1932

Abstract

Abstract

Severe acute respiratory syndrome (SARS) presented as an atypical pneumonia that progressed to acute respiratory distress syndrome in ∼20% of cases and was associated with a mortality of about 10%. The etiological agent was a novel coronavirus (CoV). Angiotensin-converting enzyme 2 is the functional receptor for SARS-CoV; DC-SIGN and CD209L (L-SIGN) can enhance viral entry. Although the virus infects the lungs, gastrointestinal tract, liver, and kidneys, the disease is limited to the lungs, where diffuse alveolar damage is accompanied by a disproportionately sparse inflammatory infiltrate. Pro-inflammatory cytokines and chemokines, particularly IP-10, IL-8, and MCP-1, are elevated in the lungs and peripheral blood, but there is an unusual lack of an antiviral interferon (IFN) response. The virus is susceptible to exogenous type I IFN but suppresses the induction of IFN. Innate immunity is important for viral clearance in the mouse model. Virus-specific neutralizing antibodies that develop during convalescence prevent reinfection in animal models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.immunol.25.022106.141706
2007-04-23
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/iy/25/1/annurev.immunol.25.022106.141706.html?itemId=/content/journals/10.1146/annurev.immunol.25.022106.141706&mimeType=html&fmt=ahah

Literature Cited

  1. Tsang KW, Ho PL, Ooi GC, Yee WK, Wang T. et al. 2003. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348:1977–85 [Google Scholar]
  2. Lee N, Hui D, Wu A, Chan P, Cameron P. et al. 2003. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348:1986–94 [Google Scholar]
  3. Poutanen SM, Low DE, Henry B, Finkelstein S, Rose D. et al. 2003. Identification of severe acute respiratory syndrome in Canada. N. Engl. J. Med. 348:1995–2005 [Google Scholar]
  4. Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR. et al. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348:1967–76 [Google Scholar]
  5. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T. et al. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348:1953–66 [Google Scholar]
  6. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY. et al. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–25 [Google Scholar]
  7. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R. et al. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–99 [Google Scholar]
  8. Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A. et al. 2003. The genome sequence of the SARS-associated coronavirus. Science 300:1399–404 [Google Scholar]
  9. Peiris JS, Yuen KY, Osterhaus AD, Stohr K. 2003. The severe acute respiratory syndrome. N. Engl. J. Med 349:2431–41This review summarizes clinical aspects of SARS. [Google Scholar]
  10. Poon LL, Guan Y, Nicholls JM, Yuen KY, Peiris JS. 2004. The etiology, origins, and diagnosis of severe acute respiratory syndrome. Lancet Infect. Dis 4:663–71 [Google Scholar]
  11. Donnelly CA, Fisher MC, Fraser C, Ghani AC, Riley S. et al. 2004. Epidemiological and genetic analysis of severe acute respiratory syndrome. Lancet Infect. Dis. 4:672–83 [Google Scholar]
  12. Subbarao K, Roberts A. 2006. Is there an ideal animal model for SARS. Trends Microbiol. 14:299–303 [Google Scholar]
  13. Peiris JS, Guan Y, Yuen KY. 2004. Severe acute respiratory syndrome. Nat. Med 10:S88–97 [Google Scholar]
  14. Lau YL. 2004. SARS: future research and vaccine. Paediatr. Respir. Rev 5:300–3 [Google Scholar]
  15. Weinstein RA. 2004. Planning for epidemics—the lessons of SARS. N. Engl. J. Med 350:2332–34 [Google Scholar]
  16. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX. et al. 2003. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302:276–78This was the first demonstration that a precursor virus of SARS-CoV infected civet cats and other small mammals in a wet market in Southern China. Many animal handlers in the market had antibodies to the virus. [Google Scholar]
  17. Stadler K, Masignani V, Eickmann M, Becker S, Abrignani S. et al. 2003. SARS—beginning to understand a new virus. Nat. Rev. Microbiol. 1:209–18 [Google Scholar]
  18. Yu IT, Li Y, Wong TW, Tam W, Chan AT. et al. 2004. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N. Engl. J. Med. 350:1731–39 [Google Scholar]
  19. Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF. et al. 2003. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361:1767–72This important study demonstrated the clinical progression of SARS and reported viral load in SARS patients. [Google Scholar]
  20. Poon LL, Wong OK, Chan KH, Luk W, Yuen KY. et al. 2003. Rapid diagnosis of a coronavirus associated with severe acute respiratory syndrome (SARS). Clin. Chem. 49:953–55 [Google Scholar]
  21. Nicholls JM, Poon LL, Lee KC, Ng WF, Lai ST. et al. 2003. Lung pathology of fatal severe acute respiratory syndrome. Lancet 361:1773–78This paper reported the pathology seen in the lungs of SARS patients. [Google Scholar]
  22. Ng EK, Hui DS, Chan KC, Hung EC, Chiu RW. et al. 2003. Quantitative analysis and prognostic implication of SARS coronavirus RNA in the plasma and serum of patients with severe acute respiratory syndrome. Clin. Chem. 49:1976–80 [Google Scholar]
  23. Gu J, Gong E, Zhang B, Zheng J, Gao Z. et al. 2005. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 202:415–24 [Google Scholar]
  24. Wong RS, Wu A, To KF, Lee N, Lam CW. et al. 2003. Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ 326:1358–62 [Google Scholar]
  25. Leung GM, Hedley AJ, Ho LM, Chau P, Wong IO. et al. 2004. The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients. Ann. Intern. Med. 141:662–73 [Google Scholar]
  26. Hon KL, Leung CW, Cheng WT, Chan PK, Chu WC. et al. 2003. Clinical presentations and outcome of severe acute respiratory syndrome in children. Lancet 361:1701–3 [Google Scholar]
  27. Yilla M, Harcourt BH, Hickman CJ, McGrew M, Tamin A. et al. 2005. SARS-coronavirus replication in human peripheral monocytes/macrophages. Virus Res. 107:93–101 [Google Scholar]
  28. Zhong NS, Zheng BJ, Li YM, Poon, Xie ZH. et al. 2003. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet 362:1353–58 [Google Scholar]
  29. Breiman RF, Evans MR, Preiser W, Maguire J, Schnur A. et al. 2003. Role of China in the quest to define and control severe acute respiratory syndrome. Emerg. Infect. Dis. 9:1037–41 [Google Scholar]
  30. Xu RH, He JF, Evans MR, Peng GW, Field HE. et al. 2004. Epidemiologic clues to SARS origin in China. Emerg. Infect. Dis. 10:1030–37 [Google Scholar]
  31. Tu C, Crameri G, Kong X, Chen J, Sun Y. et al. 2004. Antibodies to SARS coronavirus in civets. Emerg. Infect. Dis. 10:2244–48 [Google Scholar]
  32. Wu D, Tu C, Xin C, Xuan H, Meng Q. et al. 2005. Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates. J. Virol. 79:2620–25 [Google Scholar]
  33. Li W, Shi Z, Yu M, Ren W, Smith C. et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–79 [Google Scholar]
  34. Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW. et al. 2005. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA 102:14040–45 [Google Scholar]
  35. Murray K, Selleck P, Hooper P, Hyatt A, Gould A. et al. 1995. A morbillivirus that caused fatal disease in horses and humans. Science 268:94–97 [Google Scholar]
  36. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A. et al. 2000. Nipah virus: a recently emergent deadly paramyxovirus. Science 288:1432–35 [Google Scholar]
  37. Sulkin SE, Allen R. 1974. Virus infections in bats. Monogr. Virol 8:1–103 [Google Scholar]
  38. Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. 2004. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc. Natl. Acad. Sci. USA 101:4240–45 [Google Scholar]
  39. Yang ZY, Huang Y, Ganesh L, Leung K, Kong WP. et al. 2004. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J. Virol. 78:5642–50 [Google Scholar]
  40. Kielian M, Rey FA. 2006. Virus membrane-fusion proteins: more than one way to make a hairpin. Nat. Rev. Microbiol 4:67–76 [Google Scholar]
  41. Liu S, Xiao G, Chen Y, He Y, Niu J. et al. 2004. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet 363:938–47 [Google Scholar]
  42. Bosch BJ, Martina BE, van der Zee R, Lepault J, Haijema BJ. et al. 2004. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc. Natl. Acad. Sci. USA 101:8455–60 [Google Scholar]
  43. Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. 2005. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA 102:11876–81 [Google Scholar]
  44. Tripet B, Howard MW, Jobling M, Holmes RK, Holmes KV, Hodges RS. 2004. Structural characterization of the SARS-coronavirus spike S fusion protein core. J. Biol. Chem 279:20836–49 [Google Scholar]
  45. Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. 2003. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol 77:8801–11 [Google Scholar]
  46. Hofmann H, Pohlmann S. 2004. Cellular entry of the SARS coronavirus. Trends Microbiol 12:466–72 [Google Scholar]
  47. Dimitrov DS. 2003. The secret life of ACE2 as a receptor for the SARS virus. Cell 115:652–53 [Google Scholar]
  48. Xiao X, Chakraborti S, Dimitrov AS, Gramatikoff K, Dimitrov DS. 2003. The SARS-CoV S glycoprotein: expression and functional characterization. Biochem. Biophys. Res. Commun 312:1159–64 [Google Scholar]
  49. Dveksler GS, Dieffenbach CW, Cardellichio CB, McCuaig K, Pensiero MN. et al. 1993. Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59. J. Virol. 67:1–8 [Google Scholar]
  50. Delmas B, Gelfi J, L’Haridon R, Vogel LK, Sjostrom H. et al. 1992. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357:417–20 [Google Scholar]
  51. Tresnan DB, Levis R, Holmes KV. 1996. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J. Virol 70:8669–74 [Google Scholar]
  52. Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH. et al. 1992. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357:420–22 [Google Scholar]
  53. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK. et al. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–54This paper identified ACE2 as a functional receptor for SARS-CoV. ACE2 efficiently binds the S1 domain of the SARS-CoV S protein. [Google Scholar]
  54. Wang P, Chen J, Zheng A, Nie Y, Shi X. et al. 2004. Expression cloning of functional receptor used by SARS coronavirus. Biochem. Biophys. Res. Commun. 315:439–44 [Google Scholar]
  55. Babcock GJ, Esshaki DJ, Thomas WDJ, Ambrosino DM. 2004. Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J. Virol 78:4552–60 [Google Scholar]
  56. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GJ, van Goor H. 2004. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol 203:631–37This paper reported the distribution of ACE2 in different organs, demonstrating ACE2 on alveolar epithelial cells in lung and enterocytes of the small intestine. [Google Scholar]
  57. Ding Y, He L, Zhang Q, Huang Z, Che X. et al. 2004. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J. Pathol. 203:622–30 [Google Scholar]
  58. Sims AC, Baric RS, Yount B, Burkett SE, Collins PL, Pickles RJ. 2005. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. J. Virol 79:15511–24 [Google Scholar]
  59. Jia HP, Look DC, Shi L, Hickey M, Pewe L. et al. 2005. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 79:14614–21 [Google Scholar]
  60. Leung WK, To KF, Chan PK, Chan HL, Wu AK. et al. 2003. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology 125:1011–17 [Google Scholar]
  61. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I. et al. 2002. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417:822–28 [Google Scholar]
  62. Yagil Y, Yagil C. 2003. Hypothesis: ACE2 modulates blood pressure in the mammalian organism. Hypertension 41:871–73 [Google Scholar]
  63. Imai Y, Kuba K, Rao S, Huan Y, Guo F. et al. 2005. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436:112–16This paper identified a critical function for ACE2 in acute lung injury using a mouse model. [Google Scholar]
  64. Kuba K, Imai Y, Rao S, Gao H, Guo F. et al. 2005. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 11:875–79This paper presented evidence that ACE2 is a receptor for SARS-CoV in vivo and provided molecular insights to explain severe pulmonary disease seen in SARS. [Google Scholar]
  65. Perlman S, Dandekar AA. 2005. Immunopathogenesis of coronavirus infections: implications for SARS. Nat. Rev. Immunol 5:917–27An excellent review of the immunopathogenesis of coronavirus infection that suggests that disease in SARS may be partly immune mediated. [Google Scholar]
  66. Nicholls J, Peiris M. 2005. Good ACE, bad ACE do battle in lung injury, SARS. Nat. Med 11:821–22 [Google Scholar]
  67. Harmer D, Gilbert M, Borman R, Clark KL. 2002. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 532:107–10 [Google Scholar]
  68. Subbarao K, McAuliffe J, Vogel L, Fahle G, Fischer S. et al. 2004. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J. Virol. 78:3572–77 [Google Scholar]
  69. Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S. 2005. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA 102:7988–93 [Google Scholar]
  70. Li W, Zhang C, Sui J, Kuhn JH, Moore MJ. et al. 2005. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24:1634–43This important study describes the affinity of binding of the S proteins from SARS-CoV isolated from humans and palm civets with cognate ACE2 proteins. [Google Scholar]
  71. Li W, Wong SK, Li F, Kuhn JH, Huang IC. et al. 2006. Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J. Virol. 80:4211–19 [Google Scholar]
  72. van Kooyk Y, Geijtenbeek TB. 2003. DC-SIGN: escape mechanism for pathogens. Nat. Rev. Immunol 3:697–709 [Google Scholar]
  73. Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ. et al. 2000. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100:575–85 [Google Scholar]
  74. Kammerer U, Eggert AO, Kapp M, McLellan AD, Geijtenbeek TB. et al. 2003. Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am. J. Pathol. 162:887–96 [Google Scholar]
  75. Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J. et al. 2003. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 197:823–29 [Google Scholar]
  76. Alvarez CP, Lasala F, Carrillo J, Muniz O, Corbi AL, Delgado R. 2002. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol 76:6841–44 [Google Scholar]
  77. Halary F, Amara A, Lortat-Jacob H, Messerle M, Delaunay T. et al. 2002. Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17:653–64 [Google Scholar]
  78. Pohlmann S, Zhang J, Baribaud F, Chen Z, Leslie GJ. et al. 2003. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J. Virol. 77:4070–80 [Google Scholar]
  79. Simmons G, Reeves JD, Grogan CC, Vandenberghe LH, Baribaud F. et al. 2003. DC-SIGN and DC-SIGNR bind Ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 305:115–23 [Google Scholar]
  80. Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC. et al. 2000. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–97 [Google Scholar]
  81. Soilleux EJ, Barten R, Trowsdale J. 2000. DC-SIGN; a related gene, DC-SIGNR; and CD23 form a cluster on 19p13. J. Immunol 165:2937–42 [Google Scholar]
  82. Soilleux EJ. 2003. DC-SIGN (dendritic cell-specific ICAM-grabbing nonintegrin) and DC-SIGN-related (DC-SIGNR): friend or foe. Clin. Sci 104:437–46 [Google Scholar]
  83. Bashirova AA, Geijtenbeek TB, van Duijnhoven GC, van Vliet SJ, Eilering JB. et al. 2001. A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J. Exp. Med. 193:671–78 [Google Scholar]
  84. Gramberg T, Hofmann H, Moller P, Lalor PF, Marzi A. et al. 2005. LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology 340:224–36 [Google Scholar]
  85. Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE. et al. 2004. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA 101:15748–53 [Google Scholar]
  86. Cheng PK, Wong DA, Tong LK, Ip SM, Lo AC. et al. 2004. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet 363:1699–700 [Google Scholar]
  87. Hung IF, Cheng VC, Wu AK, Tang BS, Chan KH. et al. 2004. Viral loads in clinical specimens and SARS manifestations. Emerg. Infect. Dis. 10:1550–57 [Google Scholar]
  88. Drosten C, Chiu LL, Panning M, Leong HN, Preiser W. et al. 2004. Evaluation of advanced reverse transcription-PCR assays and an alternative PCR target region for detection of severe acute respiratory syndrome-associated coronavirus. J. Clin. Microbiol. 42:2043–47 [Google Scholar]
  89. To KF, Tong JH, Chan PK, Au FW, Chim SS. et al. 2004. Tissue and cellular tropism of the coronavirus associated with severe acute respiratory syndrome: an in-situ hybridization study of fatal cases. J. Pathol. 202:157–63 [Google Scholar]
  90. Nicholls JM, Butany J, Poon LL, Chan KH, Beh SL. et al. 2006. Time course and cellular localization of SARS-CoV nucleoprotein and RNA in lungs from fatal cases of SARS. PLoS Med. 3:e27 [Google Scholar]
  91. Shieh WJ, Hsiao CH, Paddock CD, Guarner J, Goldsmith CS. et al. 2005. Immunohistochemical, in situ hybridization, and ultrastructural localization of SARS-associated coronavirus in lung of a fatal case of severe acute respiratory syndrome in Taiwan. Hum. Pathol. 36:303–9 [Google Scholar]
  92. Mazzulli T, Farcas GA, Poutanen SM, Willey BM, Low DE. et al. 2004. Severe acute respiratory syndrome-associated coronavirus in lung tissue. Emerg. Infect. Dis. 10:20–24 [Google Scholar]
  93. Farcas GA, Poutanen SM, Mazzulli T, Willey BM, Butany J. et al. 2005. Fatal severe acute respiratory syndrome is associated with multiorgan involvement by coronavirus. J. Infect. Dis. 191:193–97 [Google Scholar]
  94. Law PT, Wong CH, Au TC, Chuck CP, Kong SK. et al. 2005. The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J. Gen. Virol. 86:1921–30 [Google Scholar]
  95. Tan YJ, Fielding BC, Goh PY, Shen S, Tan TH. et al. 2004. Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J. Virol. 78:14043–47 [Google Scholar]
  96. Kopecky-Bromberg SA, Martinez-Sobrido L, Palese P. 2006. 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase. J. Virol 80:785–93 [Google Scholar]
  97. Cheung OY, Chan JW, Ng CK, Koo CK. 2004. The spectrum of pathological changes in severe acute respiratory syndrome (SARS). Histopathology 45:119–24 [Google Scholar]
  98. Hwang DM, Chamberlain DW, Poutanen SM, Low DE, Asa SL, Butany J. 2005. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod. Pathol 18:1–10 [Google Scholar]
  99. Tse GM, To KF, Chan PK, Lo AW, Ng KC. et al. 2004. Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS). J. Clin. Pathol. 57:260–65 [Google Scholar]
  100. Chu KH, Tsang WK, Tang CS, Lam MF, Lai FM. et al. 2005. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. 67:698–705 [Google Scholar]
  101. Leung TW, Wong KS, Hui AC, To KF, Lai ST. et al. 2005. Myopathic changes associated with severe acute respiratory syndrome: a postmortem case series. Arch. Neurol. 62:1113–17 [Google Scholar]
  102. Ng WF, To KF, Lam WW, Ng TK, Lee KC. 2006. The comparative pathology of severe acute respiratory syndrome and avian influenza A subtype H5N1—a review. Hum. Pathol 37:381–90 [Google Scholar]
  103. Lang Z, Zhang L, Zhang S, Meng X, Li J. et al. 2003. Pathological study on severe acute respiratory syndrome. Chin. Med. J. 116:976–80 [Google Scholar]
  104. To KF, Chan PK, Chan KF, Lee WK, Lam WY. et al. 2001. Pathology of fatal human infection associated with avian influenza A H5N1 virus. J. Med. Virol. 63:242–46 [Google Scholar]
  105. Peiris JS, Yu WC, Leung CW, Cheung CY, Ng WF. et al. 2004. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 363:617–19 [Google Scholar]
  106. Ungchusak K, Auewarakul P, Dowell SF, Kitphati R, Auwanit W. et al. 2005. Probable person-to-person transmission of avian influenza A (H5N1). N. Engl. J. Med. 352:333–40 [Google Scholar]
  107. Chokephaibulkit K, Uiprasertkul M, Puthavathana P, Chearskul P, Auewarakul P. et al. 2005. A child with avian influenza A (H5N1) infection. Pediatr. Infect. Dis. J. 24:162–66 [Google Scholar]
  108. Uiprasertkul M, Puthavathana P, Sangsiriwut K, Pooruk P, Srisook K. et al. 2005. Influenza A H5N1 replication sites in humans. Emerg. Infect. Dis. 11:1036–41 [Google Scholar]
  109. 109. National Research Project for SARS, Beijing Group 2004. The involvement of natural killer cells in the pathogenesis of severe acute respiratory syndrome. Am. J. Clin. Pathol 121:507–11 [Google Scholar]
  110. Glass WG, Subbarao K, Murphy B, Murphy PM. 2004. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J. Immunol 173:4030–39This in vivo study explored cellular and molecular mechanisms underlying the clearance of SARS-CoV in C57BL/6 mice. [Google Scholar]
  111. Chen JH, Chang YW, Yao CW, Chiueh TS, Huang SC. et al. 2004. Plasma proteome of severe acute respiratory syndrome analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proc. Natl. Acad. Sci. USA 101:17039–44 [Google Scholar]
  112. Cinatl J Jr, Michaelis M, Scholz M, Doerr HW. 2004. Role of interferons in the treatment of severe acute respiratory syndrome. Expert. Opin. Biol. Ther 4:827–36 [Google Scholar]
  113. Spiegel M, Pichlmair A, Martinez-Sobrido L, Cros J, Garcia-Sastre A. et al. 2005. Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J. Virol. 79:2079–86This paper demonstrates that SARS-CoV blocks the induction of IFN by preventing the induction of IRF-3. [Google Scholar]
  114. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. 2003. Treatment of SARS with human interferons. Lancet 362:293–94 [Google Scholar]
  115. Haagmans BL, Kuiken T, Martina BE, Fouchier RA, Rimmelzwaan GF. et al. 2004. Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat. Med. 10:290–93 [Google Scholar]
  116. Cheung CY, Poon LL, Ng IH, Luk W, Sia SF. et al. 2005. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J. Virol. 79:7819–26 [Google Scholar]
  117. Tseng CT, Perrone LA, Zhu H, Makino S, Peters CJ. 2005. Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J. Immunol 174:7977–85 [Google Scholar]
  118. Law HK, Cheung CY, Ng HY, Sia SF, Chan YO. et al. 2005. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood 106:2366–74 [Google Scholar]
  119. Ng LF, Hibberd ML, Ooi EE, Tang KF, Neo SY. et al. 2004. A human in vitro model system for investigating genome-wide host responses to SARS coronavirus infection. BMC Infect. Dis. 4:34 [Google Scholar]
  120. Tang NL, Chan PK, Wong CK, To KF, Wu AK. et al. 2005. Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clin. Chem. 51:2333–40 [Google Scholar]
  121. Jiang Y, Xu J, Zhou C, Wu Z, Zhong S. et al. 2005. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am. J. Respir. Crit. Care Med. 171:850–57 [Google Scholar]
  122. Wong CK, Lam CW, Wu AK, Ip WK, Lee NL. et al. 2004. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 136:95–103 [Google Scholar]
  123. Huang KJ, Su IJ, Theron M, Wu YC, Lai SK. et al. 2005. An interferon-γ-related cytokine storm in SARS patients. J. Med. Virol. 75:185–94 [Google Scholar]
  124. Ng PC, Lam CW, Li AM, Wong CK, Cheng FW. et al. 2004. Inflammatory cytokine profile in children with severe acute respiratory syndrome. Pediatrics 113:e7–14 [Google Scholar]
  125. Zhang Y, Li J, Zhan Y, Wu L, Yu X. et al. 2004. Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect. Immun. 72:4410–15 [Google Scholar]
  126. Lee CH, Chen RF, Liu JW, Yeh WT, Chang JC. et al. 2004. Altered p38 mitogen-activated protein kinase expression in different leukocytes with increment of immunosuppressive mediators in patients with severe acute respiratory syndrome. J. Immunol. 172:7841–47 [Google Scholar]
  127. Cheng VC, Hung IF, Tang BS, Chu CM, Wong MM. et al. 2004. Viral replication in the nasopharynx is associated with diarrhea in patients with severe acute respiratory syndrome. Clin. Infect. Dis. 38:467–75 [Google Scholar]
  128. Reghunathan R, Jayapal M, Hsu LY, Chng HH, Tai D. et al. 2005. Expression profile of immune response genes in patients with severe acute respiratory syndrome. BMC Immunol. 6:2 [Google Scholar]
  129. Cheung CY, Poon LL, Lau AS, Luk W, Lau YL. et al. 2002. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease. Lancet 360:1831–37 [Google Scholar]
  130. Wang YD, Sin WY, Xu GB, Yang HH, Wong TY. et al. 2004. T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recover from SARS. J. Virol. 78:5612–18 [Google Scholar]
  131. Chen H, Hou J, Jiang X, Ma S, Meng M. et al. 2005. Response of memory CD8+ T cells to severe acute respiratory syndrome (SARS) coronavirus in recovered SARS patients and healthy individuals. J. Immunol. 175:591–98 [Google Scholar]
  132. Poccia F, Agrati C, Castilletti C, Bordi L, Gioia C. et al. 2006. Anti-severe acute respiratory syndrome coronavirus immune responses: the role played by Vγ9Vδ2 T cells. J. Infect. Dis. 193:1244–49 [Google Scholar]
  133. Peng H, Yang LT, Wang LY, Li J, Huang J. et al. 2006. Long-lived memory T lymphocyte responses against SARS coronavirus nucleocapsid protein in SARS-recovered patients. Virology 351:466–75 [Google Scholar]
  134. He Z, Zhao C, Dong Q, Zhuang H, Song S. et al. 2005. Effects of severe acute respiratory syndrome (SARS) coronavirus infection on peripheral blood lymphocytes and their subsets. Int. J. Infect. Dis. 9:323–30 [Google Scholar]
  135. Hsueh PR, Huang LM, Chen PJ, Kao CL, Yang PC. 2004. Chronological evolution of IgM, IgA, IgG and neutralization antibodies after infection with SARS-associated coronavirus. Clin. Microbiol. Infect 10:1062–66 [Google Scholar]
  136. Liu W, Fontanet A, Zhang PH, Zhan L, Xin ZT. et al. 2006. Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J. Infect. Dis. 193:792–95 [Google Scholar]
  137. Nie Y, Wang G, Shi X, Zhang H, Qiu Y. et al. 2004. Neutralizing antibodies in patients with severe acute respiratory syndrome-associated coronavirus infection. J. Infect. Dis. 190:1119–26 [Google Scholar]
  138. Buchholz UJ, Bukreyev A, Yang L, Lamirande EW, Murphy BR. et al. 2004. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc. Natl. Acad. Sci. USA 101:9804–9 [Google Scholar]
  139. Lu L, Manopo I, Leung BP, Chng HH, Ling AE. et al. 2004. Immunological characterization of the spike protein of the severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 42:1570–76 [Google Scholar]
  140. Vennema H, de Groot RJ, Harbour DA, Dalderup M, Gruffydd-Jones T. et al. 1990. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J. Virol. 64:1407–9 [Google Scholar]
  141. Bisht H, Roberts A, Vogel L, Bukreyev A, Collins PL. et al. 2004. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc. Natl. Acad. Sci. USA 101:6641–46 [Google Scholar]
  142. Stadler K, Roberts A, Becker S, Vogel L, Eickmann M. et al. 2005. SARS vaccine protective in mice. Emerg. Infect. Dis. 11:1312–14 [Google Scholar]
  143. Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR. et al. 2004. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428:561–64 [Google Scholar]
  144. Greenough TC, Babcock GJ, Roberts A, Hernandez HJ, Thomas WD Jr. et al. 2005. Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J. Infect. Dis. 191:507–14 [Google Scholar]
  145. Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G. et al. 2003. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362:263–70 [Google Scholar]
  146. Rowe T, Gao G, Hogan RJ, Crystal RG, Voss TG. et al. 2004. Macaque model for severe acute respiratory syndrome. J. Virol. 78:11401–4 [Google Scholar]
  147. Qin C, Wang J, Wei Q, She M, Marasco WA. et al. 2005. An animal model of SARS produced by infection of Macaca mulatta with SARS coronavirus. J. Pathol. 206:251–59 [Google Scholar]
  148. McAuliffe J, Vogel L, Roberts A, Fahle G, Fischer S. et al. 2004. Replication of SARS coronavirus administered into the respiratory tract of African green, rhesus and cynomolgus monkeys. Virology 330:8–15 [Google Scholar]
  149. Greenough TC, Carville A, Coderre J, Somasundaran M, Sullivan JL. et al. 2005. Pneumonitis and multi-organ system disease in common marmosets (Callithrix jacchus) infected with the severe acute respiratory syndrome-associated coronavirus. Am. J. Pathol. 167:455–63 [Google Scholar]
  150. Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF. et al. 2003. Virology: SARS virus infection of cats and ferrets. Nature 425:915 [Google Scholar]
  151. Roberts A, Vogel L, Guarner J, Hayes N, Murphy B. et al. 2005. Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J. Virol. 79:503–11 [Google Scholar]
  152. Roberts A, Paddock C, Vogel L, Butler E, Zaki S, Subbarao K. 2005. Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J. Virol 79:5833–38 [Google Scholar]
  153. Hogan RJ, Gao G, Rowe T, Bell P, Flieder D. et al. 2004. Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires Stat1. J. Virol. 78:11416–21 [Google Scholar]
  154. Yen YT, Liao F, Hsiao CH, Kao CL, Chen YC, Wu-Hsieh BA. 2006. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J. Virol 80:2684–93 [Google Scholar]
  155. Lau YL, Peiris JS. 2005. Pathogenesis of severe acute respiratory syndrome. Curr. Opin. Immunol 17:404–10 [Google Scholar]
  156. Lin M, Tseng HK, Trejaut JA, Lee HL, Loo JH. et al. 2003. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med. Genet. 4:9 [Google Scholar]
  157. Ng MH, Lau KM, Li L, Cheng SH, Chan WY. et al. 2004. Association of human-leukocyte-antigen class I (B*0703) and class II (DRB1*0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome. J. Infect. Dis. 190:515–18 [Google Scholar]
  158. Ip WK, Chan KH, Law HK, Tso GH, Kong EK. et al. 2005. Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J. Infect. Dis. 191:1697–704 [Google Scholar]
  159. Chiu RW, Tang NL, Hui DS, Chung GT, Chim SS. et al. 2004. ACE2 gene polymorphisms do not affect outcome of severe acute respiratory syndrome. Clin. Chem. 50:1683–86 [Google Scholar]
  160. Tsui PT, Kwok ML, Yuen H, Lai ST. 2003. Severe acute respiratory syndrome: clinical outcome and prognostic correlates. Emerg. Infect. Dis 9:1064–69 [Google Scholar]
  161. Bukreyev A, Lamirande EW, Buchholz UJ, Vogel LN, Elkins WR. et al. 2004. Mucosal immunization of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363:2122–27 [Google Scholar]
  162. Kim TW, Lee JH, Hung CF, Peng S, Roden R. et al. 2004. Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J. Virol. 78:4638–45 [Google Scholar]
  163. Zeng F, Chow KY, Hon CC, Law KM, Yip CW. et al. 2004. Characterization of humoral responses in mice immunized with plasmid DNAs encoding SARS-CoV spike gene fragments. Biochem. Biophys. Res. Commun. 315:1134–39 [Google Scholar]
  164. Zhu MS, Pan Y, Chen HQ, Shen Y, Wang XC. et al. 2004. Induction of SARS-nucleoprotein-specific immune response by use of DNA vaccine. Immunol. Lett. 92:237–43 [Google Scholar]
  165. Tang L, Zhu Q, Qin E, Yu M, Ding Z. et al. 2004. Inactivated SARS-CoV vaccine prepared from whole virus induces a high level of neutralizing antibodies in BALB/c mice. DNA Cell Biol. 23:391–94 [Google Scholar]
  166. Takasuka N, Fujii H, Takahashi Y, Kasai M, Morikawa S. et al. 2004. A subcutaneously injected UV-inactivated SARS coronavirus vaccine elicits systemic humoral immunity in mice. Int. Immunol. 16:1423–30 [Google Scholar]
  167. Zhou J, Wang W, Zhong Q, Hou W, Yang Z. et al. 2005. Immunogenicity, safety, and protective efficacy of an inactivated SARS-associated coronavirus vaccine in rhesus monkeys. Vaccine 23:3202–9 [Google Scholar]
  168. Bisht H, Roberts A, Vogel L, Subbarao K, Moss B. 2005. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology 334:160–65 [Google Scholar]
  169. Zhang H, Wang G, Li J, Nie Y, Shi X. et al. 2004. Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies. J. Virol. 78:6938–45 [Google Scholar]
  170. Gao W, Tamin A, Soloff A, D’Aiuto L, Nwanegbo E. et al. 2003. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 362:1895–96 [Google Scholar]
  171. Soo YO, Cheng Y, Wong R, Hui DS, Lee CK. et al. 2004. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin. Microbiol. Infect. 10:676–78 [Google Scholar]
  172. ter Meulen J, Bakker AB, van den Brink EN, Weverling GJ, Martina BE. et al. 2004. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet 363:2139–41 [Google Scholar]
  173. Sui J, Li W, Murakami A, Tamin A, Matthews LJ. et al. 2004. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl. Acad. Sci. USA 101:2536–41 [Google Scholar]
  174. Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y. et al. 2004. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat. Med. 10:871–75 [Google Scholar]
  175. Roberts A, Thomas WD, Guarner J, Lamirande EW, Babcock GJ. et al. 2006. Therapy with a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody reduces disease severity and viral burden in golden Syrian hamsters. J. Infect. Dis. 193:685–92 [Google Scholar]
  176. Weingartl H, Czub M, Czub S, Neufeld J, Marszal P. et al. 2004. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J. Virol. 78:12672–76 [Google Scholar]
/content/journals/10.1146/annurev.immunol.25.022106.141706
Loading
/content/journals/10.1146/annurev.immunol.25.022106.141706
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error