1932

Abstract

Photoreceptors are highly specialized sensory neurons with unique metabolic and physiological requirements. These requirements are partially met by Müller glia and cells of the retinal pigment epithelium (RPE), which provide essential metabolites, phagocytose waste, and control the composition of the surrounding microenvironment. A third vital supporting cell type, the retinal microglia, can provide photoreceptors with neurotrophic support or exacerbate neuroinflammation and hasten neuronal cell death. Understanding the physiological requirements for photoreceptor homeostasis and the factors that drive microglia to best promote photoreceptor survival has important implications for the treatment and prevention of blinding degenerative diseases like retinitis pigmentosa and age-related macular degeneration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-121219-081730
2020-09-15
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/vision/6/1/annurev-vision-121219-081730.html?itemId=/content/journals/10.1146/annurev-vision-121219-081730&mimeType=html&fmt=ahah

Literature Cited

  1. Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM 2011. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14:1142–49
    [Google Scholar]
  2. Appelbaum T, Santana E, Aguirre GD 2017. Strong upregulation of inflammatory genes accompanies photoreceptor demise in canine models of retinal degeneration. PLOS ONE 12:e0177224
    [Google Scholar]
  3. Aredo B, Zhang K, Chen X, Wang CX-Z, Li T, Ufret-Vincenty RL 2015. Differences in the distribution, phenotype and gene expression of subretinal microglia/macrophages in C57BL/6N (Crb1 rd8/rd8) versus C57BL6/J (Crb1 wt/wt) mice. J. Neuroinflamm. 12:6
    [Google Scholar]
  4. AREDS2 Res. Group, Chew EY, Clemons TE, Sangiovanni JP, Danis RP et al. 2014. Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report No. 3. JAMA Ophthalmol 132:142–49
    [Google Scholar]
  5. Arshavsky VY, Burns ME. 2014. Current understanding of signal amplification in phototransduction. Cell Logist 4:e29390
    [Google Scholar]
  6. Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y et al. 2017. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep 18:391–405
    [Google Scholar]
  7. Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T et al. 2019. Insights into photoreceptor ciliogenesis revealed by animal models. Prog. Retin. Eye Res. 71:26–56
    [Google Scholar]
  8. Baufeld C, O'Loughlin E, Calcagno N, Madore C, Butovsky O 2017. Differential contribution of microglia and monocytes in neurodegenerative diseases. J. Neural Transm. 125:809–26
    [Google Scholar]
  9. Bejarano-Escobar R, Sánchez-Calderón H, Otero-Arenas J, Martín-Partido G, Francisco-Morcillo J 2017. Müller glia and phagocytosis of cell debris in retinal tissue. J. Anat. 231:471–83
    [Google Scholar]
  10. Bernier L-P, Bohlen CJ, York EM, Choi HB, Kamyabi A et al. 2019. Nanoscale surveillance of the brain by microglia via cAMP-regulated filopodia. Cell Rep 27:2895–908.e4
    [Google Scholar]
  11. Brennan LA, Kantorow M. 2009. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations. Exp. Eye Res. 88:195–203
    [Google Scholar]
  12. Bringmann A, Wiedemann P. 2012. Müller glial cells in retinal disease. Ophthalmologica 227:1–19
    [Google Scholar]
  13. Brown GC, Neher JJ. 2014. Microglial phagocytosis of live neurons. Nat. Rev. Neurosci. 15:209–16
    [Google Scholar]
  14. Calippe B, Augustin S, Beguier F, Charles-Messance H, Poupel L et al. 2017. Complement factor H inhibits CD47-mediated resolution of inflammation. Immunity 46:261–72
    [Google Scholar]
  15. Cangiano L, Asteriti S, Cervetto L, Gargini C 2012. The photovoltage of rods and cones in the dark-adapted mouse retina. J. Physiol. 590:3841–55
    [Google Scholar]
  16. Canton J, Neculai D, Grinstein S 2013. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 13:621–34
    [Google Scholar]
  17. Carter-Dawson LD, LaVail MM. 1979. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J. Comp. Neurol. 188:245–62
    [Google Scholar]
  18. Chen J, Simon MI, Matthes MT, Yasumura D, LaVail MM 1999. Increased susceptibility to light damage in an arrestin knockout mouse model of Oguchi disease (stationary night blindness). Investig. Ophthalmol. Vis. Sci. 40:2978–82
    [Google Scholar]
  19. Chew EY. 2017. Nutrition, genes, and age-related macular degeneration: What have we learned from the trials. Ophthalmologica 238:1–21–5
    [Google Scholar]
  20. Chinnery HR, McLenachan S, Humphries T, Kezic JM, Chen X et al. 2012. Accumulation of murine subretinal macrophages: effects of age, pigmentation and CX3CR1. Neurobiol. Aging 33:1769–76
    [Google Scholar]
  21. Choi J, Ifuku M, Noda M, Guilarte TR 2011. Translocator protein (18 kDa)/peripheral benzodiazepine receptor specific ligands induce microglia functions consistent with an activated state. Glia 59:219–30
    [Google Scholar]
  22. Cideciyan AV, Jacobson SG, Beltran WA, Sumaroka A, Swider M et al. 2013. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. PNAS 110:E517–25
    [Google Scholar]
  23. Colonna M, Butovsky O. 2017. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35:441–68
    [Google Scholar]
  24. Combadière C, Feumi C, Raoul W, Keller N, Rodéro M et al. 2007. CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J. Clin. Investig. 117:2920–28
    [Google Scholar]
  25. Copland DA, Theodoropoulou S, Liu J, Dick AD 2018. A perspective of AMD through the eyes of immunology. Investig. Ophthalmol. Vis. Sci. 59:83–92
    [Google Scholar]
  26. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y et al. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8:752–58
    [Google Scholar]
  27. Denieffe S, Kelly RJ, McDonald C, Lyons A, Lynch MA 2013. Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells. Brain Behav. Immun. 34:86–97
    [Google Scholar]
  28. Dryja TP, Rucinski DE, Chen SH, Berson EL 1999. Frequency of mutations in the gene encoding the alpha subunit of rod cGMP-phosphodiesterase in autosomal recessive retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 40:1859–65
    [Google Scholar]
  29. ElAli A, Rivest S. 2016. Microglia ontology and signaling. Front. Cell Dev. Biol. 4:72
    [Google Scholar]
  30. Elmore MRP, Najafi AR, Koike MA, Dagher NN, Spangenberg EE et al. 2014. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–97
    [Google Scholar]
  31. Farber DB, Flannery JG, Bowes-Rickman C 1994. The rd mouse story: seventy years of research on an animal model of inherited retinal degeneration. Prog. Retin. Eye Res. 13:31–64
    [Google Scholar]
  32. Farber DB, Lolley RN. 1974. Cyclic guanosine monophosphate: elevation in degenerating photoreceptor cells of the C3H mouse retina. Science 186:449–51
    [Google Scholar]
  33. Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P et al. 2011. Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLOS ONE 6:e15973
    [Google Scholar]
  34. Friedlander M. 2007. Fibrosis and diseases of the eye. J. Clin. Investig. 117:576–86
    [Google Scholar]
  35. Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC et al. 2019. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179:1609–22.e16
    [Google Scholar]
  36. Ginhoux F, Garel S. 2018. The mysterious origins of microglia. Nat. Neurosci. 21:897–99
    [Google Scholar]
  37. Glickman RD. 2002. Phototoxicity to the retina: mechanisms of damage. Int. J. Toxicol. 21:473–90
    [Google Scholar]
  38. Graca AB, Hippert C, Pearson RA 2018. Müller glia reactivity and development of gliosis in response to pathological conditions. Retinal Degenerative Diseases JD Ash, RE Anderson, MM LaVail, C Bowes Rickman, JG Hollyfield, C Grimm 303–8 Berlin: Springer
    [Google Scholar]
  39. Guo C, Otani A, Oishi A, Kojima H, Makiyama Y et al. 2012. Knockout of ccr2 alleviates photoreceptor cell death in a model of retinitis pigmentosa. Exp. Eye Res. 104:39–47
    [Google Scholar]
  40. Hagins WA, Penn RD, Yoshikami S 1970. Dark current and photocurrent in retinal rods. Biophys. J. 10:380–412
    [Google Scholar]
  41. Han J, Harris RA, Zhang X-M 2017. An updated assessment of microglia depletion: current concepts and future directions. Mol. Brain 10:25
    [Google Scholar]
  42. Hao W, Wenzel A, Obin MS, Chen C-K, Brill E et al. 2002. Evidence for two apoptotic pathways in light-induced retinal degeneration. Nat. Genet. 32:254–60
    [Google Scholar]
  43. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J 2018. Microglia in neurodegeneration. Nat. Neurosci. 21:1359–69
    [Google Scholar]
  44. Hori T, Fukutome M, Koike C 2019. Adeno associated virus (AAV) as a tool for clinical and experimental delivery of target genes into the mammalian retina. Biol. Pharm. Bull. 42:343–47
    [Google Scholar]
  45. Horie S, Robbie SJ, Liu J, Wu W-K, Ali RR et al. 2013. CD200R signaling inhibits pro-angiogenic gene expression by macrophages and suppresses choroidal neovascularization. Sci. Rep. 3:3072
    [Google Scholar]
  46. Huang SH, Pittler SJ, Huang X, Oliveira L, Berson EL, Dryja TP 1995. Autosomal recessive retinitis pigmentosa caused by mutations in the alpha subunit of rod cGMP phosphodiesterase. Nat. Genet. 11:468–71
    [Google Scholar]
  47. Huang Y, Xu Z, Xiong S, Qin G, Sun F et al. 2018a. Dual extra-retinal origins of microglia in the model of retinal microglia repopulation. Cell Discov 4:9
    [Google Scholar]
  48. Huang Y, Xu Z, Xiong S, Sun F, Qin G et al. 2018b. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat. Neurosci. 21:530–40
    [Google Scholar]
  49. Hurley JB, Lindsay KJ, Du J 2015. Glucose, lactate, and shuttling of metabolites in vertebrate retinas. J. Neurosci. Res. 93:1079–92
    [Google Scholar]
  50. Imai S, Inokuchi Y, Nakamura S, Tsuruma K, Shimazawa M, Hara H 2010. Systemic administration of a free radical scavenger, edaravone, protects against light-induced photoreceptor degeneration in the mouse retina. Eur. J. Pharmacol. 642:77–85
    [Google Scholar]
  51. Insinna C, Daniele LL, Davis JA, Larsen DD, Kuemmel C et al. 2012. An S-opsin knock-in mouse (F81Y) reveals a role for the native ligand 11-cis-retinal in cone opsin biosynthesis. J. Neurosci. 32:8094–104
    [Google Scholar]
  52. Izquierdo P, Attwell D, Madry C 2019. Ion channels and receptors as determinants of microglial function. Trends Neurosci 42:278–92
    [Google Scholar]
  53. Jiang DJ, Xu CL, Tsang SH 2018. Revolution in gene medicine therapy and genome surgery. Genes 9:575
    [Google Scholar]
  54. Jin N, Gao L, Fan X, Xu H 2017. Friend or foe? Resident microglia versus bone marrow-derived microglia and their roles in the retinal degeneration. Mol. Neurobiol. 54:4094–112
    [Google Scholar]
  55. Jin X, Liu M-Y, Zhang D-F, Zhong X, Du K et al. 2019. Natural products as a potential modulator of microglial polarization in neurodegenerative diseases. Pharmacol. Res. 145:104253
    [Google Scholar]
  56. Jobling AI, Waugh M, Vessey KA, Phipps JA, Trogrlic L et al. 2018. The role of the microglial Cx3cr1 pathway in the postnatal maturation of retinal photoreceptors. J. Neurosci. 38:4708–23
    [Google Scholar]
  57. Karlen SJ, Miller EB, Wang X, Levine ES, Zawadzki RJ, Burns ME 2018. Monocyte infiltration rather than microglia proliferation dominates the early immune response to rapid photoreceptor degeneration. J. Neuroinflamm. 15:344
    [Google Scholar]
  58. Karlstetter M, Nothdurfter C, Aslanidis A, Moeller K, Horn F et al. 2014. Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis. J. Neuroinflamm. 11:3
    [Google Scholar]
  59. Kettenmann H, Kirchhoff F, Verkhratsky A 2013. Microglia: new roles for the synaptic stripper. Neuron 77:10–18
    [Google Scholar]
  60. Kierdorf K, Prinz M. 2017. Microglia in steady state. J. Clin. Investig. 127:3201–9
    [Google Scholar]
  61. Kiser PD, Palczewski K. 2016. Retinoids and retinal diseases. Annu. Rev. Vis. Sci. 2:197–234
    [Google Scholar]
  62. Klee K, Storti F, Barben M, Samardzija M, Langmann T et al. 2019. Systemic knockout of Tspo in mice does not affect retinal morphology, function and susceptibility to degeneration. Exp. Eye Res. 188:107816
    [Google Scholar]
  63. Kohno H, Chen Y, Kevany BM, Pearlman E, Miyagi M et al. 2013. Photoreceptor proteins initiate microglial activation via Toll-like receptor 4 in retinal degeneration mediated by all-trans-retinal. J. Biol. Chem. 288:15326–41
    [Google Scholar]
  64. Kopp A, Hebecker M, Svobodova E, Jozsi M 2012. Factor h: a complement regulator in health and disease, and a mediator of cellular interactions. Biomolecules 2:46–75
    [Google Scholar]
  65. Léveillard T, Sahel J-A. 2017. Metabolic and redox signaling in the retina. Cell Mol. Life Sci. 74:3649–65
    [Google Scholar]
  66. Levine ES, Zam A, Zhang P, Pechko A, Wang X et al. 2014. Rapid light-induced activation of retinal microglia in mice lacking Arrestin-1. Vis. Res. 102:71–79
    [Google Scholar]
  67. Linnartz-Gerlach B, Kopatz J, Neumann H 2014. Siglec functions of microglia. Glycobiology 24:794–99
    [Google Scholar]
  68. Liu YU, Ying Y, Li Y, Eyo UB, Chen T et al. 2019. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat. Neurosci. 22:1771–81
    [Google Scholar]
  69. Lloyd AF, Davies CL, Holloway RK, Labrak Y, Ireland G et al. 2019. Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nat. Neurosci. 22:1046–52
    [Google Scholar]
  70. Lobanova ES, Finkelstein S, Li J, Travis AM, Hao Y et al. 2018. Increased proteasomal activity supports photoreceptor survival in inherited retinal degeneration. Nat. Commun. 9:1738
    [Google Scholar]
  71. Lobanova ES, Finkelstein S, Skiba NP, Arshavsky VY 2013. Proteasome overload is a common stress factor in multiple forms of inherited retinal degeneration. PNAS 110:9986–91
    [Google Scholar]
  72. London A, Cohen M, Schwartz M 2013. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front. Cell Neurosci. 7:34
    [Google Scholar]
  73. London A, Itskovich E, Benhar I, Kalchenko V, Mack M et al. 2011. Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J. Exp. Med. 208:23–39
    [Google Scholar]
  74. Ludwig PE, Freeman SC, Janot AC 2019. Novel stem cell and gene therapy in diabetic retinopathy, age related macular degeneration, and retinitis pigmentosa. Int. J. Retina Vitr. 5:7
    [Google Scholar]
  75. Madry C, Arancibia-Carcamo IL, Kyrargyri V, Chan VTT, Hamilton NB, Attwell D 2018a. Effects of the ecto-ATPase apyrase on microglial ramification and surveillance reflect cell depolarization, not ATP depletion. PNAS 115:E1608–17
    [Google Scholar]
  76. Madry C, Kyrargyri V, Arancibia-Carcamo IL, Jolivet R, Kohsaka S et al. 2018b. Microglial ramification, surveillance, and interleukin-1beta release are regulated by the two-pore domain K+ channel THIK-1. Neuron 97:299–312.e6
    [Google Scholar]
  77. Mathis T, Housset M, Eandi C, Beguier F, Touhami S et al. 2017. Activated monocytes resist elimination by retinal pigment epithelium and downregulate their OTX2 expression via TNF-α. Aging Cell 16:173–82
    [Google Scholar]
  78. McMenamin PG, Humphries TG, Kezic J, Cherepanoff S, Sarks SH 2009. Accumulation of macrophages in the subretinal space: correlation with age, pigmentation and Cx3Cr1 genotype in the mouse eye and with age/AMD pathology in humans. Investig. Ophthalmol. Vis. Sci. 50:3868
    [Google Scholar]
  79. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK et al. 2007. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci. 10:1544–53
    [Google Scholar]
  80. Miller EB, Zhang P, Ching K, Pugh EN, Burns ME 2019. In vivo imaging reveals transient microglia recruitment and functional recovery of photoreceptor signaling after injury. PNAS 116:16603–12
    [Google Scholar]
  81. Narayan DS, Chidlow G, Wood JP, Casson RJ 2017. Glucose metabolism in mammalian photoreceptor inner and outer segments. Clin. Exp. Ophthalmol. 45:730–41
    [Google Scholar]
  82. Newman EA. 1996. Regulation of extracellular K+ and pH by polarized ion fluxes in glial cells: the retinal Müller cell. Neuroscientist 2:109–17
    [Google Scholar]
  83. Nimmerjahn A, Kirchhoff F, Helmchen F 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–18
    [Google Scholar]
  84. Noailles A, Maneu V, Campello L, Gómez-Vicente V, Lax P, Cuenca N 2016. Persistent inflammatory state after photoreceptor loss in an animal model of retinal degeneration. Sci. Rep. 6:33356
    [Google Scholar]
  85. O'Koren EG, Mathew R, Saban DR 2016. Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Sci. Rep. 6:20636
    [Google Scholar]
  86. O'Koren EG, Yu C, Klingeborn M, Wong AYW, Prigge CL et al. 2019. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity 50:723–37.e7
    [Google Scholar]
  87. Paquet-Durand F, Hauck SM, van Veen T, Ueffing M, Ekstrom P 2009. PKG activity causes photoreceptor cell death in two retinitis pigmentosa models. J. Neurochem. 108:796–810
    [Google Scholar]
  88. Park J-H, Kong L, Zhou Y, Cui M 2017. Large-field-of-view imaging by multi-pupil adaptive optics. Nat. Methods 14:581–83
    [Google Scholar]
  89. Paschalis EI, Lei F, Zhou C, Kapoulea V, Dana R et al. 2018. Permanent neuroglial remodeling of the retina following infiltration of CSF1R inhibition-resistant peripheral monocytes. PNAS 115:E11359–68
    [Google Scholar]
  90. Penn RD, Hagins WA. 1972. Kinetics of the photocurrent of retinal rods. Biophys. J. 12:1073–94
    [Google Scholar]
  91. Pierce EA, Bennett J. 2015. The status of RPE65 gene therapy trials: safety and efficacy. Cold Spring Harb. Perspect. Med. 5:a017285
    [Google Scholar]
  92. Pocock JM, Kettenmann H. 2007. Neurotransmitter receptors on microglia. Trends Neurosci 30:527–35
    [Google Scholar]
  93. Power M, Das S, Schutze K, Marigo V, Ekstrom P, Paquet-Durand F 2019. Cellular mechanisms of hereditary photoreceptor degeneration: focus on cGMP. Prog. Retin. Eye Res. 30:100772
    [Google Scholar]
  94. Prinz M, Erny D, Hagemeyer N 2017. Ontogeny and homeostasis of CNS myeloid cells. Nat. Immunol. 18:385–92
    [Google Scholar]
  95. Qiu Y, Yao J, Jia L, Thompson DA, Zacks DN 2019. Shifting the balance of autophagy and proteasome activation reduces proteotoxic cell death: a novel therapeutic approach for restoring photoreceptor homeostasis. Cell Death Dis 10:547
    [Google Scholar]
  96. Ransohoff RM. 2016. A polarizing question: Do M1 and M2 microglia exist. Nat. Neurosci. 19:987–91
    [Google Scholar]
  97. Rashid K, Akhtar-Schaefer I, Langmann T 2019. Microglia in retinal degeneration. Front. Immunol. 10:1975
    [Google Scholar]
  98. Reichenbach A, Bringmann A. 2013. New functions of Müller cells. Glia 61:651–78
    [Google Scholar]
  99. Ronning KE, Karlen SJ, Miller EB, Burns ME 2019. Molecular profiling of resident and infiltrating mononuclear phagocytes during rapid adult retinal degeneration using single-cell RNA sequencing. Sci. Rep. 9:4858
    [Google Scholar]
  100. Rutar M, Natoli R, Provis JM 2012. Small interfering RNA-mediated suppression of Ccl2 in Muller cells attenuates microglial recruitment and photoreceptor death following retinal degeneration. J. Neuro-inflamm. 9:221
    [Google Scholar]
  101. Rutar M, Natoli R, Valter K, Provis JM 2011. Early focal expression of the chemokine Ccl2 by Muller cells during exposure to damage-inducing bright continuous light. Investig. Ophthalmol. Vis. Sci. 52:2379–88
    [Google Scholar]
  102. Saban DR. 2018. New concepts in macrophage ontogeny in the adult neural retina. Cell Immunol 330:79–85
    [Google Scholar]
  103. Sahin K, Gencoglu H, Akdemir F, Orhan C, Tuzcu M et al. 2019. Lutein and zeaxanthin isomers may attenuate photo-oxidative retinal damage via modulation of G protein-coupled receptors and growth factors in rats. Biochem. Biophys. Res. Commun. 516:163–70
    [Google Scholar]
  104. Saika S, Yamanaka O, Sumioka T, Miyamoto T, Miyazaki K et al. 2008. Fibrotic disorders in the eye: targets of gene therapy. Prog. Retin. Eye Res. 27:177–96
    [Google Scholar]
  105. Sakami S, Imanishi Y, Palczewski K 2019. Muller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease. FASEB J 33:3680–92
    [Google Scholar]
  106. Sakami S, Maeda T, Bereta G, Okano K, Golczak M et al. 2011. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J. Biol. Chem. 286:10551–67
    [Google Scholar]
  107. Sarthy V, Ripps H. 2001. The Retinal Muller Cell: Structure and Function New York: Kluwer Acad./Plenum Publ.
  108. Sato S, Jastrzebska B, Engel A, Palczewski K, Kefalov VJ 2019. Apo-opsin exists in equilibrium between a predominant inactive and a rare highly active state. J. Neurosci. 39:212–23
    [Google Scholar]
  109. Sennlaub F, Auvynet C, Calippe B, Lavalette S, Poupel L et al. 2013. CCR2+ monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol. Med. 5:1775–93
    [Google Scholar]
  110. Sheng J, Ruedl C, Karjalainen K 2015. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43:382–93
    [Google Scholar]
  111. Silverman SM, Wong WT. 2018. Microglia in the retina: roles in development, maturity, and disease. Annu. Rev. Vis. Sci. 4:45–77
    [Google Scholar]
  112. Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J et al. 2019. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer's disease model. Nat. Commun. 10:3758
    [Google Scholar]
  113. Sparrow JR, Hicks D, Hamel CP 2010. The retinal pigment epithelium in health and disease. Curr. Mol. Med. 10:802–23
    [Google Scholar]
  114. Spencer WJ, Ding J-D, Lewis TR, Yu C, Phan S et al. 2019. PRCD is essential for high-fidelity photoreceptor disc formation. PNAS 116:13087–96
    [Google Scholar]
  115. Strauss O. 2005. The retinal pigment epithelium in visual function. Physiol. Rev. 85:845–81
    [Google Scholar]
  116. Su F, Spee C, Araujo E, Barron E, Wang M et al. 2019. A novel HDL-mimetic peptide HM-10/10 protects RPE and photoreceptors in murine models of retinal degeneration. Int. J. Mol. Sci. 20:4807
    [Google Scholar]
  117. Tao Y, He M, Yang Q, Ma Z, Qu Y et al. 2019. Systemic taurine treatment provides neuroprotection against retinal photoreceptor degeneration and visual function impairments. Drug Des. Dev. Ther. 13:2689–702
    [Google Scholar]
  118. Tay TL, Mai D, Dautzenberg J, Fernandez-Klett F, Lin G et al. 2017. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat. Neurosci. 20:793–803
    [Google Scholar]
  119. Todd L, Palazzo I, Suarez L, Liu X, Volkov L et al. 2019. Reactive microglia and IL1β/IL-1R1-signaling mediate neuroprotection in excitotoxin-damaged mouse retina. J. Neuroinflamm. 16:118
    [Google Scholar]
  120. Tolone A, Belhadj S, Rentsch A, Schwede F, Paquet-Durand F 2019. The cGMP pathway and inherited photoreceptor degeneration: targets, compounds, and biomarkers. Genes 10:453
    [Google Scholar]
  121. Town T, Nikolic V, Tan J 2005. The microglial “activation” continuum: from innate to adaptive responses. J. Neuroinflamm. 2:24
    [Google Scholar]
  122. Tsang SH, Tsui I, Chou CL, Zernant J, Haamer E et al. 2008. A novel mutation and phenotypes in phosphodiesterase 6 deficiency. Am. J. Ophthalmol. 146:780–88
    [Google Scholar]
  123. Ueki Y, Wilken MS, Cox KE, Chipman L, Jorstad N et al. 2015. Transgenic expression of the proneural transcription factor Ascl1 in Müller glia stimulates retinal regeneration in young mice. PNAS 112:13717–22
    [Google Scholar]
  124. Ulland TK, Colonna M. 2018. TREM2: a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol. 14:667–75
    [Google Scholar]
  125. Wahl DJ, Ng R, Ju MJ, Jian Y, Sarunic MV 2019. Sensorless adaptive optics multimodal en-face small animal retinal imaging. Biomed. Opt. Express. 10:252–67
    [Google Scholar]
  126. Waisman A, Ginhoux F, Greter M, Bruttger J 2015. Homeostasis of microglia in the adult brain: review of novel microglia depletion systems. Trends Immunol 36:625–36
    [Google Scholar]
  127. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J 2009. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29:3974–80
    [Google Scholar]
  128. Walker DG, Lue L-F. 2013. Understanding the neurobiology of CD200 and the CD200 receptor: a therapeutic target for controlling inflammation in human brains. Future Neurol 8:321–32
    [Google Scholar]
  129. Wang J-S, Kefalov VJ. 2011. The cone-specific visual cycle. Prog. Retin. Eye Res. 30:115–28
    [Google Scholar]
  130. Wang M, Wang X, Zhao L, Ma W, Rodriguez IR et al. 2014. Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J. Neurosci. 34:3793–806
    [Google Scholar]
  131. Wang T, Tsang SH, Chen J 2017. Two pathways of rod photoreceptor cell death induced by elevated cGMP. Hum. Mol. Genet. 26:2299–306
    [Google Scholar]
  132. Wang X, Zhao L, Zhang J, Fariss RN, Ma W et al. 2016. Requirement for microglia for the maintenance of synaptic function and integrity in the mature retina. J. Neurosci. 36:2827–42
    [Google Scholar]
  133. Wong WT, Wang M, Li W 2011. Regulation of microglia by ionotropic glutamatergic and GABAergic neurotransmission. Neuron Glia Biol 7:41–46
    [Google Scholar]
  134. Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS 2010. Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat. Rev. Genet. 11:273–84
    [Google Scholar]
  135. Wright CB, Redmond TM, Nickerson JM 2015. A history of the classical visual cycle. Prog. Mol. Biol. Transl. Sci. 134:433–48
    [Google Scholar]
  136. Yarmolenko PS, Moon EJ, Landon C, Manzoor A, Hochman DW et al. 2011. Thresholds for thermal damage to normal tissues: an update. Int. J. Hyperthermia 27:320–43
    [Google Scholar]
  137. Young RW. 1967. The renewal of photoreceptor cell outer segments. J. Cell Biol. 33:61–72
    [Google Scholar]
  138. Youssef PN, Sheibani N, Albert DM 2011. Retinal light toxicity. Eye 25:1–14
    [Google Scholar]
  139. Zabel MK, Zhao L, Zhang Y, Gonzalez SR, Ma W et al. 2016. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa. Glia 64:1479–91
    [Google Scholar]
  140. Zahid S, Branham K, Schlegel D, Pennesi ME, Michaelides M et al. 2018. SAG. Retinal Dystrophy Gene Atlas S Zahid, K Branham, D Schlegel, ME Pennesi, M Michaelides, J Heckenlively, T Jayasundera 251 Berlin: Springer
    [Google Scholar]
  141. Zeng H-Y, Zhu X-A, Zhang C, Yang L-P, Wu L-M, Tso MOM 2005. Identification of sequential events and factors associated with microglial activation, migration, and cytotoxicity in retinal degeneration in rd mice. Investig. Ophthalmol. Vis. Sci. 46:2992–99
    [Google Scholar]
  142. Zhang L, Zhang J, You Z 2018. Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front. Cell Neurosci. 12:306
    [Google Scholar]
  143. Zhang R, Wang L-Y, Wang Y-F, Wu C-R, Lei C-L et al. 2015. Associations between the T280M and V249I SNPs in CX3CR1 and the risk of age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 56:5590–98
    [Google Scholar]
  144. Zhang Y, Zhao L, Wang X, Ma W, Lazere A et al. 2018. Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation. Sci. Adv. 4:eaap8492
    [Google Scholar]
/content/journals/10.1146/annurev-vision-121219-081730
Loading
/content/journals/10.1146/annurev-vision-121219-081730
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error