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Abstract

Ninety-four years have passed since the discovery of the Raman effect,
and there are currently more than 25 different types of Raman-based tech-
niques.The past two decades have witnessed the blossoming of Raman spec-
troscopy as a powerful physicochemical technique with broad applications
within the life sciences. In this review, we critique the use of Raman spec-
troscopy as a tool for quantitative metabolomics. We overview recent de-
velopments of Raman spectroscopy for identification and quantification of
disease biomarkers in liquid biopsies, with a focus on the recent advances
within surface-enhanced Raman scattering–based methods. Ultimately, we
discuss the applications of imaging modalities based on Raman scattering as
label-free methods to study the abundance and distribution of biomolecules
in cells and tissues, including mammalian, algal, and bacterial cells.
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1. INTRODUCTION

Metabolomics is one of the newest omics platforms and aims to study the metabolome, i.e., the set
of metabolites within a biological sample (1). Metabolites are small molecules with low molecular
weight (in relation to proteins and nucleic acids) that are involved in biological processes as reac-
tants, intermediates, or products of biochemical reactions (2).The biological sample studied can be
an entire organism, a tissue specimen, a cell, an organ, an organelle, or a biofluid.Themetabolome
is composed of metabolites originating from a number of processes and may include endogenous
metabolites; these are naturally produced and consumed within a biological system (e.g., sugars,
organic acids, amino acids, nucleic acids, lipids, vitamins) as well as exogenous metabolites that
are not synthesized by the organism and therefore are imported from outside (e.g., drugs, en-
vironmental contaminants, food additives, toxins, and other xenobiotics) (2). The main focus of
metabolomics is to provide a better understanding of biological functions by investigating the
link between metabolites (defined as metabolism) and their interactions with other biochemical
species. It occupies a unique position compared to the other omics platforms, as the metabolome
is the closest link to physiology and reflects all information expressed and modulated by all other
major omics approaches (genome, transcriptome, and proteome) (2). Therefore, metabolomics is
generally considered as the link between genotype and phenotype because the metabolome is the
final response of a biological system to genetic or environmental changes (e.g., diet, age, lifestyle,
medications, and diseases) and in humans can also be affected by the micro-organisms that live in
unison within what is termed a superorganism (3).

Over the last four decades, extensive research has been conducted in search of genes respon-
sible for many chronic diseases. However, recent studies have revealed that human health relies
not only on genes but also on the interaction of multiple genes with environmental factors (4), an
area often referred to as the exposome (5, 6). Owing to its close relationship to the phenotype and
its unique ability to probe complex biochemistry, metabolomics is a powerful tool for exploring
human diseases based on how small molecules are globally affected by physiological and patho-
logical changes. The importance of metabolites and their role on the development of chronic
and complex diseases such as cancer (7, 8), diabetes (9), and atherosclerosis (4) have been previ-
ously demonstrated by metabolomics approaches. The evaluation of genes and genetic risk scores
may be useful for evaluating the diseases that an individual may develop in the future; however,
metabolomics has the potential to provide information about the biological disorders currently
taking place within an individual (4). The sensitivity of the metabolome to external stimuli has
been used not only as a biomarker to report disease status but also as a tool to monitor therapeutic
outcomes, pointing out the growing role of pharmacometabolomics in precision medicine (10,
11). The main objective of precision or personalized medicine is to combine the medical treat-
ment of an individual to its profile obtained through advanced omics testing in order to develop
specialized treatment and thus improve the therapeutic outcomes (12). Several studies on complex
diseases such as cancer have shown that the cancers of two patients are not exactly the same, and
hence, different responses to generic treatments such as radiotherapy and chemotherapy may be
expected owing to the interpatient variability (10). Providing a treatment modality that best suits
the individual response of each patient is a key factor in avoiding the exposure of the individual
to ineffective and costly treatments that can cause unnecessary side effects and, most importantly,
achieve a favorable prognosis (13). Furthermore, it is well known that drug metabolism can vary
according to physiological variables such as ethnicity, age, gender, weight, height, and diet (12).
Thus, monitoring the metabolome and the biochemical components obtained by genomics and
other omics methodologies can offer major improvements in fighting not only cancer but sev-
eral other diseases by providing new insights into disease pathophysiology and the mechanisms
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responsible by means of differences in drug responses and by customizing drug dosing owing to
interpatient variability (4, 10, 14).

The basic methods used inmetabolomics research involve advanced analytical techniques com-
bined with computational tools that allow for the characterization of complex mixtures of small
molecules within the metabolome (15, 16). It is important to highlight that the metabolome can
be wide and diverse regarding the physical and chemical properties of metabolites, which may be
found distributed over a wide range of concentrations. Hence, there is no single analytical plat-
form that allows for the identification and quantification of the complete set of metabolites within
a biological system and, therefore, combining different analytical techniques is a common strategy
in metabolomics investigations (2, 17, 18).

Over the past 15 years, two analytical techniques have emerged as primary platforms in
metabolomics research: nuclear magnetic resonance (NMR) spectroscopy and mass spectrome-
try (MS) (8, 12). Both techniques enable the identification and quantification of a large number of
metabolites coexisting in complex samples.NMR spectroscopy is highly reproducible and requires
minimal sample preparation compared to MS-based methods. However, the sensitivity achieved
by NMR spectroscopy is relatively low compared to that obtained by MS platforms owing to the
signal overlapping at certain spectral regions (19). Although MS is more sensitive than NMR, it
usually involves the coupling of a separation technique such as gas chromatography (GC) and liq-
uid chromatography (LC) because of the complexity of biological mixtures.Gas chromatography-
mass spectrometry (GC-MS) is a powerful tool to analyze volatile metabolites with high sensitiv-
ity, resolution, and reproducibility. Major drawbacks are that it requires time-consuming sample
processing and derivatization steps to improve sample volatility or increase retention on the GC
column. Liquid chromatography-mass spectrometry (LC-MS) has become the main technique
for metabolite profiling. Sample volatility is not a requirement, so there is no need for derivati-
zation, resulting in a broader range of detectable analytes (18). Chromatography-MS (GC-MS
and LC-MS) and NMR spectroscopy are by far the most widely applied platforms for identi-
fication and quantification of metabolites. However, other MS-based methods such as capillary
electrophoresis-MS and direct infusion (or direct injection) MS can also be used in metabolomics
research (18).

Despite the remarkable progress in biomedical fields through MS-based metabolomics, there
remain limitations and challenges regarding the translation of such technologies into clinical prac-
tice. One major challenge is the data variability obtained by different studies performed on the
same or similar samples by independent research groups,which are generally introduced by factors
such as sample preparation (quenching, extraction, and derivatization), data acquisition, and data
analysis (20, 21).These challenges may be overcome by developing standard methods that are able
to measure the absolute concentration of metabolites. However, this approach is not straightfor-
ward forMS, as it requires suitable internal standards and calibration methods (22).Until recently,
measuring the relative concentration of metabolites has been the main goal of most MS-based
metabolomics studies because this approach is sufficient to evaluate the overall changes in the
metabolome within a biological system under perturbations. However, given the need for rapid
and accurate absolute quantification in clinical settings, there is an increasing drive toward stan-
dardized approaches within the metabolomics community, with an emphasis on quantification and
automation (21).

Vibrational spectroscopic methods such as infrared (IR) and Raman spectroscopies have also
been used as analytical tools in metabolomics investigations. Both methods interrogate the chem-
ical profile of a sample based on its chemical vibrations and provide spectral fingerprints repre-
senting a snapshot of the overall biochemistry of the sample at a given time (1, 23, 24). Spec-
tral signatures provided by Raman and IR spectroscopies are obtained through distinct modes of
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interaction between the incident radiation and the sample. Raman shift results from inelastic scat-
tering of the incident light due to a change in polarizability of the molecule, whereas an IR spec-
trum is obtained based on the absorption of the incident radiation due to a change in the dipole
moment of vibratingmolecules (23).TheRaman signal is obtained through amonochromatic laser
beam of high intensity (i.e., a laser),whereas IR spectroscopy utilizes a source emitting IR radiation
such as a globar, synchrotron radiation, and/or a quantum cascade laser. Owing to their distinct
operating modes, both methods have advantages and limitations. One major drawback of IR spec-
troscopy is the strong absorption of water over the mid-IR region (4,000–400 cm−1), which re-
quires the dehydration of samples and specialized sampling such as attenuated total reflectance or
digital subtraction of the water signal (23).On the other hand, water molecules are weak scatterers
and therefore do not interfere with the Raman signal.However,Raman spectra acquired with a vis-
ible laser from biological samples can often be dominated by fluorescence,which is not an issue for
IR spectroscopy (23). Vibrational spectroscopic techniques are not as sensitive as MS-based meth-
ods, and accurate identification of metabolites in complex biological samples is still a challenge.
However, Raman and IR spectroscopies provide information on general groups of biomolecules
such as carbohydrates, lipids, proteins, and nucleic acids simultaneously in a rapid, reagent-free,
nondestructive, high-throughput, and relatively inexpensive manner compared to other platforms
commonly used in metabolomics studies. Furthermore, Raman and IR technologies are available
as portable devices (25), which is ideal for point-of-care medicine. Because of its ability to provide
biochemical information in a holistic manner, vibrational spectroscopy has been used as a valuable
tool for metabolic fingerprinting/footprinting. In light of this, we review the recent developments
in Raman spectroscopy as a quantitative method for metabolomics investigation.

2. SPONTANEOUS RAMAN SCATTERING AND RELATED
PHENOMENA

The Raman effect was first observed in 1928 by Sir Chandrasekhara Venkata Raman (26), who be-
gan experimenting with light scattering in an attempt to understand the blue color of theMediter-
ranean Sea that he observed on a trip through Europe in 1921 (27). In 1930, he was awarded the
Nobel Prize in Physics. During the next 30 years, Raman experiments were carried out on large
sample volumes that took up to three months to prepare owing to the long purification process
(multiple distillations) to avoid undesirable effects such as fluorescence and stray light from im-
purities. Spectral acquisition could take days due to the long integration time, and these data
were recorded using prism spectrographs, Hg lamps, and photographic plates. The invention of
the laser in the 1960s and its implementation as a source of excitation in spectrometers had a
major impact on Raman technology, allowing the acquisition of data in a faster and more repro-
ducible manner. This explains the rise in the number of publications observed in the early 1970s
(Figure 1d). Similar to other analytical techniques, the development of Raman spectroscopy is
directly influenced by advances in technology and has been driven by the need for improvements
in sensitivity, speed of collection, spatial resolution, and specificity. Ninety-four years have passed
since the discovery of Raman scattering, and there are currently more than 25 different types of
Raman-based techniques (28).Figure 1 shows the total number of publications from 1930 to 2020
listed in the Web of Science using names of the main Raman-based methods in the biomedical
sciences as keyword search terms.

2.1. Spontaneous Raman Scattering

When electromagnetic radiation interacts with a molecule, the energy of the incident photon
can be transferred to the molecule through different modes of interaction such as absorption,
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Figure 2

Potential energy level diagrams. (a) Representation of rotational, vibrational, and electronic (ground and
excited) states in a molecule. Energy transfer process in resonance Raman scattering (b), Stokes (c), and
anti-Stokes (d) Raman scattering. � represents the energy difference between the excited (ν = 1) and
fundamental vibrational states of mid-infrared.

emission, or scattering (28, 29). In absorption, the molecule may undergo a process called tran-
sition as a consequence of the transference of energy, which is characterized by a change from an
initial state to a posterior state.Themolecular transition can be classified as electronic, vibrational,
or rotational (30). Electronic transitions occur when the molecule absorbs a photon with energy
compatible with wavelengths in the ultraviolet–visible (UV-Vis) spectral range. Vibrational
transitions require radiation with typical wavenumbers between 400 and 4,000 cm−1, i.e., infrared
radiation. Rotational transitions occur when radiation with frequencies between 1.6 and 30 GHz
is absorbed (microwave) (30). Vibrational transitions occur between different vibrational levels of
the same electronic state, while rotational transitions occur between rotational levels of the same
vibrational state (31) (Figure 2a). The basic rule for the occurrence of a transition is that the
energy of the incident photon matches the energy difference between two states. In the case that
the incoming photon does not match any molecular transition, the photon is scattered (28).

Light scattering can be subdivided into elastic or inelastic.The first one does not involve energy
exchange (the wavelength remains unchanged after scattering) such as Rayleigh and Mie/Tyndall
scattering (28). Inelastic scattering is represented by Brillouin, Compton, and Raman scattering
(28). In Raman, the incoming photons go into a virtual state and then are measured as scattered
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photons with different energy. Virtual states are created at the time of laser incidence and are not
associated to electronic, vibrational, or rotational states of the molecule. If the photon transfers
its energy to the molecule, the scattered photon will have lower energy and longer wavelength
(Stokes scattering), which means that the initial state is the ground state, and after the scattering
process, the final state is an excited vibrational state (Figure 2c).On the other hand, if themolecule
is already in an excited vibrational state and transfers energy to the incident photon, the scattered
photon will have higher energy and a shorter wavelength (anti-Stokes scattering), which means
that the final state is the ground state (28) (Figure 2d). Spontaneous Raman scattering or the
Raman effect refers to the inelastic scattering of light, including Stokes and anti-Stokes processes.
The energy difference of inelastic scattering corresponds to the energy difference between the ex-
cited (ν = 1) and fundamental vibrational states of mid-IR. At room temperature, most molecules
are in the fundamental state; therefore, the Raman effect is dominated by the Stokes process rather
than the anti-Stokes phenomenon (29).

2.2. Nonlinear Raman Scattering

In 1974, development of the first Raman microscopes was presented at the Fourth International
Conference on Raman Spectroscopy (ICORS) held in Brunswick, Maine. However, the concept
of combining Raman spectroscopy to a microscope for obtaining molecular information from
samples at microscopic level was suggested almost a decade earlier by Delhaye and Migeon in
1966 (29). Since then, Raman microspectrometers have been upgraded, and nowadays it is pos-
sible to obtain images through spontaneous Raman scattering. The combination of spectral with
spatial information provided by Raman imaging has made it possible to evaluate the distribution
of compounds based on their spectral signatures, providing a better understanding of the physico-
chemical properties of the sample. The main drawback of spontaneous Raman imaging is the long
acquisition time per pixel due to the poor scattering cross section of Raman effect (typically only
∼1 in 106–107 photons are converted to Raman scattered light), which makes the image acquisi-
tion very long and unsuitable for real-time imaging of dynamical processes such as in biological
systems (32).

To overcome the long sample analysis times for spontaneous Raman imaging, techniques based
on coherent Raman scattering (CRS), such as coherent anti-Stokes Raman spectroscopy (CARS)
and stimulated Raman spectroscopy (SRS), have been developed for accelerating the acquisition
of Raman images. CRS enables label-free imaging of living cells and tissues by enhancing the
weak Raman signal through third-order nonlinear optical processes (33). In CRS, two high-power
pulsed lasers (picosecond or femtosecond lasers) are used to generate CARS/SRS signals; one of
the lasers is known as the pump beam (ωpump) and the other as the Stokes (ωStokes) beam (28). In
CARS, the pump (ωpump) and Stokes (ωStokes) beams are tuned onto resonance with the frequency
of a Raman peak. In the following, a probe photon of frequency (ωpr) induces a perturbation for
the anti-Stokes scattering process to occur at frequency ωCARS = ωpump − ωStokes + ωpr. In most
CARS systems, the pump and probe photons are provided by the same laser (ωpr = ωpump) and thus,
ωCARS = 2ωpump − ωStokes (28, 33) (Figure 3a). The major drawback of CARS is the occurrence
of an interfering nonresonance background during the CARS signal generation process, which
reduces image contrast and complicates quantification (28). In SRS,photons fromωpump andωStokes

beams interact with a molecule, resulting in a transfer of energy from the pump photon to the
molecule (stimulated Raman loss), and then the molecule scatters a new photon with frequency
(ωStokes, stimulated Raman gain) (28, 34) (Figure 3b). The SRS signal is quantified by taking into
consideration the amount of energy transferred from the pump beam to the Stokes beam. In
contrast to CARS, SRS is free of undesirable background signals and has a linear dependence
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Figure 3

(a) Energy transfer in coherent anti-Stokes Raman spectroscopy (CARS) and (b) stimulated Raman
spectroscopy (SRS) processes. � represents the energy difference between the excited (ν = 1) and
fundamental vibrational states of mid-infrared.

to concentration, which makes SRS a better tool for quantitative chemical imaging and spectral
analysis than CARS (35).

2.3. Signal Enhancement Through Surface Plasmon and Resonance
Raman Spectroscopy

CARS and SRS microscopies have emerged as powerful techniques for label-free imaging in
biological systems; however, the spatial resolution achieved in both methods is restricted by the
diffraction limit of light, which is∼1μm, according to Abbe’s criterion (28).To achieve submicron
spatial resolution, Raman spectroscopy was combined to scanning near-field optical microscopy
technology and gave rise to tip-enhanced Raman spectroscopy (TERS) nanoimaging (28). In
TERS, a sharp metal or metal-coated nanotip is positioned a few nanometers above the sample,
and the Raman excitation light is focused onto the surface of the tip, enabling nanoscale chemical
imaging of the sample surface with a spatial resolution of 10–30 nm (28). Besides the improvement
on spatial resolution, the electromagnetic field of the Raman excitation light is also enhanced
by localized surface plasmon resonance (LSPR) on the tip’s apex. Hence, the number of Raman
photons being generated is higher compared to spontaneous Raman scattering. Surface-enhanced
Raman scattering/spectroscopy (SERS) and resonance Raman spectroscopy (RRS) can also be
used to increase the sensitivity while maintaining the specificity of Raman scattering. In SERS, the
sample is adsorbed on a solid substrate with metallic nanostructures on the surface or in a colloidal
suspension of metallic nanoparticles such as gold or silver, leading to amplification of the electric
field of the incident light via LSPR (similar to TERS) (36). The SERS signal is also amplified by
chemical effect due to the transference of charge between the metallic structure and the analyte,
which results in an enhancement factor higher than in TERS. It also enables the quantitative
determination and identification of molecules at ultralow concentrations and quenching of the
fluorescence background (37). In RRS, the Raman signal is improved by frequency coincidence
(or resonance) of the excitation laser to the energy required for an electronic transition of a
compound (Figure 2b), which is sensitive and highly specific to obtaining information from
chromophoric species, e.g., with excitation in the deep UV; aromatic amino acids and nucleic
acids are then selectively enhanced (38). Both RRS and SERS techniques can be combined
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(surface-enhanced resonance Raman spectroscopy, SERRS), resulting in an amplification factor
of up to ten orders of magnitude as compared to spontaneous Raman spectroscopy (39).

3. APPLICATIONS OF RAMAN SPECTROSCOPY
IN METABOLOMICS STUDIES

Raman spectroscopy is a powerful analytical technique to study the chemical composition of mate-
rials and has been extensively used in metabolomics investigations. In the first part of this section,
we present recent results reported by various studies where Raman signatures are collected in
single-point mode; i.e., a single Raman spectrum is collected from the material under analysis.
Next, we discuss the applications of imaging techniques based on Raman scattering as label-free
methods to study the distribution of biomolecules.

3.1. Raman and Metabolomics: Single-Point Mode

Biological information can be extracted from Raman spectra through quantitative and/or qual-
itative analysis, which are decided by the user based on the spectral features and final goal
of the experiment. Figure 4 shows situations that may occur in a Raman experiment: appear-
ance/disappearance of peaks (Figure 4a), changes in peak intensities (Figure 4b), shifts in peak
position (Figure 4d), and no clear spectral changes as judged by the naked eye (Figure 4e).

Within the context of qualitative analysis, information can be retrieved from situations de-
picted in Figure 4a,d. Appearance/disappearance of Raman peaks is a good alternative to ana-
lyze the presence and/or absence of molecules in a biological system. Alonso-Pernas et al. (44)
evaluated the accumulation of poly-β-hydroxybutyrate (PHB) in bacterial cells by monitoring vi-
brations from PHB that are not naturally observed in the spectrum of bacteria. In another study,
Raman was used for real-timemonitoring of the differentiation of neural cells (PC12 cells, embry-
onic stem cells, and adult stem cells), in which the appearance and disappearance of several peaks
were observed during cell differentiation (45). SERS has also been used to diagnose infections
caused by pathogens, including bacterial meningitis in cerebrospinal fluid samples, by monitor-
ing the appearance of peaks associated to neopterin [695 cm−1 (40)] (Figure 4a), as well as red
blood cells infected with Plasmodium falciparum through the analysis of a new peak at 1,599 cm−1

(46). The spectral contrast achieved by the appearance/disappearance of Raman peaks enables the
dynamics of chemical species in biological samples to be monitored and plays an important role
in studies aiming to image the spatial distribution of target molecules. Nevertheless, peaks from
different molecules may overlap in the spectrum of a biological complex mixture, resulting in
similar endogenous background and nonspectral contrast (47). In such cases, new chemical bonds
can be introduced to circumvent the endogenous cellular background. Incorporation of heavy
atoms into cells is one of the most common biochemical tricks used to introduce new chemical
bonds and therefore achieve spectral contrast (48). 2H, 13C, and 15N are the most common sta-
ble isotope–labeled atoms used in metabolomics investigations to track activity and function of
molecules in living organisms and have been exploited in studies involving NMR (8, 49) and MS
(49) as well as Raman (42, 50, 51) and IR (50) spectroscopies. The combination of vibrational
spectroscopic methods and stable isotope probing enables the direct measurement of unlabeled
and labeled molecules, such as carbohydrates, proteins, nucleic acids, and lipids, by monitoring
the position of peaks in the spectra and how these peaks shift when heavy atoms are incorporated
into their molecular structure (42, 52) (spectral shifts are represented in Figure 4d). The cellu-
lar uptake of 2H results in the appearance of a peak due to carbon-deuterium (C−D) vibration
peaking between 2,040 and 2,300 cm−1 in the Raman spectrum, which corresponds to a shift in
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Figure 4

Common situations obtained during a Raman experiment. (a) Surface-enhanced Raman spectroscopy (SERS) spectra of healthy
cerebrospinal fluid samples and those infected by Neisseria meningitidis, in which it is possible to observe the appearance of peaks related
to neopterin. Panel adapted from Reference 40 under the terms of the Creative Commons Attribution (CC BY) License,
http://creativecommons.org/licenses/by/4.0. (b) Changes in peak intensities of SERS spectra for increasing concentrations of
miRNA-203. (c) The calibration curve obtained by plotting the I1,499/I783 ratio against the logarithmic concentration of miRNA-203.
Panels b,c adapted with permission from Reference 41; copyright 2017 American Chemical Society. (d) Shifts in peak position in SERS
spectra of Escherichia coli cells cultivated on unlabeled (dashed line), 13C-labeled (red line), 15N-labeled (blue line), and 13C- and
15N-labeled (green line) substrates. Panel adapted with permission from Reference 42; copyright 2017 Royal Society of Chemistry.
(e) Raman spectra of 11 Campylobacter strains and principal component–discriminant function (DF) analysis scores in panel f showing
satisfactory discrimination. Panels e,f adapted from Reference 43 under the terms of the Creative Commons Attribution
Noncommercial-Share Alike 3.0 Unported License (CC BY-NC-SA) License, https://creativecommons.org/licenses/by-nc-sa/3.0/.
Other abbreviation: PBS, phosphate-buffered saline.
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C−H vibrations due to the substitution of hydrogen atoms by deuterium (48, 52). The spectral
region 1,800–2,600 cm−1 is known as the silent zone because there are generally no detectable
Raman peaks in cells grown with natural elements (except for molecules containing alkynes and
nitriles, but these are biologically rare) and, thus, the appearance of a peak in this region provides
good spectral contrast (47). Spectral changes due to incorporation of heavy isotopes are always
shifted toward lower wavenumbers (so-called redshift) regardless of the compound used to la-
bel the cells and occur owing to an increase in the reduced mass that leads to a decrease in the
vibrational frequencies (wavenumbers) of chemical bonds (42). Shifts resulting from the incorpo-
ration of 13C and 15N atoms are mainly observed in the low wavenumber region of Raman spectra,
and therefore the appearance of peaks in the silent region is not observed, as is seen from C–D
in Raman-deuterium isotope probing (50). With a wide variety of possible isotopic substrates,
Raman-stable isotope probing has been used to probe cell activity and the metabolism of a wide
range of living organisms, including bacteria (42, 48, 51, 53–56), algae (57), Caenorhabditis elegans
(58), human cell lines (59), and human tissues (58).

Raman signals are linearly correlated to the number of molecules under investigation and
can thus provide quantitative information (60). In such cases, a calibration curve is constructed
based on the area or height of a peak plotted against the concentration of the analyte, as shown in
Figure 4b,c (41). Once calibrated, the method can then be used to predict the concentration of
the analyte from unknown samples (36). Quantification analysis can be performed when com-
bined with univariate or multivariate statistical methods. For peaks that are not overlapped with
other spectral features such as the situation depicted in Figure 4b (41), univariate analysis may be
sufficient. In contrast, when the analyte is within a mixture with a complex background, or when
information from more than one analyte is needed as input, multivariate analysis applied to the
whole spectrum or a subset of the spectral features is recommended (60). Constructing a calibra-
tion curve requires spectra with well-defined peaks; thus, signatures with unclear peaks are poor
candidates as inputs for calibration.This may be an issue for quantifying molecules within biologi-
cal samples, as the concentration of the analytes is usually ultralow. In such cases, other techniques
based on Raman scattering with higher sensitivity, such as SERS, offer more advantages.

Different analytical techniques, methods, and devices based on SERS have been developed for
identification and/or quantification of analytes within biological samples (36, 37, 39, 60). The idea
of a portable and cost-effective SERS device that is able to identify disease biomarkers has attracted
increasing attention over the last 20 years, especially in the field of point-of-care diagnosis (36).
However, some analytes do not possess the affinity to plasmonic nanoparticle surfaces and there-
fore it is common to conjugate metallic nanoparticles to ligands to enhance the chemical affinity of
molecules and to recognize specific analytes. For example, antibodies are commonly employed in
SERS platforms aiming to bind to and thus identify proteins, whereas oligonucleotide strands are
used to detect selectively nucleic acids (36). The strategy employed to identify a specific analyte
plays an important role in the sensitivity of the SERS platform.Zhang et al. (61) were able to detect
dopamine at picomolar concentrations by first immobilizing dopaminemolecules on gold thin film
surfaces, followed by introducing 3-mercaptophenylboronic acid (3-MPBA)-functionalized silver
nanoparticles to generate hot spots. In another study aiming to detect the same molecule, Ranc
et al. (62) achieved a better limit of detection (picomolar) using a method based on a nanocompos-
ite composed of magnetite and silver nanoparticles with a modified surface [iron nitriloacetic acid
(Fe-NTA)] to selectively identify the molecules of dopamine. Several studies have focused on the
development of SERS-basedmethods as a tool for liquid biopsy,which comprises the identification
of disease biomarkers and the efficiency of a drug treatment in biofluids such as cerebrospinal fluid,
saliva, urine, blood serum, and plasma (36).Table 1 lists some of the molecules targeted by studies
using SERS in liquid biopsy research, including small molecules, proteins, nucleic acids, and drugs.
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Table 1 Analytes from human biofluids that were quantified through surface-enhanced Raman scattering (SERS)
platforms

Biofluid Category Analyte
Cerebrospinal

fluid
Small molecules Dopamine (61, 62, 103), neopterin (40), melatonin (103), serotonin (103), glutamate

(103), GABA (103), norepinephrine (103), epinephrine (103)
Proteins Tau protein (104, 105), Aβ(1–42) oligomers (105)
Nucleic acids miRNAs (106, 107)

Saliva Small molecules Sialic acid (108), nitrite (109), pyocyanin (110), thiocyanate (111)
Proteins Urease (112), MnSOD (113)
Nucleic acids S100P mRNA (114)
Drugs Codeine (115), fentanyl (115), JWH-018 (116), THC (114), buprenorphine (117),

cocaine (118)
Urine Small molecules Uric acid (119), 5β-pregnane-3α,20α-diol-3α-glucuronide (120), tetra hydrocortisone,

creatinine (121), urea (121), adenosine triphosphate (122), melatonin (103), serotonin
(103), glutamate (103), GABA (103), norepinephrine (103), epinephrine (103),
thiocyanate (123), tramadol (124)

Proteins Albumin (125)
Drugs Propranolol (126), methamphetamine (127, 128), cocaine (129), methcathinone (128),

methotrexate (130), MDMA (128)
Blood

serum/plasma
Small molecules Adenosine triphosphate (122, 131), thiocyanate (123)
Proteins α-Fetoprotein (132, 133), p53 (134) and p53R175H (134), TNF-α (135), thrombin (136),

MnSOD (113)
Nucleic acids miRNA (132, 137–139)
Drugs Codeine (115, 140), propranolol (126), 6-thioguanine (141), methotrexate (142), estradiol

(143), THC (114), fentanyl (115), imatinib (144), doxorubicin (145)

Abbreviations: GABA, gamma aminobutyric acid; MDMA, 3,4-methylenedioxymethamphetamine; MnSOD, manganese super oxide dismutase; TNF-α,
tumor necrosis factor-alpha.

SERS is not the only Raman method employed for quantification of molecules with biological
interest. Although RRS has also been used for this purpose (63), it is more recommended for
quantifying chromophoric species, while SERS can be applied in identifying a wide variety of
molecules. Furthermore, SERS technology can be translated into portable devices for point-of-
care medicine and is therefore by far the preferred method used for quantitative analysis.

SERS technology has also attracted attention in microbiology as a tool to study microbial cells,
with one of the earlier studies showing that this technique was reproducible enough to type differ-
ent bacteria associated with urinary tract infection (64). However, spectral signatures of different
microbes can be similar and sometimes indistinguishable (43) (Figure 4e) to the naked eye, as
the example shown in Reference 65, which compared SERS spectra from Bacillus subtilis to those
from Escherichia coli. In such cases,multivariate statistical methods may be required to discriminate
signatures from different microorganisms (66). Dina et al. (67) used SERS combined with prin-
cipal component analysis (PCA) to detect two Gram-positive (Enterococcus lactis CE13 and CE39)
and two Gram-negative [E. coli Rosetta (DE3) pLysS and E. coli XL1Blue] species of bacteria at
the single-cell level. PCA is the most common technique employed for this purpose and has been
combined with SERS as an easy, rapid, and accurate method for identification of microbial in-
fections in clinical biochemistry (68), quantification of bacterial cells (42, 69), characterization of
biofilms (70), and detection of biological warfare markers (71). When paired with stable isotope
labeling, SERS is a powerful tool for functional analysis of microorganisms (48). For an excellent
recent review on where SERS is used within microbiology, the reader is directed elsewhere (38).
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3.2. Raman and Metabolomics: Imaging Mode

Visualizing and quantifying the spatial distribution of molecules in biological systems play an
important role in understanding biological processes (35). Fluorescence-based methods have been
extensively used for this purpose because they allow for the visualization of molecules down to
the single-molecule level. However, such methods require endogenous (fluorescent proteins) or
exogenous (organic dyes or quantum dots) markers to label the molecules of interest, which may
directly interfere with their biological function or indirectly through undesired side effects such as
photobleaching and/or phototoxicity (35). Furthermore, fluorescent labels may not work for small
molecules due to the comparable size (or even bigger) of the marker compared to the molecule
of interest. Thus, label-free chemical imaging obtained through Raman techniques is particularly
attractive in its ability to provide information on the spatial distribution of molecules based on its
chemical vibrations (32).

Images obtained through spontaneous Raman scattering, commonly referred to as Raman mi-
crospectroscopy, can be collected as chemical maps or hyperspectral images (72). In a chemical
map, each pixel is a number representing the intensity of a single Raman peak and provides infor-
mation on the spatial distribution of the chemical species related to the peak. However, owing to
the inherent overlapping peaks in biological samples, the molecular specificity achieved by chem-
ical maps is generally low (72). In a hyperspectral image, each pixel contains a Raman spectrum
containing multiple Raman shifts, which can be processed through several different methods to
obtain spatial information. Chemical maps can be generated from hyperspectral images by se-
lecting the intensity or area of a specific Raman peak and the ratio between peak intensities/areas
through univariate approaches. Shao et al. (73) evaluated the intracellular lipid content in the algae
Scenedesmus obliquus by generating chemical maps from hyperspectral images using the intensity
of a peak related to lipids (1,445 cm−1). In another study evaluating the profiles of storage lipids
in Fistulifera solaris, Hosokawa et al. (74) obtained good correlation between algal oil content mea-
sured byGC-MS and integrated Raman intensity at 1,445 cm−1, indicating the potential of Raman
techniques as a tool for rapid in vivo quantification of oil in oleaginous microalgae (Figure 5g–j).

Extensive efforts have been devoted to extract morphological information from Raman
hyperspectral images through multivariate methods such as clustering algorithms. In such cases,
the whole spectrum or a subset of the spectral features within each pixel is used as an input to the
clustering algorithm, which partitions the data set into subgroups (clusters) of spectra with similar
spectral features and generates a false-color map that will ultimately provide information about
the structures and morphology of the biological system. Anna et al. (75) were able to discriminate
human brain tumors from normal structures by reconstructing Raman images through k-means
clustering analysis. For other examples of Raman spectroscopy associated to clustering techniques
to segment hyperspectral images collected from soft tissue, the reader is directed elsewhere (33,
76). Limited work has been conducted on extracting quantitative information from hyperspectral
images (77). In these cases, the Raman spectrum within each pixel is first decomposed into spectral
signatures of biochemical components using sophisticated factor-based analysis such as multi-
variate curve resolution-alternating least squares (MCR-ALS) and spectral unmixing techniques,
including vertex component analysis or the N-FINDR algorithm (77). This is possible based on
the assumption that the overall tissue spectra are the linear combination of the spectra belonging
to each biochemical component. Thus, the algorithm assumes the system is closed and estimates
the contribution of each component to the whole spectrum to evaluate the distribution and abun-
dance of each component in the image. Subsequently, a false-color map displaying the abundance
and spatial distribution of each identified component is obtained (Figure 5a–f ). You et al. (78)
used vertex component analysis (VCA) to extract Raman signatures from collagen, elastin, actin,
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cholesterol ester, cholesterol, triglycerides, β-carotene,whitlockite, and apatite from hyperspectral
images to evaluate the role of each component in medial aortic calcification and atherosclerosis
in human aorta. A study by Albro et al. (79) employed MCR to decompose the Raman spectrum
within each pixel into signatures of extracellular matrix constituents (glycosaminoglycans, colla-
gen, and water) to assess their distribution in cartilage tissue. Liu et al. (80) applied non-negative
matrix factorization to evaluate the distribution of the signatures of E. coli cells, protein, and
polyhydroxybutyrate within a biofilm matrix. Other examples include the development of a
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Figure 5 (Figure appears on preceding page)

Images acquired from tissue and mammalian, algal, and bacterial cells through different Raman-based methods. (a–f ) The main
subcellular components [merged, cytoplasm, nucleus, triglycerides (TAGs), phospholipids (PLPs), and cholesterol] obtained through
quantitative volumetric Raman imaging from differentiated macrophages. Panels a–f adapted from Reference 82 under the terms of the
Creative Commons Attribution (CC BY) License, http://creativecommons.org/licenses/by/4.0. (g, i) Bright field and spontaneous
Raman images (h, j) at 1,445 cm−1 (lipids) obtained at different time points (24 h: g and h; 48 h: i and j) after lipid accumulation
induction in Fistulifera solaris. Panels g–j adapted with permission from Reference 74; copyright 2014 American Chemical Society.
(k–n) Real-time uptake of 50-μM TPP-BDDBPDM in live HeLa cells 40 min after drug administration. (k) The difference between
stimulated Raman spectroscopy (SRS) images acquired at Raman shifts of 2,935 and 2,845 cm−1. (l) SRS image at a Raman shift of
2,845 cm−1. (m) Overlay of images shown in panels k and l. (n) SRS image at 2,216 cm−1 showing TPP-BDDBPDM distribution.
Panels k–n adapted with permission from Reference 87; copyright 2020 American Chemical Society. (o–p) Hyperspectral SRS imaging
of saturated and unsaturated fat in cancerous liver tissue. Overlay image (o) and multivariate curve resolution retrieved SRS spectra (p)
of saturated fat (olive), unsaturated fat (green) and protein (magenta) in cancer tissue. Panels o–p adapted with permission from Reference
91; copyright 2018 American Chemical Society. (q–w) SRS images acquired at 2,168 cm−1 from Pseudomonas aeruginosa in blood after 1
h culture in D2O-containing medium with the addition of serially diluted gentamicin (0, 0.25, 0.5, 1, 2, 4, 8 μg/mL). Panels q–w
adapted from Reference 96 under the terms of the Creative Commons Attribution (CC BY) License, http://creativecommons.org/
licenses/by/4.0.

classification model for nonalcoholic steatohepatitis (81), analysis of mesenchymal stem cells
cultured under biological conditions (77), and volumetric imaging of three-dimensional cell
cultures (82) (Figure 5a–f ).

Although Ramanmicrospectroscopy has been successfully applied to visualize the spatial distri-
bution of molecules in biological systems, the method is unsuitable for real-time imaging owing to
the long acquisition time per pixel (28, 34). Here, CRS imaging, including CARS and SRS, pro-
vides significant advantages through its ability to collect images at video-rate acquisition speed
(32). CRS images are obtained by tuning the pump and Stokes beams onto resonance with the
frequency of a specific Raman peak (illustrated in Figure 3), resulting in a chemical map dis-
playing the distribution of that specific chemical species. A common strategy is tuning the pump
beam to multiple wavelengths and collecting a series of chemical maps that will ultimately pro-
vide information to reconstruct CARS/SRS spectra based on the intensity of pixels (83–85). SRS
is free of nonresonant background, and its signal intensity is linearly proportional to molecular
concentration (35); therefore, SRS images can be directly used to reconstruct spectra and per-
form quantitative analysis (85). In the case of CARS, additional preprocessing is needed due to
the nonresonance background (83, 86). CRS microscopy has emerged as a powerful platform for
cellular and tissue imaging and has provided important insights into the metabolism and dynamics
of lipids, proteins, nucleic acids, and small molecules in mammalian cells (32, 87–90) (Figure 5k–
n), tissues (91–95) (Figure 5o,p), microorganisms (96–98) (Figure 5q–w), and simple organisms
such as Caenorhabditis elegans (58, 99) by targeting endogenous chemical bonds. One of the main
drawbacks of CRS microscopy is that a variety of molecules share similar chemical bonds, which
leads to the lack of spectral contrast and affects the required specificity to visualize somemolecules.
To circumvent this issue, a variety of special probes including stable isotope (2H, 13C, 15N) and
triple-bond tags (alkyne and nitriles) have been developed and employed to further increase the
sensitivity and specificity of CRS imaging (47, 52, 100, 101).

4. FUTURE PERSPECTIVES

The last 20 years have witnessed the blossoming of Raman spectroscopy as a powerful tech-
nique with broad applications in life sciences. There is no doubt that SERS has been the main
Raman-based method for quantitative metabolomics and will continue to receive attention in the
future owing to its ability to quantify/identify molecules at ultralow concentration in complex
biological mixtures and the potential to do this as portable devices for point-of-care diagnoses.
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We believe that further improvements regarding sensitivity, selectivity, and reproducibility will
contribute to the translation of SERS to the clinical environment as a tool to quantify disease
biomarkers from different human biofluids, including blood plasma, serum, cerebrospinal fluid,
urine, and saliva. Recent advances have shown that SERS is no longer an emerging technology,
and it will find more applications in biological and medical fields, especially as a point-of-care
technology and in personalized medicine. More recently, SERS has been combined with spatially
offset Raman spectroscopy (SORS) to provide information from molecules at subsurface layers
(102). We believe this relatively young method will continue to expand according to advances in
technology and analytical algorithms and will play an important role in the detection of disease
biomarkers in vivo with no need for biopsy.

Despite the astounding progress in Raman microscopy in the past 20 years, there remain many
challenges in the adoption of the technique for imaging chemical species in the biomedical sci-
ences. More standardized preprocessing and data analysis techniques are needed to improve the
reproducibility of results obtained by Raman images. Furthermore, in order to gain acceptance in
the biomedical sciences, future developments should include correlation of Raman images with
molecular-based characterization approaches, such as immunofluorescence and biochemical as-
says. We believe that SRS microscopy will receive more attention in the future because of its
improved ability to provide direct quantitative information and real-time imaging compared to
Raman microspectroscopy and CARS. Advances in this technology will hopefully increase the
quality of spectra obtained through SRS images, which although significantly faster, is currently
inferior compared to the spectrum obtained via spontaneous Raman spectroscopy. We anticipate
that in the near future, hyperspectral Raman images will be decomposed into several images show-
ing the spatial distribution and abundance of biochemical species in tissue and cells, which will
play important roles in biology and medicine, ranging from three-dimensional mapping of small
molecules in cells to studying diseases in tissue (computational histology). For this, the analysis
of Raman images will rely on deep learning approaches and multivariate statistical methods that
can decompose the overall spectrum within each pixel into the signatures of different molecules.
Ultimately, the development of new tags/markers will improve the specificity in detecting spe-
cific molecules and decrease the similar backgrounds obtained from biological samples due to the
similar chemical species in their composition.
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