1932

Abstract

In our tendency to discuss the objective properties of the external world, we may fail to notice that our subjective perceptions of those properties differ between individuals. Variability at all levels of the color vision system creates diversity in color perception, from discrimination to color matching, appearance, and subjective experience, such that each of us lives in a unique perceptual world. In this review, I discuss what is known about individual differences in color perception and its determinants, particularly considering genetically mediated variability in cone photopigments and the paradoxical effects of visual environments in both contributing to and counteracting individual differences. I make the case that, as well as being of interest in their own right and crucial for a complete account of color vision, individual differences can be used as a methodological tool in color science for the insights that they offer about the underlying mechanisms of perception.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-093020-112820
2022-09-15
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/vision/8/1/annurev-vision-093020-112820.html?itemId=/content/journals/10.1146/annurev-vision-093020-112820&mimeType=html&fmt=ahah

Literature Cited

  1. Alpern M, Kitahara K, Krantz D. 1983a. Classical tritanopia. J. Physiol. 335:655–81
    [Google Scholar]
  2. Alpern M, Kitahara K, Krantz D. 1983b. Perception of colour in unilateral tritanopia. J. Physiol. 335:683–97
    [Google Scholar]
  3. Arend L, Reeves A. 1986. Simultaneous color constancy. J. Opt. Soc. Am. A 3:101743–51
    [Google Scholar]
  4. Asano Y, Fairchild MD, Blondé L. 2016a. Individual colorimetric observer model. PLOS ONE 11:2e0145671
    [Google Scholar]
  5. Asano Y, Fairchild MD, Blondé L, Morvan P. 2016b. Color matching experiment for highlighting interobserver variability. Color Res. Appl. 41:5530–39
    [Google Scholar]
  6. Aston S, Hurlbert A. 2017. What #theDress reveals about the role of illumination priors in color perception and color constancy. J. Vis. 17:94
    [Google Scholar]
  7. Baden T, Euler T, Berens P. 2020. Understanding the retinal basis of vision across species. Nat. Rev. Neurosci. 21:15–20
    [Google Scholar]
  8. Baraas RC, Hagen LA, Dees EW, Neitz M. 2012. Substitution of isoleucine for threonine at position 190 of S-opsin causes S-cone-function abnormalities. Vis. Res. 73:1–9
    [Google Scholar]
  9. Barbur JL, Rodriguez-Carmona M. 2016. Color vision changes in normal aging. Handbook of Color Psychology AJ Elliott, MD Fairchild, A Franklin 180–96 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  10. Barbur JL, Rodriguez-Carmona M, Harlow JA, Mancuso K, Neitz J, Neitz M. 2008. A study of unusual Rayleigh matches in deutan deficiency. Vis. Neurosci. 25:3507–16
    [Google Scholar]
  11. Bento-Torres NVO, Rodrigues AR, Côrtes MIT, De Oliveira Bonci DM, Ventura DF, De Lima Silveira LC. 2016. Psychophysical evaluation of congenital colour vision deficiency: discrimination between protans and deutans using Mollon-Reffin's ellipses and the Farnsworth-Munsell 100-hue test. PLOS ONE 11:4e0152214
    [Google Scholar]
  12. Berendschot T, Broekmans W, Klöpping-Ketelaars I, Kardinaal A, van Poppel G, van Norren D. 2002. Lens aging in relation to nutritional determinants and possible risk factors for age-related cataract. JAMA Ophthalmol 120:1732–37
    [Google Scholar]
  13. Berlin B, Kay P. 1969. Basic Color Terms: Their Universality and Evolution Berkeley: Univ. Calif. Press
  14. Bimler D, Bonnardel V. 2018. Age and gender effects on perceptual color scaling using triadic comparisons. J. Opt. Soc. Am. A 35:4B1–10
    [Google Scholar]
  15. Bimler D, Kirkland J. 2009. Colour-space distortion in women who are heterozygous for colour deficiency. Vis. Res. 49:5536–43
    [Google Scholar]
  16. Bimler DL, Kirkland J, Jameson KA. 2004. Quantifying variations in personal color spaces: Are there sex differences in color vision?. Color Res. Appl. 29:2128–34
    [Google Scholar]
  17. Birch J. 2012. Worldwide prevalence of red-green color deficiency. J. Opt. Soc. Am. A 29:3313–20
    [Google Scholar]
  18. Boehm AE, MacLeod DIA, Bosten JM. 2014. Compensation for red-green contrast loss in anomalous trichromats. J. Vis. 14:1319
    [Google Scholar]
  19. Bonnardel V, Beniwal S, Dubey N, Pande M, Knoblauch K, Bimler D. 2016. Perceptual color spacing derived from maximum likelihood multidimensional scaling. J. Opt. Soc. Am. A 33:3A30–36
    [Google Scholar]
  20. Borel P, De Edelenyi FS, Vincent-Baudry S, Malezet-Desmoulin C, Margotat A et al. 2011. Genetic variants in BCMO1 and CD36 are associated with plasma lutein concentrations and macular pigment optical density in humans. Ann. Med. 43:147–59
    [Google Scholar]
  21. Bosten J. 2019. The known unknowns of anomalous trichromacy. Curr. Opin. Behav. Sci. 30:228–37
    [Google Scholar]
  22. Bosten JM, Bargary G, Goodbourn PT, Hogg RE, Lawrance-Owen AJ, Mollon JD. 2014. Individual differences provide psychophysical evidence for separate on- and off-pathways deriving from short-wave cones. J. Opt. Soc. Am. A 31:4A47–54
    [Google Scholar]
  23. Bosten JM, Beer RD, MacLeod DIA. 2015. What is white?. J. Vis. 15:165
    [Google Scholar]
  24. Bosten JM, Boehm AE. 2014. Empirical evidence for unique hues?. J. Opt. Soc. Am. A 31:4A385–93
    [Google Scholar]
  25. Bosten JM, Lawrance-Owen A. 2014. No difference in variability of unique hue selections and binary hue selections. J. Opt. Soc. Am. A 31:4A357–64
    [Google Scholar]
  26. Bosten JM, Robinson JD, Jordan G, Mollon JD 2005. Multidimensional scaling reveals a color dimension unique to “color-deficient” observers. Curr. Biol. 15:23R950–52
    [Google Scholar]
  27. Bowmaker JK, Dartnall HJ. 1980. Visual pigments of rods and cones in a human retina. J. Physiol. 298:501–11
    [Google Scholar]
  28. Brainard D 2009. Bayesian approaches to color vision. The Cognitive Neurosciences MS Gazzaniga 395–408 Cambridge, MA: MIT Press. , 4th ed..
    [Google Scholar]
  29. Brainard D, Hurlbert A. 2015. Colour vision: understanding #TheDress. Curr. Biol. 25:R551–54
    [Google Scholar]
  30. Brainard DH, Roorda A, Yamauchi Y, Calderone JB, Metha A et al. 2000. Functional consequences of the relative numbers of L and M cones. J. Opt. Soc. Am. A 17:3607–14
    [Google Scholar]
  31. Breton M, Cowan W. 1981. Deuteranomalous color matching in the deuteranopic eye. J. Opt. Soc. Am. 71:101220–23
    [Google Scholar]
  32. Breton M, Tansley B. 1985. Improved color test results with large-field viewing in dichromats. Arch. Ophthalmol. 103:101490–95
    [Google Scholar]
  33. Broackes J. 2010a. Unilateral colour vision defects and the dimensions of dichromat experience. Ophthalmic Physiol. Opt. 30:5672–84
    [Google Scholar]
  34. Broackes J. 2010b. What do the color-blind see?. Color Ontology and Color Science J Cohen, M Matthen 291–406 Cambridge, MA: MIT Press
    [Google Scholar]
  35. Brouwer GJ, Heeger DJ. 2013. Categorical clustering of the neural representation of color. J. Neurosci. 33:3915454–65
    [Google Scholar]
  36. Burns SA, Elsner AE. 1993. Color matching at high illuminances: photopigment optical density and pupil entry. J. Opt. Soc. Am. A 10:2221–30
    [Google Scholar]
  37. Canham T, Long D, Fairchild M, Bertalmio M. 2020. Physiologically personalized color management for motion picture workflows. SMPTE Motion Imaging J. 131:28–16
    [Google Scholar]
  38. Carrasco M. 2006. Covert attention increases contrast sensitivity: psychophysical, neurophysiological and neuroimaging studies. Prog. Brain Res. 154:33–70
    [Google Scholar]
  39. Carroll J, Neitz J, Neitz M. 2002. Estimates of L:M cone ratio from ERG flicker photometry and genetics. J. Vis. 2:8531–42
    [Google Scholar]
  40. Cohn SA, Emmerich DS, Carlson EA. 1989. Differences in the responses of heterozygous carriers of colorblindness and normal controls to briefly presented stimuli. Vis. Res. 29:2255–62
    [Google Scholar]
  41. Coren S, Girgus JS. 1972. Density of human lens pigmentation: in vivo measures over an extended age range. Vis. Res. 12:2343–46
    [Google Scholar]
  42. Crognale MA, Teller DY, Yamaguchi T, Motulsky AG, Deeb SS. 1999. Analysis of red/green color discrimination in subjects with a single X-linked photopigment gene. Vis. Res. 39:4707–19
    [Google Scholar]
  43. Crook JD, Manookin MB, Packer OS, Dacey DM. 2011. Horizontal cell feedback without cone type-selective inhibition mediates “red-green” color opponency in midget ganglion cells of the primate retina. J. Neurosci. 31:51762–72
    [Google Scholar]
  44. Dacey DM, Lee BB. 1994. The “blue-on” opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367:6465731–35
    [Google Scholar]
  45. Dain SJ, Cassimaty VT, Psarakis DT. 2004. Differences in fm100-hue test performance related to iris colour may be due to pupil size as well as presumed amounts of macular pigmentation. Clin. Exp. Optom. 87:4–5322–25
    [Google Scholar]
  46. Dalton J. 1798. Extraordinary facts relating to the vision of colours: with observations. Manchester Lit. Philos. Soc. Mem. 5:128–45
    [Google Scholar]
  47. Danilova MV, Chan CH, Mollon JD. 2013. Can spatial resolution reveal individual differences in the L:M cone ratio?. Vis. Res. 78:26–38
    [Google Scholar]
  48. Daoudi LD, Kunchulia M, Herzog MH. 2017. The role of one-shot learning in #TheDress. J. Vis. 17:315
    [Google Scholar]
  49. Davidoff C. 2015. Cone opsin gene variants in color blindness and other vision disorders Ph.D. Thesis Univ. Wash. Seattle:
  50. Davison P, Akkali M, Loughman J, Scanlon G, Nolan J, Beatty S. 2011. Macular pigment: its associations with color discrimination and matching. Optom. Vis. Sci. 88:7816–22
    [Google Scholar]
  51. de Carvalho ER, Robson AG, Arno G, Boon CJF, Webster AA, Michaelides M. 2021. Enhanced S-cone syndrome: spectrum of clinical, imaging, electrophysiologic, and genetic findings in a retrospective case series of 56 patients. Ophthalmol. Retin. 5:2195–214
    [Google Scholar]
  52. Dees EW, Baraas RC. 2014. Performance of normal females and carriers of color-vision deficiencies on standard color-vision tests. J. Opt. Soc. Am. A 31:4A401–9
    [Google Scholar]
  53. Dees EW, Gilson SJ, Neitz M, Baraas RC. 2015. The influence of L-opsin gene polymorphisms and neural ageing on spatio-chromatic contrast sensitivity in 20–71year olds. Vis. Res. 116:13–24
    [Google Scholar]
  54. Delahunt PB, Webster MA, Ma L, Werner JS 2004. Long-term renormalization of chromatic mechanisms following cataract surgery. Vis. Neurosci. 21:3301–7
    [Google Scholar]
  55. DeMarco P, Pokorny J, Smith VC. 1992. Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats. J. Opt. Soc. Am. A 9:91465–76
    [Google Scholar]
  56. Dryja TP, McGee TL, Berson EL, Fishman GA, Sandberg MA et al. 2005. Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. PNAS 102:134884–89
    [Google Scholar]
  57. Dubois J, Adolphs R. 2016. Building a science of individual differences from fMRI. Trends Cogn. Sci. 20:6425–43
    [Google Scholar]
  58. Elliott ML, Knodt AR, Ireland D, Morris ML, Poulton R et al. 2020. What is the test-retest reliability of common task-functional MRI measures? New empirical evidence and a meta-analysis. Psychol. Sci. 31:7792–806
    [Google Scholar]
  59. Elliott SL, Werner JS, Webster MA. 2012. Individual and age-related variation in chromatic contrast adaptation. J. Vis. 12:811
    [Google Scholar]
  60. Emery KJ, Volbrecht VJ, Peterzell DH, Webster MA. 2017. Variations in normal color vision. VI. Factors underlying individual differences in hue scaling and their implications for models of color appearance. Vis. Res. 141:51–65
    [Google Scholar]
  61. Emery KJ, Webster MA. 2019. Individual differences and their implications for color perception. Curr. Opin. Behav. Sci. 30:28–33
    [Google Scholar]
  62. Fairchild MD. 2019. Color models and systems. Handbook of Color Psychology A Elliott, M Fairchild, A Franklin 9–26 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  63. Feig J, Ropers H-H. 1978. On the incidence of unilateral and bilateral colour blindness in heterozygous females. Hum. Genet. 41:1313–23
    [Google Scholar]
  64. Feitosa-Santana C, Lutze M, Barrionuevo PA, Cao D. 2018. Assessment of #TheDress with traditional color vision tests: Perception differences are associated with blueness. Iperception 9:22041669518764192
    [Google Scholar]
  65. Fernandes TP, Santos NA, Paramei GV. 2020. Cambridge Colour Test: reproducibility in normal trichromats. J. Opt. Soc. Am. A 37:4A70–80
    [Google Scholar]
  66. Forte JD, Blessing EM, Buzás P, Martin PR. 2006. Contribution of chromatic aberrations to color signals in the primate visual system. J. Vis. 6:297–105
    [Google Scholar]
  67. François J, Verriest G. 1961. Functional abnormalities of the retina. Heredity in Ophthalmology J François 396–440 London: C.V. Mosby Co.
    [Google Scholar]
  68. Gao XR, Huang H, Kim H. 2019. Genome-wide association analyses identify 139 loci associated with macular thickness in the UK Biobank cohort. Hum. Mol. Genet. 28:71162–72
    [Google Scholar]
  69. Gardner JC, Michaelides M, Holder GE, Kanuga N, Webb TR et al. 2009. Blue cone monochromacy: causative mutations and associated phenotypes. Mol. Vis. 15:876–84
    [Google Scholar]
  70. Gibson E, Futrell R, Jara-Ettinger J, Mahowald K, Bergen L et al. 2017. Color naming across languages reflects color use. PNAS 114:4010785–90
    [Google Scholar]
  71. González-Martín-Moro J, Contreras I, Fuentes-Vega I, Prieto-Garrido F, Castro-Rebollo M et al. 2021. Influence of main ocular variables in #TheDress perception: an ophthalmic survey. Perception 50:4367–78
    [Google Scholar]
  72. Graham CH, Hsia Y, Stephan FF. 1967. Visual discriminations of a subject with acquired unilateral tritanopia. Vis. Res. 7:5–6469–79
    [Google Scholar]
  73. Granzier JJM, Valsecchi M. 2014. Variations in daylight as a contextual cue for estimating season, time of day, and weather conditions. J. Vis. 14:22
    [Google Scholar]
  74. Gu J, Kanai R. 2014. What contributes to individual differences in brain structure?. Front. Hum. Neurosci. 8:262
    [Google Scholar]
  75. Gunther KL, Neitz J, Neitz M. 2006. A novel mutation in the short-wavelength-sensitive cone pigment gene associated with a tritan color vision defect. Vis. Neurosci. 23:3–4403–9
    [Google Scholar]
  76. Gunther KL, Neitz J, Neitz M. 2008. Nucleotide polymorphisms upstream of the X-chromosome opsin gene array tune L:M cone ratio. Vis. Neurosci. 25:3265–71
    [Google Scholar]
  77. Hammond BR, Caruso-Avery M. 2000. Macular pigment optical density in a Southwestern sample. Investig. Ophthalmol. Vis. Sci. 41:61492–97
    [Google Scholar]
  78. Hammond BR, Curran-Celentano J, Judd S, Fuld K, Krinsky NI et al. 1996a. Sex differences in macular pigment optical density: relation to plasma carotenoid concentrations and dietary patterns. Vis. Res. 36:132001–12
    [Google Scholar]
  79. Hammond BR, Fuld K, Snodderly DM. 1996b. Iris color and macular pigment optical density. Exp. Eye Res. 62:3293–98
    [Google Scholar]
  80. Hammond BR, Nanez JE, Fair C, Snodderly DM. 2000. Iris color and age-related changes in lens optical density. Ophthalmic Physiol. Opt. 20:5381–86
    [Google Scholar]
  81. Hammond BR, Wooten BR, Snodderly DM. 1997. Density of the human crystalline lens is related to the pacular pigment carotenoids, lutein and zeaxanthin. Optom. Vis. Sci. 74:7499–504
    [Google Scholar]
  82. Hardy JL, Frederick CM, Kay P, Werner JS. 2005. Color naming, lens aging, and grue. Psychol. Sci. 16:4321–27
    [Google Scholar]
  83. Hasrod N, Rubin A. 2019. The Cambridge Colour Test: reliability of discrimination trivectors in colour space. Afr. Vis. Eye Heal. 78:1a451
    [Google Scholar]
  84. He JC, Shevell SK. 1995. Variation in color matching and discrimination among deuteranomalous trichromats: theoretical implications of small differences in photopigments. Vis. Res. 35:182579–88
    [Google Scholar]
  85. Hernández-Andrés J, Romero J, Nieves J, Lee R Jr. 2001. Color and spectral analysis of daylight in southern Europe. J. Opt. Soc. Am. A 18:1325–35
    [Google Scholar]
  86. Hinks D, Cárdenas LM, Kuehni RG, Shamey R. 2007. Unique-hue stimulus selection using Munsell color chips. J. Opt. Soc. Am. A 24:103371–78
    [Google Scholar]
  87. Hofer H, Carroll J, Neitz J, Neitz M, Williams DR. 2005. Organization of the human trichromatic cone mosaic. J. Neurosci. 25:429669–79
    [Google Scholar]
  88. Hunt DM, Carvalho LS. 2016. The genetics of color vison and congenital color deficiencies. Human Color Vision J Kremers, NJ Marshall, RC Baraas 1–32 Berlin: Springer
    [Google Scholar]
  89. Hunt DM, Dulai KS, Bowmaker JK, Mollon JD. 1995. The chemistry of John Dalton's color blindness. Science 267:5200984–88
    [Google Scholar]
  90. Hurlbert A. 2021. Challenges to color constancy in a contemporary light. Curr. Opin. Behav. Sci. 30:186–93
    [Google Scholar]
  91. Hurlbert AC, Ling Y. 2007. A new model for color preference: universality and individuality. Proceedings of the 2007 IS & T/SID Color Imaging Conference8–11 Springfield, VA: Soc. Imaging Sci. Technol.
    [Google Scholar]
  92. Iannaccone A, Mura M, Gallaher KT, Johnson EJ, Todd WA et al. 2007. Macular pigment optical density in the elderly: findings in a large biracial midsouth population sample. Investig. Ophthalmol. Vis. Sci. 48:41458–65
    [Google Scholar]
  93. Indow T. 1980. Global color metrics and color-appearance systems. Color Res. Appl. 5:15–12
    [Google Scholar]
  94. Isherwood ZJ, Joyce DS, Parthasarathy MK, Webster MA. 2020. Plasticity in perception: insights from color vision deficiencies. Fac. Rev. 9:8
    [Google Scholar]
  95. Jameson KA. 2005. Culture and cognition: What is universal about the representation of color experience?. J. Cogn. Cult. 5:3–4293–347
    [Google Scholar]
  96. Jameson KA. 2010. Where in the World Color Survey is the support for the Hering Primaries as the basis for Color Categorization?. Color Ontology and Color Science J Cohen, M Matthen 179–202 Cambridge, MA: MIT Press
    [Google Scholar]
  97. Jameson KA. 2018. ColCat: a color categorization digital archive and research wiki. Progress in Colour Studies: Cognition, Language and Beyond L MacDonald, C Biggam, G Paramei 179–208 Philadelphia: Benjamins
    [Google Scholar]
  98. Jameson KA, Highnote SM, Wasserman LM. 2001. Richer color experience in observers with multiple photopigment opsin genes. Psychon. Bull. Rev. 8:2244–61
    [Google Scholar]
  99. Johnson EN, Hawken MJ, Shapley R. 2004. Cone inputs in macaque primary visual cortex. J. Neurophysiol. 91:62501–14
    [Google Scholar]
  100. Johnson EN, Mullen KT. 2016. Color in the cortex. Human Color Vision J Kremers, RC Baraas, J Marshall 189–218 Berlin: Springer
    [Google Scholar]
  101. Jordan G, Deeb SS, Bosten JM, Mollon JD. 2010. The dimensionality of color vision in carriers of anomalous trichromacy. J. Vis. 10:812
    [Google Scholar]
  102. Jordan G, Mollon JD. 1993. A study of women heterozygous for colour deficiencies. Vis. Res. 33:111495–508
    [Google Scholar]
  103. Jordan G, Mollon JD. 1995. Rayleigh matches and unique green. Vis. Res. 35:5613–20
    [Google Scholar]
  104. Jordan G, Mollon JD. 2019. Tetrachromacy: the mysterious case of extra-ordinary color vision. Curr. Opin. Behav. Sci. 30:130–34
    [Google Scholar]
  105. Jørgensen A, Philip J, Raskind W, Matsushita M, Christensen B et al. 1992. Different patterns of X inactivation in MZ twins discordant for red-green color-vision deficiency. Am. J. Hum. Genet. 51:2291–98
    [Google Scholar]
  106. Josserand M, Meeussen E, Majid A, Dediu D. 2021. Environment and culture shape both the colour lexicon and the genetics of colour perception. Sci. Rep. 11:19095
    [Google Scholar]
  107. Juricevic I, Webster MA. 2009. Variations in normal color vision. V. Simulations of adaptation to natural color environments. Vis. Neurosci. 26:1133–45
    [Google Scholar]
  108. Kaneko S, Kuriki I, Peterzell DH. 2021. In search of early cortical mechanisms for color: individual variability in steady-state VEP amplitudes for hues sweeping around the isoluminant LM and S cone-opponent plane. J. Vis. 32:92453
    [Google Scholar]
  109. Kay P, Berlin B, Merrifield WR, Cook R. 2010. The World Color Survey Stanford, CA: CSLI Publ.
  110. Kay P, Regier T. 2003. Resolving the question of color naming universals. PNAS 100:159085–89
    [Google Scholar]
  111. Kinnear PR, Sahraie A. 2002. New Farnsworth-Munsell 100 hue test norms of normal observers for each year of age 5–22 and for age decades 30–70. Br. J. Ophthalmol. 86:1408–11
    [Google Scholar]
  112. Knoblauch K, Vital-Durand F, Barbur JL. 2001. Variation of chromatic sensitivity across the life span. Vis. Res. 41:123–36
    [Google Scholar]
  113. Kohonen O, Parkkinen J, Jääskeläinen T. 2006. Databases for spectral color science. Color Res. Appl. 31:5381–88
    [Google Scholar]
  114. König A, Dieterici C. 1892. Die Grundempfindungen in normalen und anomalen Farbensystemen und ihre Intensitätsverteilung im Spektrum. Z. Psychol. Physiol. Sinnesorgane 4:241–347
    [Google Scholar]
  115. Krauskopf J, Williams DR, Heeley DW. 1982. Cardinal directions of color space. Vis. Res. 22:91123–31
    [Google Scholar]
  116. Krauskopf J, Wu HJ, Farell B. 1996. Coherence, cardinal directions and higher-order mechanisms. Vis. Res. 36:91235–45
    [Google Scholar]
  117. Kremers J, Scholl HP, Knau H, Berendschot TT, Usui T, Sharpe LT. 2000. L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry. J. Opt. Soc. Am. A 17:3517–26
    [Google Scholar]
  118. Kuehni RG. 2001. Determination of unique hues using Munsell color chips. Color Res. Appl. 26:161–66
    [Google Scholar]
  119. Kuehni RG. 2004. Variability in unique hue selection: a surprising phenomenon. Color Res. Appl. 29:2158–62
    [Google Scholar]
  120. Laeng B, Brennen T, Elden Å, Gaare Paulsen H, Banerjee A, Lipton R 2007. Latitude-of-birth and season-of-birth effects on human color vision in the Arctic. Vis. Res. 47:121595–607
    [Google Scholar]
  121. Lafer-Sousa R, Conway BR. 2013. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat. Neurosci. 16:121870–78
    [Google Scholar]
  122. Lafer-Sousa R, Conway BR. 2017. #TheDress: categorical perception of an ambiguous color image. J. Vis. 17:1225
    [Google Scholar]
  123. Lafer-Sousa R, Conway BR, Kanwisher NG. 2016. Color-biased regions of the ventral visual pathway lie between face- and place-selective regions in humans, as in macaques. J. Neurosci. 36:51682–97
    [Google Scholar]
  124. Lafer-Sousa R, Hermann K, Conway B 2015. Striking individual differences in color perception uncovered by “the dress” photograph. Curr. Biol. 25:R545–56
    [Google Scholar]
  125. Laughlin S. 1981. A simple coding procedure enhances a neuron's information capacity. Z. Naturforsch. 36:910–12
    [Google Scholar]
  126. Lawrance-Owen AJ. 2012. Human variation in colour perception and in anthropomorphic characteristics Ph.D. Thesis Univ. Cambridge, UK:
  127. Lawrance-Owen AJ, Bosten JM, Hogg RE, Bargary G, Goodbourn PT, Mollon JD. 2014. Counterphase modulation flicker photometry: phenotypic and genotypic associations. J. Opt. Soc. Am. A 31:4A226–31
    [Google Scholar]
  128. Li J, Hanselaer P, Smet KAG. 2021. Impact of color-matching primaries on observer matching: part I—accuracy. LEUKOS 18:2104–26
    [Google Scholar]
  129. Li M, Ju N, Jiang R, Liu F, Jiang H et al. 2022. Perceptual hue, lightness, and chroma are represented in a multidimensional functional anatomical map in macaque V1. Prog. Neurobiol. 212:102251
    [Google Scholar]
  130. Lillo J, Moreira H, del Tío LP, Álvaro L, del Carmen Durán M. 2012. Basic color terms use by aged observers: lens aging and perceptual compensation. Span. J. Psychol. 15:2453–70
    [Google Scholar]
  131. Lindsey DT, Brown AM. 2002. Color naming and the phototoxic effects of sunlight on the eye. Psychol. Sci. 13:6506–12
    [Google Scholar]
  132. Lindsey DT, Brown AM. 2009. World Color Survey color naming reveals universal motifs and their within-language diversity. PNAS 106:4719785–90
    [Google Scholar]
  133. Lindsey DT, Brown AM. 2016. Individual differences in color naming. Proceedings of the Human Vision and Electronic Imaging Conference 2016 (HVEI 2016)127–32 Red Hook, NY: Curran Assoc.
    [Google Scholar]
  134. Lindsey DT, Brown AM. 2021. Lexical color categories. Annu. Rev. Vis. Sci. 7:605–31
    [Google Scholar]
  135. Lindsey DT, Brown AM, Hutchinson LN. 2021. Appearance of special colors in deuteranomalous trichromacy. Vis. Res. 185:77–87
    [Google Scholar]
  136. Long F, Yang Z, Purves D 2006. Spectral statistics in natural scenes predict hue, saturation, and brightness. PNAS 103:156013–18
    [Google Scholar]
  137. Lutze M, Cox NJ, Smith VC, Pokorny J. 1990. Genetic studies of variation in Rayleigh and photometric matches in normal trichromats. Vis. Res. 30:1149–62
    [Google Scholar]
  138. MacLaury R. 1997. Color and Cognition in Mesoamerica: Constructing Categories as Vantages Austin: Univ. Texas Press
  139. MacLeod DIA. 2003. Colour discrimination, colour constancy and natural scene statistics. Normal and Defective Colour Vision JD Mollon, J Pokorny, K Knoblauch 189–217 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  140. MacLeod DIA, Boynton RM. 1979. Chromaticity diagram showing cone excitation by stimuli of equal luminance. J. Opt. Soc. Am. 69:81183–86
    [Google Scholar]
  141. MacLeod DIA, von der Twer T. 2003. The Pleistochrome: optimal opponent codes for natural colors. Color Perception: Mind and the Physical World R Mausfeld, D Heyer 155–84 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  142. MacLeod DIA, Webster MA. 1983. Factors influencing the color matches of normal observers. Color Vision J Mollon, LT Sharpe 81–92 London: Academic
    [Google Scholar]
  143. Mahroo OA, Williams KM, Hossain IT, Yonova-Doing E, Kozareva D et al. 2017. Do twins share the same dress code? Quantifying relative genetic and environmental contributions to subjective perceptions of “the dress” in a classical twin study. J. Vis. 17:29
    [Google Scholar]
  144. Makous W. 2007. Comment on “Emergence of novel color vision in mice engineered to express a human cone photopigment. .” Science 318:5848196
    [Google Scholar]
  145. Mancuso K, Hauswirth WW, Li Q, Connor TB, Kuchenbecker JA et al. 2009. Gene therapy for red-green colour blindness in adult primates. Nature 461:7265784–87
    [Google Scholar]
  146. Martinovic J, Paramei GV, MacInnes WJ. 2020. Russian blues reveal the limits of language influencing colour discrimination. Cognition 201:104281
    [Google Scholar]
  147. McDermott KC, Webster MA. 2012. The perceptual balance of color. J. Opt. Soc. Am. A 29:2A108–17
    [Google Scholar]
  148. McMahon MJ, MacLeod DIA. 1998. Dichromatic color vision at high light levels: red/green discrimination using the blue-sensitive mechanism. Vis. Res. 38:7973–83
    [Google Scholar]
  149. Miyahara E, Pokorny J, Smith VC, Baron R, Baron E. 1998. Color vision in two observers with highly biased LWS/MWS cone ratios. Vis. Res. 38:4601–12
    [Google Scholar]
  150. Mollon J. 2006. Monge: the Verriest lecture, Lyon, July 2005. Vis. Neurosci. 23:3–4297–309
    [Google Scholar]
  151. Mollon JD, Bosten JM, Peterzell DH, Webster MA. 2017. Individual differences in visual science: What can be learned and what is good experimental practice?. Vis. Res. 141:4–15
    [Google Scholar]
  152. Morvan P, Sarkar A, Stauder J, Blondé L, Kervec J. 2011. A handy calibrator for color vision of a human observer. Proceedings of the 2011 IEEE International Conference on Multimedia and Expo art. 12301276 Piscataway, NJ: IEEE
    [Google Scholar]
  153. Mullen KT. 2019. The response to colour in the human visual cortex: the fMRI approach. Curr. Opin. Behav. Sci. 30:141–48
    [Google Scholar]
  154. Murray RF, Adams WJ 2019. Visual perception and natural illumination. Curr. Opin. Behav. Sci 30:4854
    [Google Scholar]
  155. Nagy A. 1980. Large-field substitution Rayleigh matches of dichromats. J. Opt. Soc. Am. 70:7778–84
    [Google Scholar]
  156. Neitz J, Carroll J, Yamauchi Y, Neitz M, Williams DR. 2002. Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron 35:4783–92
    [Google Scholar]
  157. Neitz J, Neitz M. 2011. The genetics of normal and defective color vision. Vis. Res. 51:7633–51
    [Google Scholar]
  158. Neitz J, Neitz M. 2017. Colorblindness confined to one eye. Investig. Opthalmol. Vis. Sci. 58:84298
    [Google Scholar]
  159. Neitz J, Neitz M, He JC, Shevell SK. 1999. Trichromatic color vision with only two spectrally distinct photopigments. Nat. Neurosci. 2:10884–88
    [Google Scholar]
  160. Neitz M, Krekling ED, Hagen LA, Pedersen HR, Rowlan J et al. 2020. Tritan color vision deficiency may be associated with an OPN1SW splicing defect and haploinsufficiency. J. Opt. Soc. Am. A 37:4A26–34
    [Google Scholar]
  161. Neitz M, Neitz J. 2014. Curing color blindness—mice and nonhuman primates. Cold Spring Harb. . Perspect. Med. 4:11a017418
    [Google Scholar]
  162. Neitz M, Patterson SS, Neitz J. 2019. Photopigment genes, cones, and color update: disrupting the splicing code causes a diverse array of vision disorders. Curr. Opin. Behav. Sci. 30:L60–66
    [Google Scholar]
  163. Nolan JM, Stack J, O'Connell E, Beatty S 2007. The relationships between macular pigment optical density and its constituent carotenoids in diet and serum. Investig. Ophthalmol. Vis. Sci. 48:2571–82
    [Google Scholar]
  164. Olkkonen M, Ekroll V. 2016. Color constancy and contextual effects on color appearance. Human Color Vision J Kremers, RC Baraas, NJ Marshall 159–88 Berlin: Springer
    [Google Scholar]
  165. Osorio D, Smith AC, Vorobyev M, Buchanan-Smith HM. 2004. Detection of fruit and the selection of primate visual pigments for color vision. Am. Nat. 164:6696–708
    [Google Scholar]
  166. Paramei GV. 2005. Singing the Russian blues: an argument for culturally basic color terms. Cross-Cult. Res. 39:110–38
    [Google Scholar]
  167. Paramei GV, Bimler DL, Cavonius CR. 2001. Color-vision variations represented in an individual-difference vector chart. Color Res. Appl. 26:Suppl.230–34
    [Google Scholar]
  168. Paramei GV, Bimler DL, Mislavskaia NO. 2004. Colour perception in twins: individual variation beyond common genetic inheritance. Clin. Exp. Optom. 87:4–5305–12
    [Google Scholar]
  169. Paramei GV, Cavonius CR. 1999. Color spaces of color-normal and color-abnormal observers reconstructed from response times and dissimilarity ratings. Percept. Psychophys. 61:81662–74
    [Google Scholar]
  170. Paramei GV, Izmailov CA, Sokolov E. 1991. Multidimensional scaling of large chromatic differences by normal and color-deficient subjects. Psychol. Sci. 2:4244
    [Google Scholar]
  171. Paramei GV, Oakley B. 2014. Variation of color discrimination across the life span. J. Opt. Soc. Am. A 31:4A375–74
    [Google Scholar]
  172. Parkes LM, Marsman JBC, Oxley DC, Goulermas JY, Wuerger SM. 2009. Multivoxel fMRI analysis of color tuning in human primary visual cortex. J. Vis. 9:11
    [Google Scholar]
  173. Peng YR, Shekhar K, Yan W, Herrmann D, Sappington A et al. 2019. Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell 176:51222–37.e22
    [Google Scholar]
  174. Peterzell DH. 2016. Discovering sensory processes using individual differences: A review and factor analytic manifesto. Proceedings of the IS&T Symposium on Electronic Imaging: Human Vision and Electronic Imaging 2016110–20 Springfield, VA: Soc. Imaging Sci. Technol.
    [Google Scholar]
  175. Peterzell DH, Crognale MA. 2016. Factor analysis of individual differences in the spectral sensitivities of transgenic and wild-type mice: expression of wild-type (M) and human (L) cone photopigments. J. Vis. 16:121154
    [Google Scholar]
  176. Philipona DL, O'Regan JK. 2006. Color naming, unique hues, and hue cancellation predicted from singularities in reflection properties. Vis. Neurosci. 23:3–4331–39
    [Google Scholar]
  177. Pokorny J, Smith VC. 1977. Evaluation of single-pigment shift model of anomalous trichromacy. J. Opt. Soc. Am. 67:91196–209
    [Google Scholar]
  178. Pokorny J, Smith VC, Lutze M. 1987. Aging of the human lens. Appl. Opt. 26:81437–40
    [Google Scholar]
  179. Pokorny J, Smith VC, Verriest G. 1979. Congenital color defects. Congenital and Acquired Color Vision Defects, ed. J Pokorny, VC Smith, G Verriest, AJLG Pinckers 183–241 New York: Grune & Stratton
    [Google Scholar]
  180. Pokorny J, Smith VC, Went LN. 1981. Color matching in autosomal dominant tritan defect. J. Opt. Soc. Am. 71:111327–34
    [Google Scholar]
  181. Rabin J, Houser B, Talbert C, Patel R. 2016. Blue-black or white-gold? Early stage processing and the color of “the dress. .” PLOS ONE 11:8e0161090
    [Google Scholar]
  182. Radonjić A, Brainard D. 2016. The nature of instructional effects in color constancy. J. Exp. Psychol. Hum. Percept. Perform. 42:6847–65
    [Google Scholar]
  183. Regan BC, Julliot C, Simmen B, Viénot F, Charles-Dominique P, Mollon JD. 2001. Fruits, foliage and the evolution of primate colour vision. Philos. Trans. R. Soc. B 356:1407229–83
    [Google Scholar]
  184. Regan BC, Mollon JD. 1997. The relative salience of the cardinal axes of colour space in normal and anomalous trichromats. Colour Vision Deficiencies XIII CR Cavonius 261–70 Dordrecht: Kluwer
    [Google Scholar]
  185. Regier T, Kay P. 2009. Language, thought, and color: Whorf was half right. Trends Cogn. Sci. 13:10439–46
    [Google Scholar]
  186. Regier T, Kay P, Cook RS. 2005. Focal colors are universal after all. PNAS 102:238386–91
    [Google Scholar]
  187. Renner AB, Knau H, Neitz M, Neitz J, Werner JS. 2004. Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea. Vis. Neurosci. 21:6827–34
    [Google Scholar]
  188. Retter TL, Gwinn OS, O'Neil SF, Jiang F, Webster MA 2020. Neural correlates of perceptual color inferences as revealed by #thedress. J. Vis. 20:37
    [Google Scholar]
  189. Rheaume BA, Jereen A, Bolisetty M, Sajid MS, Yang Y et al. 2018. Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat. Commun. 9:12759
    [Google Scholar]
  190. Roberson D. 2005. Color categories are culturally diverse in cognition as well as in language. Cross-Cult. Res. 39:156–71
    [Google Scholar]
  191. Roberson D, Hanley JR, Pak H. 2009. Thresholds for color discrimination in English and Korean speakers. Cognition 112:3482–87
    [Google Scholar]
  192. Rodriguez-Carmona M, Kvansakul J, Harlow JA, Köpcke W, Schalch W, Barbur JL. 2006. The effects of supplementation with lutein and/or zeaxanthin on human macular pigment density and colour vision. Ophthalmic Physiol. Opt. 26:2137–47
    [Google Scholar]
  193. Rodriguez-Carmona M, O'Neill-Biba M, Barbur JL 2012. Assessing the severity of color vision loss with implications for aviation and other occupational environments. Aviat. Space Environ. Med. 83:119–29
    [Google Scholar]
  194. Rodriguez-Carmona M, Sharpe LT, Harlow JA, Barbur JL. 2008. Sex-related differences in chromatic sensitivity. Vis. Neurosci. 25:3433–40
    [Google Scholar]
  195. Ross P 2021. Spectrum inversion. The Routledge Handbook of Philosophy of Colour DH Brown, F Macpherson 226–43 New York: Routledge
    [Google Scholar]
  196. Rushton WAH. 1972. Pigments and signals in colour vision. J. Physiol. 220:1P
    [Google Scholar]
  197. Rushton WAH, Baker HD. 1964. Red/green sensitivity in normal vision. Vis. Res. 4:1–275–85
    [Google Scholar]
  198. Sanocki E, Teller DY, Deeb SS. 1997. Rayleigh match ranges of red/green color-deficient observers: psychophysical and molecular studies. Vis. Res. 37:141897–907
    [Google Scholar]
  199. Schefrin BE, Shinomori K, Werner JS. 1995. Contributions of neural pathways to age-related losses in chromatic discrimination. J. Opt. Soc. Am. A 12:61233–41
    [Google Scholar]
  200. Schefrin BE, Werner JS. 1990. Loci of spectral unique hues throughout the life span. J. Opt. Soc. Am. A 7:2305–11
    [Google Scholar]
  201. Schefrin BE, Werner JS, Plach M, Utlaut N, Switkes E. 1992. Sites of age-related sensitivity loss in a short-wave cone pathway. J. Opt. Soc. Am. A 9:3355–63
    [Google Scholar]
  202. Scheibner HMO, Boynton RM. 1968. Residual red-green discrimination in dichromats. J. Opt. Soc. Am. 58:81151–58
    [Google Scholar]
  203. Schlaffke L, Golisch A, Haag LM, Lenz M, Heba S et al. 2015. The brain's dress code: how The Dress allows to decode the neuronal pathway of an optical illusion. Cortex 73:271–75
    [Google Scholar]
  204. Schloss KB, Palmer SE. 2017. An ecological framework for temporal and individual differences in color preferences. Vis. Res. 141:95–108
    [Google Scholar]
  205. Schmidt I. 1970. On congenital tritanomaly. Vis. Res. 10:8717–43
    [Google Scholar]
  206. Sharpe LT, Stockman A, Jägle H, Nathans J. 1999. Opsin genes, cone photopigments, color vision, and color blindness. Color Vision, from Genes to Perception K Gegenfurtener, L Sharpe 3–51 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  207. Shepard R. 1962. The analysis of proximities: multidimensional scaling with an unknown distance function. I. Psychometrika 27:125–40
    [Google Scholar]
  208. Shiels A, Hejtmancik JF. 2015. Molecular genetics of cataract. Prog. Mol. Biol. Transl. Sci. 134:203–18
    [Google Scholar]
  209. Shinomori K, Panorgias A, Werner JS. 2016. Discrimination thresholds of normal and anomalous trichromats: model of senescent changes in ocular media density on the Cambridge Colour Test. J. Opt. Soc. Am. A 33:3A65–76
    [Google Scholar]
  210. Shinomori K, Schefrin BE, Werner JS. 2001. Age-related changes in wavelength discrimination. J. Opt. Soc. Am. A 18:2310–18
    [Google Scholar]
  211. Simunovic MP. 2016. Acquired color vision deficiency. Surv. Ophthalmol. 61:2132–55
    [Google Scholar]
  212. Smet KAG, Webster MA, Whitehead LA. 2021. Using smooth metamers to estimate color appearance metrics for diverse color-normal observers. Color Res. Appl. 47:3555–64
    [Google Scholar]
  213. Smith DP. 1973. Color naming and hue discrimination in congenital tritanopia and tritanomaly. Vis. Res. 13:2209–18
    [Google Scholar]
  214. Smith DP, Cole BL, Isaacs A. 1973. Congenital tritanopia without neuroretinal disease. Investig. Ophthalmol. 12:8608–17
    [Google Scholar]
  215. Smith VC, Pokorny J. 1975. Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vis. Res. 15:2161–71
    [Google Scholar]
  216. Smith VC, Pokorny J. 1977. Large-field trichromacy in protanopes and deuteranopes. J. Opt. Soc. Am. 67:2213–20
    [Google Scholar]
  217. Smith VC, Pokorny J. 1995. Chromatic-discrimination axes, CRT phosphor spectra, and individual variation in color vision. J. Opt. Soc. Am. A 12:127–35
    [Google Scholar]
  218. Stockman A, Sharpe LT. 2000. The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vis. Res. 40:131711–37
    [Google Scholar]
  219. Stockman A, Sharpe LT, Fach C. 1999. The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches. Vis. Res. 39:172901–27
    [Google Scholar]
  220. Stringham J, Hammond B, Wooten B, Snodderly M. 2006. Compensation for light loss resulting from filtering by macular pigment: relation to the S-cone pathway. Optom. Vis. Sci. 83:12889–94
    [Google Scholar]
  221. Stubbs AL, Stubbs CW. 2016. Spectral discrimination in color blind animals via chromatic aberration and pupil shape. PNAS 113:298206–11
    [Google Scholar]
  222. Tanigawa H, Lu HD, Roe AW. 2010. Functional organization for color and orientation in macaque V4. Nat. Neurosci. 13:121542–49
    [Google Scholar]
  223. Taylor C, Clifford A, Franklin A 2013. Colour preference are not universal. J. Exp. Psychol. 142:41015–27
    [Google Scholar]
  224. Thierry G, Athanasopoulos P, Wiggett A, Dering B, Kuipers JR. 2009. Unconscious effects of language-specific terminology on preattentive color perception. PNAS 106:114567–70
    [Google Scholar]
  225. Thomas PBM, Formankiewicz MA, Mollon JD. 2011. The effect of photopigment optical density on the color vision of the anomalous trichromat. Vis. Res. 51:202224–33
    [Google Scholar]
  226. Tomoda A, Yoneyama Y, Yamaguchi T, Shirao E, Kawasaki K. 1990. Mechanism of coloration of human lenses induced by near-ultraviolet-photo-oxidized 3-hydroxykynurenine. Ophthalmic Res 22:3152–59
    [Google Scholar]
  227. Toscani M, Gegenfurtner KR, Doerschner K. 2017. Differences in illumination estimation in #thedress. J. Vis. 17:122
    [Google Scholar]
  228. Tregillus KEM, Isherwood ZJ, Vanston JE, Engel SA, MacLeod DIA et al. 2021. Color compensation in anomalous trichromats assessed with fMRI. Curr. Biol. 31:5936–42.e4
    [Google Scholar]
  229. Valberg A. 2001. Unique hues: an old problem for a new generation. Vis. Res. 41:131645–57
    [Google Scholar]
  230. van de Kraats J, van Norren D. 2007. Optical density of the aging human ocular media in the visible and the UV. J. Opt. Soc. Am. A 24:71842–57
    [Google Scholar]
  231. Vanston JE, Tregillus KEM, Webster MA, Crognale MA. 2021. Task-dependent contrast gain in anomalous trichromats. Vis. Res. 184:14–22
    [Google Scholar]
  232. Veilleux CC, Kawamura S, Montague MJ, Hiwatashi T, Matsushita Y et al. 2021. Color vision and niche partitioning in a diverse neotropical primate community in lowland Amazonian Ecuador. Ecol. Evol. 11:105742–58
    [Google Scholar]
  233. Vemuri K, Bisla K, Mulpuru S, Varadharajan S. 2016. Do normal pupil diameter differences in the population underlie the color selection of #thedress?. J. Opt. Soc. Am. A 33:3A137–42
    [Google Scholar]
  234. Verriest G, Haurez F, Piérart P. 1982. Statistical demonstration of minor colour vision abnormalities. Int. Ophthalmol. 5:143–54
    [Google Scholar]
  235. Vilidaite G, Baker DH. 2017. Individual differences in internal noise are consistent across two measurement techniques. Vis. Res. 141:30–39
    [Google Scholar]
  236. Volbrecht VJ, Nerger JL, Imhoff SM, Ayde CJ. 2000. Effect of the short-wavelength-sensitive-cone mosaic and rods on the locus of unique green. J. Opt. Soc. Am. A 17:3628–34
    [Google Scholar]
  237. von Kries J. 1970 (1902). Festschrift der Albrecht-Ludwigs-Universität. Sources of Color Science 1970 D MacAdam 101–8 Cambridge, MA: MIT Press
    [Google Scholar]
  238. Wallisch P. 2017. Illumination assumptions account for individual differences in the perceptual interpretation of a profoundly ambiguous stimulus in the color domain: “the dress. .” J. Vis. 17:45
    [Google Scholar]
  239. Weale R. 1953. Cone-monochromatism. J. Physiol. 121:3548–69
    [Google Scholar]
  240. Webler FS, Spitschan M, Foster RG, Andersen M, Peirson SN. 2019. What is the “spectral diet” of humans?. Curr. Opin. Behav. Sci. 30:80–86
    [Google Scholar]
  241. Webster MA. 2015a. Individual differences in color vision. Handbook of Color Psychology AJ Elliot, MD Fairchild, A Franklin 197–215 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  242. Webster MA. 2015b. Visual adaptation. Annu. Rev. Vis. Sci. 1:547–67
    [Google Scholar]
  243. Webster MA, Juricevic I, McDermott KC. 2010. Simulations of adaptation and color appearance in observers with varying spectral sensitivity. Ophthalmic Physiol. Opt. 30:5602–10
    [Google Scholar]
  244. Webster MA, Kay P. 2005. Variations in color naming within and across populations. Behav. Brain Sci. 28:512–13
    [Google Scholar]
  245. Webster MA, Kay P 2007. Individual and population differences in focal colors. Anthropology of Color R MacLaury, GV Paramei, D Dedrick 29–54 Amsterdam: John Benjamins
    [Google Scholar]
  246. Webster MA, Miyahara E, Malkoc G, Raker VE. 2000a. Variations in normal color vision. I. Cone-opponent axes. J. Opt. Soc. Am. A 17:91535–44
    [Google Scholar]
  247. Webster MA, Miyahara E, Malkoc G, Raker VE. 2000b. Variations in normal color vision. II. Unique hues. J. Opt. Soc. Am. A 17:91545–55
    [Google Scholar]
  248. Webster MA, Mizokami Y, Webster SM. 2007. Seasonal variations in the color statistics of natural images. Netw. Comput. Neural Syst. 18:3213–33
    [Google Scholar]
  249. Webster MA, Mollon JD. 1991. Changes in colour appearance following post-receptoral adaptation. Nature 349:6306235–38
    [Google Scholar]
  250. Webster MA, Webster SM, Bharadwaj S, Verma R, Jaikumar J et al. 2002. Variations in normal color vision. III. Unique hues in Indian and United States observers. J. Opt. Soc. Am. A 19:101951–62
    [Google Scholar]
  251. Webster MA, Werner JS, Field DJ 2005. Adaptation and the phenomenology of perception. Fitting the Mind to the World: Adaptation and After-Effects in High-Level Vision CWG Clifford, G Rhodes 247–77 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  252. Welbourne LE, Morland AB, Wade AR. 2015. Human colour perception changes between seasons. Curr. Biol. 25:15R646–47
    [Google Scholar]
  253. Went LN, Pronk N. 1985. The genetics of tritan disturbances. Hum. Genet. 69:255–62
    [Google Scholar]
  254. Werner JS, Bieber ML, Schefrin BE. 2000. Senescence of foveal and parafoveal cone sensitivities and their relations to macular pigment density. J. Opt. Soc. Am. A 17:111918–32
    [Google Scholar]
  255. Werner JS, Peterzell DH, Scheetz J. 1990. Light, vision and aging. Optom. Vis. Sci. 67:3214–29
    [Google Scholar]
  256. Werner JS, Schefrin BE. 1993. Loci of achromatic points throughout the life span. J. Opt. Soc. Am. A 10:71509–16
    [Google Scholar]
  257. Whitehead L, Smet KAG, Webster M. 2021. Evaluating and minimizing color distortion in wide-gamut displays due to variations of cone fundamentals among color-normal observers. Proceedings of the Society for Information Display International Symposium, Vol. 52450–53 N.p.: Soc. Inf. Disp.
    [Google Scholar]
  258. Wilmer JB. 2008. How to use individual differences to isolate functional organization, biology, and utility of visual functions; with illustrative proposals for stereopsis. Spat. Vis. 21:6561–79
    [Google Scholar]
  259. Winawer J, Witthoft N, Frank MC, Wu L, Wade AR, Boroditsky L. 2007. Russian blues reveal effects of language on color discrimination. PNAS 104:197780–85
    [Google Scholar]
  260. Winderickx J, Lindsey DT, Sanocki E, Teller DY, Motulsky AG, Deeb SS. 1992. Polymorphism in red photopigment underlies variation in colour matching. Nature 356:6368431–33
    [Google Scholar]
  261. Winkler AD, Spillmann L, Werner JS, Webster MA. 2015. Asymmetries in blue-yellow color perception and in the color of “the dress. .” Curr. Biol. 25:R547–48
    [Google Scholar]
  262. Witzel C, Cinotti F, O'Regan JK. 2015. What determines the relationship between color naming, unique hues, and sensory singularities: illuminations, surfaces, or photoreceptors?. J. Vis. 15:819
    [Google Scholar]
  263. Witzel C, Gegenfurtner KR. 2013. Categorical sensitivity to color differences. J. Vis. 13:71
    [Google Scholar]
  264. Witzel C, Racey C, O'Regan JK. 2017. The most reasonable explanation of “the dress”: implicit assumptions about illumination. J. Vis. 17:21
    [Google Scholar]
  265. Wool LE, Packer OS, Zaidi Q, Dacey DM. 2019. Connectomic identification and three-dimensional color tuning of S-OFF midget ganglion cells in the primate retina. J. Neurosci. 39:407893–909
    [Google Scholar]
  266. Wright W. 1952. The characteristics of tritanopia. J. Opt. Soc. Am. 42:8509–21
    [Google Scholar]
  267. Wuerger S. 2013. Colour constancy across the life span: evidence for compensatory mechanisms. PLOS ONE 8:5e63921
    [Google Scholar]
  268. Wuerger SM, Atkinson P, Cropper S. 2005. The cone inputs to the unique-hue mechanisms. Vis. Res. 45:25–263210–23
    [Google Scholar]
  269. Wyszecki G, Stiles WS. 1980. High-level trichromatic color matching and the pigment-bleaching hypothesis. Vis. Res. 20:123–37
    [Google Scholar]
  270. Xiao Y, Casti A, Xiao J, Kaplan E 2007. Hue maps in primate striate cortex. NeuroImage 35:2771–86
    [Google Scholar]
  271. Yokota A, Shin T, Kimura J, Senos T, Seki R, Tsubota K. 1990. Congenital deuteranomaly in one of monozygotic triplets. Color Vision Defects Y Ohta 199–203 Tokyo: Kugler & Ghedini
    [Google Scholar]
  272. Yu J, Johnson EJ, Shang F, Lim A, Zhou H et al. 2012. Measurement of macular pigment optical density in a healthy Chinese population sample. Investig. Ophthalmol. Vis. Sci. 53:42106–11
    [Google Scholar]
  273. Yuan Y, Murdoch MJ, Fairchild MD. 2021. A multiprimary lighting system for customized color stimuli. Color Res. Appl. 47:74–91
    [Google Scholar]
  274. Zacharopoulos G, Binetti N, Walsh V, Kanai R. 2014. The effect of self-efficacy on visual discrimination sensitivity. PLOS ONE 9:10e109392
    [Google Scholar]
  275. Zaslavsky N, Kemp C, Regier T, Tishby N. 2018. Efficient compression in color naming and its evolution. PNAS 115:317937–42
    [Google Scholar]
  276. Zhou Z, Grotton B, Kruse K, Skinner A, DoVale A et al. 2017. Observer calibrator for color vision research. Proceedings of the IS & T International Symposium on Electronic Imaging Science and Technology: Image Quality and System Performance XIV59–63 Springfield, VA: Soc. Imaging Sci. Technol.
    [Google Scholar]
  277. Zlatkova M, Beirne RO, Hinds NA. 2014. Color discrimination in individuals with light and dark irides: an evaluation of the effects of intraocular straylight and retinal illumination. J. Opt. Soc. Am. A 31:4A268–73
    [Google Scholar]
/content/journals/10.1146/annurev-vision-093020-112820
Loading
/content/journals/10.1146/annurev-vision-093020-112820
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error