryker MP, Miller KD 2006. Adaptive filtering enhances information transmission in visual cortex. Nature 439:7079936–42
    [Google Scholar]
  124. Simmons KD, Prentice JS, Tkačik G, Homann J, Yee HK et al. 2013. Transformation of stimulus correlations by the retina. PLOS Comput. Biol. 9:12e1003344
    [Google Scholar]
  125. Smirnakis S, Berry MJ, Warland DK, Bialek W, Meister M 1997. Adaptation of retinal processing to image contrast and spatial scale. Nature 386:662069–73
    [Google Scholar]
  126. Solomon SG, Kohn A. 2014. Moving sensory adaptation beyond suppressive effects in single neurons. Curr. Biol. 24:20R1012–22Reviews diverse adaptive phenomena, emphasizing how adaptation alters the balance between excitatory and suppressive signals.
    [Google Scholar]
  127. Spratling MW. 2017. A review of predictive coding algorithms. Brain Cogn 112:92–97
    [Google Scholar]
  128. Srinivasan MV, Laughlin SB, Dubs A 1982. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. B 216:427–59
    [Google Scholar]
  129. Symonds RM, Lee WW, Kohn A, Schwartz O, Witkowski S, Sussman ES 2017. Distinguishing neural adaptation and predictive coding hypotheses in auditory change detection. Brain Topogr 30:1136–48
    [Google Scholar]
  130. Thomas RA, Metzen MG, Chacron MJ 2018. Weakly electric fish distinguish between envelope stimuli arising from different behavioral contexts. J. Exp. Biol. 221:15jeb178244
    [Google Scholar]
  131. Tikidji-Hamburyan A, Reinhard K, Seitter H, Hovhannisyan A, Procyk CA et al. 2014. Retinal output changes qualitatively with every change in ambient illuminance. Nat. Neurosci. 18:166–74
    [Google Scholar]
  132. Tishby N, Pereira FC, Bialek W 1999. The information bottleneck method. Proceedings of the 37th Annual Allerton Conference on Communication, Control and Computing368–77 Urbana, IL: Allerton Conf.
    [Google Scholar]
  133. Tkačik G, Ghosh A, Schneidman E, Segev R 2014. Adaptation to changes in higher-order stimulus statistics in the salamander retina. PLOS ONE 9:1e85841
    [Google Scholar]
  134. Tobler PN, Fiorillo CD, Schultz W 2005. Adaptive coding of reward value by dopamine neurons. Science 307:1642–46
    [Google Scholar]
  135. Todorovic A, van Ede F, Maris E, de Lange FP 2011. Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: an MEG study. J. Neurosci. 31:259118–23
    [Google Scholar]
  136. Turner MH, Rieke F. 2016. Synaptic rectification controls nonlinear spatial integration of natural visual inputs. Neuron 90:61257–71
    [Google Scholar]
  137. Turner R, Sahani M. 2007. A maximum-likelihood interpretation for slow feature analysis. Neural Comput 19:41022–38
    [Google Scholar]
  138. Ulanovsky N, Las L, Nelken I 2003. Processing of low-probability sounds by cortical neurons. Nat. Neurosci. 6:4391–98
    [Google Scholar]
  139. Vinken K, Vogels R, Op de Beeck H 2017. Recent visual experience shapes visual processing in rats through stimulus-specific adaptation and response enhancement. Curr. Biol. 27:6914–19
    [Google Scholar]
  140. Vintch B, Zaharia AD, Movshon JA, Simoncelli EP 2012. Efficient and direct estimation of a neural subunit model for sensory coding. Advances in Neural Information Processing Systems 26 (NIPS 2012)1–9 San Diego, CA: NeurIPS Found.
    [Google Scholar]
  141. Wainwright MJ. 1999. Visual adaptation as optimal information transmission. Vis. Res. 39:233960–74
    [Google Scholar]
  142. Wark B, Fairhall AL, Rieke F 2009. Timescales of inference in visual adaptation. Neuron 61:5750–61
    [Google Scholar]
  143. Wark B, Lundstrom BN, Fairhall A 2007. Sensory adaptation. Curr. Opin. Neurobiol. 17:4423–29
    [Google Scholar]
  144. Wen B, Wang GI, Dean I, Delgutte B 2009. Dynamic range adaptation to sound level statistics in the auditory nerve. J. Neurosci. 29:4413797–808
    [Google Scholar]
  145. Wen B, Wang GI, Dean I, Delgutte B 2012. Time course of dynamic range adaptation in the auditory nerve. J. Neurophysiol. 108:169–82
    [Google Scholar]
  146. Whitmire CJ, Stanley GB. 2016. Rapid sensory adaptation redux: a circuit perspective. Neuron 92:2298–315Reviews mechanisms of adaptation at multiple scales, from single neurons to population interactions.
    [Google Scholar]
  147. Williamson RS, Ahrens MB, Linden JF, Sahani M 2016. Input-specific gain modulation by local sensory context shapes cortical and thalamic responses to complex sounds. Neuron 91:2467–81
    [Google Scholar]
  148. Wiskott L, Sejnowski T. 2002. Slow feature analysis: unsupervised learning of invariances. Neural Comput 14:4715–70
    [Google Scholar]
  149. Yaron A, Hershenhoren I, Nelken I 2012. Sensitivity to complex statistical regularities in rat auditory cortex. Neuron 76:3603–15
    [Google Scholar]
  150. Yu Y, Lee TS. 2003. Dynamical mechanisms underlying contrast gain control in single neurons. Phys. Rev. E 68:011901
    [Google Scholar]
  151. Zhang ZD, Chacron MJ. 2016. Adaptation to second order stimulus features by electrosensory neurons causes ambiguity. Sci. Rep. 6:28716
    [Google Scholar]
  152. Zohary E, Shadlen MN, Newsome WT 1994. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370:140–43
    [Google Scholar]
  153. Zylberberg J, Cafaro J, Turner MH, Shea-Brown E, Rieke F 2016. Direction-selective circuits shape noise to ensure a precise population code. Neuron 89:2369–83
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091718-014818
Loading
/content/journals/10.1146/annurev-vision-091718-014818
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error