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Abstract

High-resolution mass spectrometry (MS) has advanced the study of
metabolism in living systems by allowing many metabolites to be measured
in a single experiment. Although improvements in mass detector sensitivity
have facilitated the detection of greater numbers of analytes, compound
identification strategies, feature reduction software, and data sharing have
not kept up with the influx of MS data. Here, we discuss the ongoing
challenges with MS-based metabolomics, including de novo metabolite
identification from mass spectra, differentiation of metabolites from
environmental contamination, chromatographic separation of isomers,
and incomplete MS databases. Because of their popularity and sensitive
detection of small molecules, this review focuses on the challenges of liquid
chromatography-mass spectrometry–based methods. We then highlight
important instrumentational, experimental, and computational tools that
have been created to address these challenges and how they have enabled
the advancement of metabolomics research.
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1. INTRODUCTION

Metabolomics, the study of the small-moleculemetabolites in a system, is a widely used and power-
ful approach to understand the metabolic activity of organisms. It has been applied to understand
the impact of human diseases and genetic perturbations on metabolism (1, 2), identify biomarkers
for drug and toxicant exposure or disease (3, 4), establish the mechanism of communication be-
tween commensal or competing organisms (5), and more (6–8). The advantage of metabolomics
is its ability to capture the complexity and interconnectedness of metabolic pathways in a living
system, rather than study individual metabolites. Often, the source of unexpected effects of a di-
etary change or pharmaceutical drug on an organism can be revealed through metabolomics that
would otherwise be unexplained in a reductionist approach. For example, metabolomics has re-
vealed that antibiotics often have secondary mechanisms of microbial toxicity beyond their role
in perturbing protein or nucleotide synthesis (9). Therefore, there is tremendous value in using a
systems-wide approach to generate new hypotheses and capture the diversity of metabolism.

Compared to other omics techniques, metabolomics is uniquely challenging. The chemical
complexity of known metabolites existing in nature is immense and continues to grow as new
environments and organisms are studied. According to the Kyoto Encyclopedia of Genes and
Genomes (KEGG), there are over 16,000 known unique enzymes (10) that can each produce
many metabolites, depending on the substrates they accommodate. The metabolome does not
consist of a repeated structural element and can be made of nearly endless combinations of
atoms, compared to the limited nucleotides or amino acids that make up DNA, RNA, and
protein. Certain metabolite classes have predictable structures, such as the repeating two-carbon
chains present in lipids, which has facilitated the development of LipidBlast for the accurate
prediction and identification of lipidomics data (11). Because the number of potential metabolites
is unknown, the calculated statistical probability of a correct match may be inaccurate when
identifying molecules by comparing to databases (12). It is also difficult to measure all metabolites
in biological samples owing to the broad concentration differences between trace and abundant
compounds. In serum, for example, diacylglycerols have been detected at picomolar levels while
d-glucose and cholesterol are in the micromolar range (13). To capture the chemical diversity of
the entire metabolome, multiple methods must be used because no single technique is ideal for
the measurement of all small molecules.

The most common metabolomics tools are nuclear magnetic resonance (NMR), gas
chromatography–mass spectrometry (GC-MS), and liquid chromatography–MS (LC-MS). Al-
thoughNMR is regarded as more quantitative and reproducible (14–16),MS-based methods have
the advantage of higher sensitivity and can be combined with various chromatographic methods
to measure a large diversity of compounds (14). Many types of mass spectrometers have been
developed, each with their own advantages. Quadrupole (Q) mass analyzers [including triple-
quadrupole instruments for LC-tandemMS (MS/MS)] are highly sensitive and selective for quan-
tification and identification of targeted metabolites, but because of their low mass resolution they
are not ideal for unknown characterization. Combining a quadrupole mass selector to a time-
of-flight (ToF) mass analyzer in a QToF instrument maintains the selectivity of the quadrupole
while also improving the maximum mass resolution to approximately 40,000–60,000. To obtain
higher mass resolution for the identification of compounds, Orbitrap mass spectrometers reach a
typical resolution of 250,000 up to a maximum of 1,000,000 for ions with m/z less than 300 (17).
Fourier transform–ion cyclotron resonance (FT-ICR) mass analyzers still have the highest resolv-
ing power, reaching >2,000,000 resolution (18, 19), though these instruments are less often used
for metabolomics due to their large size and challenging operation. Coupling chromatographic
separations with MS improves detection sensitivity by preventing matrix effects and provides a
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second characteristic for compound identification. GC is typically used to resolve and measure
volatile nonpolar compounds, though sample derivatization can expand its detection repertoire
to more polar compounds. The two major forms of LC used in metabolomics are hydrophilic
interaction liquid chromatography (HILIC) (20) and reversed-phase (RP), which most effectively
resolve polar and nonpolar compounds, respectively. Some studies have combined GC, HILIC,
and RPmethods because of their complementary analytes, leading to a comprehensive view of the
metabolome (21).

For the simultaneous identification of thousands of compounds in biological samples, GC-MS
and LC-MS are the most widely used in metabolomics and are the focus of this review. Many
advances in three major areas (instrumentation, experimental design, and computational analysis
of data) related to MS-based metabolomics have been made over recent years. This review
evaluates the ongoing analytical challenges in metabolomics studies and the strategies related
to these three areas that address or resolve these challenges. In particular, developments in the
identification of metabolite unknowns and distinguishing metabolites from other small molecules,
separation of metabolites by chromatography, and the efficient and accurate sharing of MS data
are reviewed herein.

2. METABOLITE IDENTIFICATION

One of the most significant hurdles in metabolomics is the identification of unknown mass
spectral features. Owing to the increasing sensitivity and resolution of mass detectors, thousands
of features are now analyzed and detected in a single experiment. The vast majority (over 98%)
of features in untargeted MS metabolomics experiments cannot be identified by the standard
method of querying retention time and accurate mass against an in-house library or searching
accurate mass or MS/MS spectral matching to databases (22). Predicted molecular formulas
based on the accurate m/z and isotopic pattern of MS features can be searched against chemical
databases such as PubChem, ChemSpider, the Human Metabolome Database (HMDB), BioCyc,
and KEGG (Figure 1). Such databases automatically generate accurate masses of all deposited
molecules based on atomic composition and therefore contain the most extensive collection
of molecular information to query from. However, the limited chemical space of organic
metabolites means there are many potential isotopes, which makes identification using accurate
masses difficult. Chromatography retention times prior to MS can often distinguish isomers,
but deconvolution of coeluting analytes is not always possible when attempting to optimize for
thousands of compounds, as in metabolomics. In addition, databases only contain a fraction of
existing biomolecules, either due to the compound not yet being identified or because of slow
deposition of molecules into databases. The current gold standard for identification involves
the use of isotope-labeled internal standards, but these are not always available or economically
feasible to purchase or produce. Thus, there has been a strong interest in improving compound
identification through methodological, instrumentational, and computational means. Substantial
and sustained funding to build, maintain, and make these databases publicly accessible is needed.

2.1. Tandem Mass Spectrometry

The development ofMS/MS and its successor,multistage mass spectrometry (MSn), has improved
the ability to distinguish isomeric and isobaric compounds and acquire structural information from
accurate masses.MSn involves the repeated fragmentation andm/z determination of ions captured
from the previous cycle of MS. Advancements in mass detection sensitivity and ion collection
with quadrupole and ion trap technologies have facilitated the extension of fragmentation and
mass detection beyond MS/MS.With additional MS cycles, the collision energy can be varied to
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Figure 1

Compound identification strategies using tandem mass spectrometry (MS/MS) spectra. (a) Example MS/MS spectra for indole-3-
acetic acid (PubChem ID: 802) at different collision energies. Using accurate m/z and isotopic abundances, potential molecular
formulae of each ion are generated. (b) Computed formulae and accurate masses can be searched in chemical databases to find potential
candidates. Mass spectra can also be queried against spectra of identified compounds in MS/MS databases, which can match entire
spectra or common fragment ions. (c) If the compound is a “known unknown,” generating a molecular network to compare common
fragmentation ions in known compounds can help to classify the molecule. Through searching user-deposited libraries of spectra and
their metadata, information can be gained about the biological context of matching unknown spectra.

produce unique subsets of fragmentation ions, allowing for the collection of a richer data set on
the substructures and neutral losses originating from a single precursor ion (Figure 2).

Many approaches and software have been developed to identify compounds from complex
MSn data. The simplest and most high-throughput technique is to query acquired MS/MS or
MSn spectra against existing MS/MS spectral databases. The most commonly used tandem MS
databases for metabolomics are MassBank (23), National Institute of Standards and Technology
(NIST), METLIN (24), Global Natural Product Social Molecular Networking (GNPS) (25),
mzCloud, HMDB (26), Spektraris (27), and ReSpect (28) (Figure 1). Comprehensive reviews
of available LC-MS/MS databases already exist (e.g., 12). A notable limitation to metabolite
identification through MS/MS databases is the lack of spectra deposited, particularly for increas-
ing cycles of MSn. Efforts by mzCloud are rapidly expanding the number of spectra beyond
MS2, including the development of detailed spectral trees. Furthermore, of the above MS/MS
databases, only mzCloud, NIST, and MassBank report MSn spectra. Because NIST is not an
open-access database, it lacks the benefits of community contribution and data curation present
in both mzCloud and MassBank. The unavailability of comprehensive MSn fragmentation
databases therefore makes compound identification more challenging using spectral matching.
In addition, retention time, mass spectra, and fragmentation spectra are also dependent on the
instrumentation and technique used by the depositor. The type of mass spectrometer, collision
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Figure 2

Assembly of the fragmentation tree of indole-3-acetic acid (PubChem ID: 802) from MSn fragmentation data. (a) Specific ions are
selected for subsequent rounds of fragmentation and mass spectrometry at varied collision energies (HCD), producing mass spectral
trees. (b) Fragment ions are translated to molecular formulae by their accurate mass and isotopic abundances, where they are assembled
into fragmentation trees, adjoined by the neutral losses between ions. Abbreviations: HCD, higher-energy collisional dissociation; MSn,
multistage mass spectrometry.
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energy, collision gas, and pressure influence fragmentation and therefore impede the reliability
of comparing MSn spectra to databases. Chromatographic retention is highly dependent on the
method and solvents used, and HILIC methods are especially prone to instability, so database
retention times are unreliable for comparison.

To combat these problems, many investigators develop in-house libraries to compile ac-
curate MS and RT information of all known compounds of interest specific to their methods
and instrumentation. Tada et al. (29) outlined a method to develop an in-house LC-MS/MS
library for all ion fragmentation data-independent acquisition. This method involves running
a collection of standard compounds, including standards that have known retention times, to
correct for elution variations on the HILIC column (30). Once precursor ions are detected in
MS-DIAL (open-access software), their fragmentation spectra are deconvoluted from coeluting
analytes using the MS2Dec and correlation-based deconvolution (CorrDec) algorithms (31).
CorrDec identifies fragmentation spectra for each precursor ion by correlating the abundance of
MS1-MS2 ion pairs across all samples (32). MS2 ions are then annotated in MS-FINDER using
their accurate mass and isotopic pattern, and the MS2 library is curated and made available to
other researchers using the library management tool MS-LIMA. Creating lab-specific libraries is
especially advantageous for LC-MSn because each fragmentation spectrum is dependent on the
precursor ions generated in the parent spectrum and many method-specific parameters signifi-
cantly impact the fragmentation pattern (e.g., collision energy, polarity), leading to compounding
differences over subsequent rounds of MS.

2.2. De Novo Compound Identification

Many of the metabolites detected by mass spectrometry are previously unknown compounds and
therefore cannot be identified by library searches (33). The utilization of high-resolution mass
spectrometers (i.e., ToF,Orbitrap, or FT-ICR analyzers) reduces the number of potential elemen-
tal composition matches but does not provide confirmatory identification.This is particularly true
for nonmodel organisms and bacterial communities, of which metabolic pathways have not been
fully characterized. These “known unknowns” (34) require the use of de novo deconvolution from
their MSn spectra and can open the door for biomarker discovery or illuminate novel metabolites.
In the past, de novo structural identification from MS/MS spectra required meticulously honed
skill and understanding of the fragmentation patterns of molecules, including common neutral
losses and adducts. Along with the complex organization of MS/MS and MSn data itself, the diffi-
culty of data analysis has initiated the development of numerous computational tools to automate
and simplify the process.

The first step of MS/MS analysis typically involves using the accurate mass and isotopic pat-
terns to assign potential molecular formulae to each mass spectral peak, including all fragmenta-
tion spectra (Figure 2). The spectral peaks and associated molecular formulae are then assembled
into fragmentation trees, which link subsequent fragmentation formulae to precursors (nodes)
by the neutral losses that differentiate them (edges) (35). Fragmentation trees differ from mass
spectral trees that connect mass spectra to the precursor ion(s) selected by the mass spectrome-
ter, which can be used separately for MS/MS spectral matching against libraries (35). The neutral
losses calculated from fragmentation trees are then used with the known frequencies of certain
neutral losses in the literature and the error in mass accuracy from proposed molecular formulae
to rank the most likely formulaic candidates (36).

To designate fragmentation trees with structures of unknown compounds, in silico fragmen-
tation of candidate molecules is performed and matched to experimental spectra (Figure 3).
Several unique approaches to generating de novo mass spectra from all known chemicals with a
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Figure 3

Strategies and software for the in silico generation of fragmentation MS. Bond dissociation programs (e.g., MetFrag and FiD)
sequentially break all bonds in the molecule of interest and rank the likelihood of each fragment occurring in the spectrum. Software
programs like Mass Frontier and MS-FINDER use their in-house library of chemical reaction rules to predict fragmentation patterns.
Machine learning–based approaches train algorithms with existing MS data to generate fragmentation spectra or identify chemical
structures from experimental mass spectra. Ab initio molecular dynamics model various types of molecular dissociations brought on by
heat or by electron or inert gas collisions and rank the likelihood of generating fragments by how many simulations they appear in.
Abbreviations: FiD, Fragment iDentificator; MS, mass spectrometry.

specific molecular formula have been developed into software. The bond dissociation approach
uses molecular modeling to sequentially break each bond in the molecule to generate all possible
fragmentation ions, then the most likely ions are selected by a weighted scoring metric. MetFrag
matches the given accurate mass with molecules in KEGG and PubChem databases to create
a candidate list (37). The predicted fragmentation ions are scored in MetFrag by the relative
energetic cost of breaking each bond to generate them, then they are assembled into spectra with
each ion’s relative peak abundance correlating to their relative score (38). A similar approach is
also utilized by Fragment iDentificator (FiD) (39). While these tools can predict spectra truly de
novo, they are computationally intensive and therefore time consuming.

There has been a great deal of interest in using molecular dynamics (MD) modeling and quan-
tum chemistry to predictmolecular fragmentation in silico (40) because of their complete indepen-
dence from prior knowledge of potential fragmentation patterns (Figure 3). These simulations
rely on statistical methods (namely Rice–Ramsperger–Kassel–Marcus theory) or MD methods
(namely Born–Oppenheimer MD theory) to predict the trajectory of molecular fragmentation
upon heating or collision. In the Quantum Chemistry Electron Ionization MS (QCEIMS) pro-
gram, statistical andMDmethods are combined to improve simulations of electron ionizationMS
(41), and the method has been successfully applied to predict theMS of organic drugs (42) and nu-
cleotides (43, 44). First principles have also been applied to model collision-induced dissociation
(CID) of small molecules, including urea (45), galactose-6-sulfate (46), testosterone (47), and sul-
fated l-cysteine (48). Although modeling often identifies the correct fragmentation ions, it is less
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accurate at predicting peak abundances because of the relatively short (picoseconds) time of sim-
ulation compared to actual dissociation (milliseconds) (49) and because computational limitations
only allow the simulation of single molecule collisions at one time (50). The greatest challenge
for modeling-based techniques is the amount of computational time required to predict the bond
dissociation of all existing and potential metabolites, particularly as the size of query molecules
increases. Thus far, this has not been feasible for generating MS/MS spectra for more than single
small molecules, let alone whole MS/MS libraries.

Rule-based tools use a set of curated guidelines to predict the fragmentation of given structures
(Figure 3). Mass Frontier (Thermo Scientific) uses its large database of individually curated frag-
mentation rules, such as relative bond strengths, from the literature to predict fragmentation ions.
To increase the throughput of the Mass Frontier in silico fragmentation tool, researchers have
developed an open-access software package called HAMMER (high-throughput automation of
Mass Frontier) to generate predicted MS/MS libraries (51).MS-FINDER software automatically
predicts candidate molecular formulae from accurate mass and isotopic patterns and generates all
possible fragmentation ions for these candidates (52). Using a weighted ranking from their nine
hydrogen rearrangement rules, error in accurate mass, bond dissociation energies, and fragment
linkages, the most likely candidate is predicted (53). The advantage of rule-based approaches in
comparison to learning-based approaches is that independence from the literature reduces biases
in the training set, particularly because existing databases remain incomplete. However, the com-
plexity of metabolite space limits the ability to capture the fragmentation pattern through known
rules, as has been done with more regularly structured compounds such as lipids (11).

Others have aimed to improve spectral predictions by training machine learning algorithms
with molecular fragmentation data, rather than by producing in silico spectra (54) (Figure 3).
Competitive Fragmentation Modeling-Identification (CFM-ID) contains a probabilistic general-
ized modeling algorithm trained on molecular fragmentation patterns in MS/MS data to predict
structure from experimental fragmentation spectra (55). CFM-ID also ranks candidate structures
from fragmentation spectra using the data from this trained algorithm, such as which neutral losses
correspond to substructures in candidates. CSI (Compound Structure Identification):FingerID
trains a machine learning algorithm with existing fragmentation trees in MS/MS databases for
their pattern of molecular features, the fingerprint (56). It then translates experimental MS/MS
data into a fragmentation tree, acquires the molecular fingerprint of the compound, and predicts
the structure based on the existence of molecular features in a ranked list (56, 57). The major dif-
ference between these machine learning approaches is that CFM-ID trains how molecules pref-
erentially fragment, whereas CSI:FingerID trains how the presence of substructures translates to
fragmentation tree features.

While there have been great developments in spectral prediction, many of these techniques
still rely on the deposition of the compound in chemical libraries (e.g., KEGG or PubChem) so
they are unable to generate complete MSn spectra. Thus, several tools have been created to help
with manual identification or characterization of unknowns. Substructure analysis allows the user
to pick out common features in their fragmentation spectra to help assemble or categorize the
metabolite of interest. MS2-latent Dirichlet allocation (MS2LDA) and its successor MS2LDA+
identify substructures that they call Mass2Motifs (fragments and neutral losses), based on
fragmentation trees, and annotate these substructures in the spectra (58, 59). The NIST hybrid
search algorithm allows spectra to be evaluated for the existence of specific substructures based on
neutral losses and categorized with these molecules to aid in identification (60). Another approach
is to generate molecular networks fromMS/MS spectra (Figure 1).With this technique, spectral
features from both known and unknown compounds (i.e., accurate masses, fragmentation ions,
and neutral losses) can be compared to known compounds. Structurally related compounds tend
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to form clusters in the network due to them having similar components, so when knowns are
included, unknowns can be assigned to chemical groups. This was used by Watrous and others to
identify a novel surfactin by its close association in the network with other bacterial surfactins pro-
duced by Bacillus subtilis (61). Similarly,multivariate analysis ofMS/MS data between experimental
groups can reveal closely related compounds by their similar reaction to various treatments. For
example, orthogonal projections to latent structures discriminant analysis (OPLS-DA) of the
urinary metabolome between control and PCN-treated mice identified a cluster of similarly
fluctuating metabolites that were determined to be carboxyethyl hydroxychroman (CEHC)
metabolites, thus allowing for the identification of the previously unknown γ-CEHC glucuronide
(62). Categorizing unknown compounds into biological context with other metabolites can be
illuminating for identification. If this cannot be accomplished for an unknown within the existing
data set, the mass search tool (MASST) in GNPS is also useful to query MS/MS spectra against
the large database of user-submitted MS/MS spectra and associated metadata (63). Knowledge
that a certain metabolite is found in a specific tissue, treatment, or organism can provide the
necessary context to narrow down potential candidate molecules (Figure 1).

Major developments in MS-based metabolomics have focused on improving methods of
compound identification from the thousands of features acquired from a single LC-MS or
GC-MS run. The widespread use of MSn and advancement in mass spectrometer technologies
have expanded the accuracy and breadth of data collected from compounds present in each
sample.However, the most significant recent contributions to compound identification have been
the computational methods and tools that parse out meaningful information from mass spectra
and programs using artificial intelligence that can predict the structure of unknown compounds.
With the ever-growing abundance of information that can be generated from metabolomics
experiments, computational tools will continue to be necessary to manage and streamline the
compound identification process.

3. DISTINGUISHING TRUE BIOLOGICAL METABOLITES

In complex biological matrices such as plasma, urine, and stool, there are an immense number
of compounds from dietary, microbial, host, and other sources. In any given untargeted high-
resolution LC-MS experiment, tens to hundreds of thousands of features may be detected, of
which less than 10% are true, nonredundant metabolites (64). This continues to be a problem
in the metabolomics field, as the critical univariate and multivariate statistics required to identify
significant features from the data may be confounded by aberrant features.Use of different ioniza-
tion modes to expand the chemical diversity captured in an experiment also results in redundant
compounds.Given the difficulty and time requirement of compound identification, there is a great
need to remove undesired features in metabolomics data.

To some extent, feature reduction has become a standard approach (Figure 4). Combining
compound adducts, which involves the identification and joining of MS peaks formed from differ-
ent adduct ions (e.g., [M+H]+, [M+Na]+, [M+NH4]+), has been incorporated into software such
as MS-FLO (MS–feature list optimizer) (65). Different adducts form depending on the composi-
tion of ions and other compounds in the sample matrix.MS-FLO also removes isotopes fromMS
data based on the accuratemass shift and expected peak height ratios between isotopes, usually 13C,
2H, 15N, and 18O. There has been recent interest in combining analytes from different ionization
modes (positive and negative) to streamline the number of features to be identified. MSCombine
was developed to address this problem, with success in human serum and urine data sets (66).
The simple adducts that are used to combine spectral peaks in most feature reduction software
represent a small fraction of the adducts formed by a single metabolite, which can be upward of
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Figure 4

Isotope labeling and feature dereplication to distinguish true metabolites. (a) Model organisms are labeled
with 13C and/or 15N substrate, and a portion of each metabolite extract is pooled and analyzed with
high-resolution mass spectrometry. (b) Labeled features are identified by a greater m/z at the same elution
time corresponding to the exact mass difference of additional heavy isotopes (i.e., 13C and 15C). In the case
of isotopic ratio outlier analysis (IROA), a U-shaped isotopologue pattern occurs between the completely
unlabeled and labeled species. (c) Redundant features such as naturally occurring isotopes, adducts, and
duplicate features from positive and negative mode analyses are also dereplicated from the data. (d) Filtering
of isotope-labeled features and dereplication reduce features to less than 10%.Whole-organism isotope
labeling can also assist in identifying features by counting the carbon and nitrogen atoms between fully
labeled and unlabeled spectral peaks, which can be validated by spiking unlabeled standard compounds with
fully labeled organism extracts. Abbreviation: RT, retention time.

100 features for a single compound run by LC-MS (67). To recognize and merge more complex
adducts, including those made of multiple analytes, the software mz.unity generates all possible
adducts based on the accurate mass of the neutral loss between any two spectral peaks within a
specified mass error (67). These techniques ensure that each identified compound only appears
once, thus preventing the overweighting of compound duplicates in downstream statistical
analyses.

Other spectral artifacts or contaminants that are not metabolites of the organism of interest
are muchmore challenging to recognize. Stable isotope–fed organisms can be used distinguish the
metabolites they produce from environmental chemicals (Figure 4). When model organisms are
fed isotope-labeled substrate, true metabolites incorporate the heavy isotopes and are observable
in MS by a specific increase in the m/z while retaining the same elution properties (68). Isotopic
ratio outlier analysis (IROA) uses the isotopic labeling pattern of cells grown in 13C-glucose to
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identify metabolites from mass spectra (69–71). By pooling extracts from individual treatments
grown in either 5% or 95% 13C, an identifiable U-shaped isotopologue pattern is produced for
each metabolite, corresponding to the incorporation of 13C into each carbon in the molecule.
Heavy isotope labeling allows metabolites to be distinguished from background ions, and the fully
labeled isotopologue can help to ascertain the number of labeled species in the analyte. Mahieu
& Patti (64) applied both degenerate feature reduction and organism-level 13C-glucose labeling
to LC-MS metabolomics of Escherichia coli and reduced the total number of features from over
25,000 to fewer than 1,000. Wang et al. (72) similarly developed the Peak Annotation and Veri-
fication Engine (PAVE) to remove redundant MS adducts and identify metabolites from isotope-
labeled organisms (Figure 4). However, they made several improvements, including using both
13C- and 15N-labeled substrates to identify metabolite ions and incorporating a weak collision
step to help differentiate the parent ion within spectra (72). Using heavy isotope incorporation to
narrow feature lists to only include metabolites reduces the time investment dedicated to identi-
fying compounds and ensures that the features remaining are not environmental contaminants.
This technique has widespread applicability to bacteria, plants, and other model organisms but is
limited in the types of experiments it may be used in. Treatments or genetic manipulations that
alter the primary carbon source used by the organism will interfere with labeling in that con-
dition. Owing to the requirement for administering labeled substrate, this technique is also not
applicable to exposome studies that measure exposure to diet or environmental chemicals. Still,
true metabolite feature libraries may be catalogued to screen compounds from future experiments
involving the organism.

4. CHROMATOGRAPHIC SEPARATION OF METABOLITES

When performing MS-based metabolomics on heterogeneous biological samples, chromato-
graphic separations such as GC or LC are generally used prior to MS. Chromatography is es-
pecially valuable owing to its ability to distinguish isomers by their physical properties, which
remains a major drawback of direct infusion MS. The most commonly used types of LC columns
in metabolomics are RP and HILIC, in which compounds interact with a nonpolar hydrocar-
bon solid phase or an aqueous layer supported by a polar solid phase, respectively. Metabolite
quantification is therefore related to peak area or height in chromatographs and either used as is
for relative abundances or compared to a calibration curve to obtain absolute values. Coupling
MS to chromatography provides an additional level of certainty when identifying compounds be-
cause elution order is a relatively stable property of molecules. According to the Metabolomics
Standards Initiative Chemical Analysis Working Group (CAWG), retention time is an effective
orthogonal property for metabolite identification, level 1 (73).

4.1. Retention Indices and Retention Time Prediction

Retention times are highly susceptible to variation based on a variety of factors, including the
column and instrument used, solvent preparation, flow rate, temperature, and solvent gradient
parameters. This has limited the development and use of retention time libraries as a method of
metabolite identification, as any deviation from the reference method may render retention time
values inaccurate. Ideally, pure standards run by the user with the same method and instrument
are compared to the retention time observed in the sample. However, standards are not available
for most known unknowns and synthesis is often expensive and time consuming. HILIC methods
are especially susceptible to variations in retention time from small changes to buffer composition,
even when using identical methods and instrumentation (30). As a way to normalize retention time
differences between batches, instruments, methods, labs, and even from different sample types
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(urine, plasma, stool) (74), retention indices for GC separations were introduced by Kováts in 1958
(75). The retention index is a set of retention time values normalized to standard compounds that
elute at semiregular intervals through the chromatograph. Ideal retention markers span the entire
chromatogram to account for all measured compounds and are chemically alike to the compounds
being measured to ensure they are affected similarly by chromatographic conditions. Here, we
establish the current state of GC retention indices and how retention prediction has been recently
applied to LC.

Linear retention indices were originally designed for GC and continue to be effective and
widely used for GC retention time correction due to the relatively consistent correlation between
a compound’s retention index on a GC column and its boiling point. Additional GC indices have
been developed using different marker compounds and applied to isothermic and temperature-
programming GC conditions. The most common linear indices for GC analysis are the Kováts
index, using n-alkanes differing by single linear hydrocarbons (75, 76), and the Lee index, us-
ing polycyclic aromatic hydrocarbons (77). Several other indices have been developed for specific
classes of compounds, such as the fatty acid methyl esters (FAMEs) created for GC lipid analyses
by the Fiehn lab (78). FAMEs are better than n-alkanes at retaining their molecular ion and gen-
erating distinguishing fragmentation ions during electron ionization, making them an improved
retention index compared with the Kováts index for GC-MS methods (74). Software tools in the
NIST database have been developed for the automated calculation and analysis of Kováts, linear,
and Lee retention index values (79),making retention index values for in-house compounds easy to
acquire. Retention index values can also be compared to literature values through NIST or other
metabolite databases that report retention index values such as the Golm Metabolome Database
(80) or MassBank (23). Because not all compounds are represented in these databases, algorithms
to predict the retention of unknowns in relation to indices are valuable to aid in identification.
Currently this can be done to predict Kováts index values for unknowns based on the presence of
various chemical groups (e.g., hydrocarbon chain length, carboxyls, carbonyls) (81).

Although linear retention indices have been effective for GC retention time correction, their
application to LC methods has proven to be more unreliable for several reasons. Compound elu-
tion times in LC columns are challenging to predict because they do not always follow linear re-
lationships with the index, sometimes even switching their elution order with other compounds.
Rather than using a linear retention index, retention projection identifies isocratic retention fac-
tors for each compound based on experimental elution values. These retention factors indicate
the specific solvent properties in the gradient where the compound elutes, which are then used to
predict its retention in a new gradient (82). One problem with this method is that instrumental
error or inaccurate solvent preparation can cause the actual gradient to differ from what the in-
strument reports (83). However, labs can combat this by running standards with known elution
properties, calculating the actual gradient and correcting retention projection values according to
the error observed. This has been shown to effectively correct retention time deviation caused by
the use of different instruments, gradients, and flow rates (84) and even between labs (82), thereby
reducing error compared to linear retention indices by more than half.

Predictive algorithms have been developed for the estimation of the retention time of un-
knowns. This approach was initiated by using basic structural determinants of polarity and charge
and the elution properties of known compounds to predict retention of unknowns with similar
chemical structures, though these values have error (85).Recent advances in quantitative structure-
retention relationship (QSRR) models have been able to improve these predictions in both RP
and HILIC LC applications (86). QSRR uses machine learning to increase the accuracy of identi-
fying relationships between structural features and polarity by training on real data sets, which can
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then be used to predict how they elute in a column. One of the major advantages to this method
is that the use and validation with real data facilitate accurate estimations of error in retention
time prediction, which can be used to better reject potential compound identities (87). In addition
to physicochemical properties, other molecular descriptors (i.e., fingerprints) have been incorpo-
rated in a kernel-based partial least squares model to improve retention time predictions (88).
Machine learning techniques require training from data sets containing accurate and extensive
retention time data from compounds that are chemically similar to unknowns. This has been a
major limitation because certain classes of molecules are difficult to acquire or synthesize and ac-
curate predictions are best performed by comparison to in-house libraries using the same column,
instrument, and gradient.

Despite the limited availability of retention time data sets and the sensitivity of chromatography
to fluctuation, retention predictions can be valuable when coupled with MS. The accurate mass
and isotopic pattern of unknown compounds determined byMS can be used to predict the molec-
ular formula and therefore all possible chemical structures. Although retention time predictions
can only be used to reject candidate structures, this could significantly narrow down potential can-
didates to a manageable number to be validated by running standards.With further improvements
in retention library size, availability of diverse chemicals for purchase, and accuracy in machine
learning algorithms, the retention time error window will continue to be narrowed.

4.2. Two-Dimensional Chromatography

Metabolomics analyses on complex biological matrices often demand the identification of chem-
ically diverse compounds, ideally using as few separate methods as possible. A major issue with
typical chromatographic separation is that each method is optimized for separating only com-
pounds that are retained on the column. This is especially true in LC; for example, polar com-
pounds run by RP will all elute nearly simultaneously within the first few seconds because of their
strong preference for the polar solvent over the column. Poor separation makes quantification less
accurate and lowers the sensitivity due to matrix effects. To improve the separation of additional
compounds from one sample, two-dimensional (2D) chromatography can be used. For LC ap-
plications, the most common combination is RP and HILIC because of their high orthogonality,
meaning they are able to resolve complementary compounds (89, 90). However, when attempting
to resolve highly similar compounds, RP-RP has also been used. A study by Willmann et al. (91)
used RP-RP-MS to quantify RNA metabolites for cancer biomarker identification.

There are several approaches to LC-LC that manage the challenge of the second dimension
taking time to run while molecules are continuously eluted from the first column. Heart-cutting
chromatography is a form of 2D chromatography that targets specific peaks by cutting them from
the spectrum and directing them to the second dimension. Extracting individual peaks facilitates
high-resolution separation and the data are relatively easy to analyze, though it only acquires LC-
LC for few selected compounds. Comprehensive LC-LC (or LC×LC), which is of major interest
for metabolomics, collects secondary LC data for the entire first chromatogram. However, the
incompatibility of solvents between the first and second rounds of chromatography often results
in peak splitting and lowers the sensitivity and resolution of the second chromatograph (92). In a
recent study, 100 lipids were identified in bovine urine using comprehensive RP-HILIC-MS (93).
The team addressed the solvent incompatibility issue by diluting the first-dimension eluate with
the proper infusion solvent for the second dimension, but this substantially lowered the sensitivity
of detection. Others have used vacuum collection or stop-flow using a trap column after the first
separation to extract analytes from solvent before redissolving in the appropriate injection solvent
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for the second column (94). Stop-flow LC×LC was developed by Wang et al. (95), who used
RP-HILIC-MS to identify an additional 88 lipids in human plasma compared to RP alone, while
maintaining good linearity for quantification.

Although the technology for LC×LC acquisition and analysis continues to improve, there
are several barriers preventing its widespread applicability to metabolomics research. There is
currently no effective data analysis software to organize and analyze complex 2D chromatography
data, especially because the technique is often coupled with MS. Due to the numerous eluent
collectors, columns, additional tubing, and flow switches, the instrumentation itself is expensive
and challenging to upkeep. In addition, each run requires more time for the separation of a fraction
more analytes, and method development is difficult and time consuming. As an alternative to 2D
chromatography, developments in computational methods for LC and GC peak deconvolution
have become an increasingly viable alternative for distinguishing peaks. Historically, MS1 spectra
from overlapping chromatographic peaks have been used to ascertain the relative abundance of
coeluting compounds. For isotopes with similarMS1 spectra, recent methods have been developed
to deconvolute based on MS2, such as in MS-DIAL (31). Given the significant time and analysis
challenges and available alternatives, large advances must be made for the widespread application
of 2D chromatography in metabolomics.

5. MASS SPECTRAL DATABASES AND COMMUNITY SHARING

Proper identification of mass spectral features and classification into metabolic pathways require
the use of high-quality curated MS databases, such as METLIN, mzCloud, NIST, MassBank,
HMDB, or ReSpect. Classic compound identification relies on the comparison of characteris-
tic ion m/z abundances to those of known compounds and the scoring of potential candidates
based on their similarity. Machine learning algorithms for the in silico prediction of mass spec-
tra and assignment of substructures are also refined by larger training sets from various MS
databases. However, of the known compounds that are listed in chemical databases like PubChem
(>100 million), only a small fraction has MS1 spectra in these MS databases, with even fewer
MSn spectra present. Nonetheless, with the increasing deposition of spectra into databases, Mass
Frontier and other programs have been able to develop tools to synthesize MSn data and generate
spectral trees for improved analysis. For a thorough review of availableMS databases and the types
of retention time, mass spectral, and tandem mass spectral data they house, see recent reviews (96,
97). The purpose of this section is to highlight recent advances in mass spectral libraries and what
remains to be done to improve the field of metabolomics research.

One of the major problems beyond a simple lack of data is that the compounds in these spectral
databases do not evenly represent all metabolites found in nature. Compounds that are difficult
to ionize or that are low in abundance in biological samples often do not have acquired spectra.
Furthermore, many small molecules remain completely unknown, particularly those produced by
nonmodel organisms, including most bacteria, and therefore do not have associated mass spec-
tra in databases. Although complete in silico generation of mass spectra is possible to putatively
identify metabolites, the accuracy of these predictions is dependent on chemically similar metabo-
lites being present in the training database (39, 54, 56). The spectra present in databases are also
biased toward those acquired by GC-MS (i.e., more volatile metabolites) because of its earlier de-
velopment and easier compound identification compared to LC-MS. However, LC-MS is often
preferred in metabolomics to capture a larger diversity of biomolecules. Since the instrument, col-
lision energy, and other parameters between labs and experiments can affect the spectra generated,
compound identification requires that mass spectra in databases come from similar instruments
and protocols. It is of utmost importance that annotated mass spectra from all types of instruments
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and newly discovered compounds continue to be deposited into MS and chemical databases to in-
crease the percentage of features that are identified in metabolomics experiments.

Biological samples often contain a mixture of metabolites originating frommultiple organisms,
including plants, mammals, and bacteria. Human feces, for example, contain human metabolites,
indigestible small molecules from the diet, xenobiotics, gut microbiome metabolites, and metabo-
lites from the combined metabolism of host and microbes (98). It can therefore be challenging
to identify and distinguish the source of metabolites without extensive knowledge of the types
of reactions these organisms perform. There has been a recent surge in databases that use the
known metagenomes of humans and bacteria to predict the source of identified metabolites and
their potential contribution to human disease, including the Virtual Metabolic Human (VMH)
database (99) and AMON (100). However, owing to the lack of known bacterial products and ex-
tensive curation and metadata required to accurately classify compounds in these databases, they
only contain very few (∼5,200 in VMH) metabolites.

Data sharing in metabolomics from a variety of contributors is essential to impart con-
text to how, where, and when certain metabolites are produced by living systems. In 2007,
the Metabolomics Standards Initiative recommended the creation of a central repository for
metabolomics data sets with strict guidelines for submission (101). One of the major problems
with user-submitted data is inconsistent naming, which prevents the appropriate automatic com-
pilation of data from multiple sources that would be impossible to curate manually (102). Many
have suggested that users submit all data with InChI and PubChem IDs because of their univer-
sal, nonoverlapping, and machine-readable naming systems (96, 103, 104). Kind et al. (104) have
also recommended that all newly identified compounds be automatically submitted to community
libraries with extensive metadata related to the sample preparation (organism or sample source,
extraction steps, time course, etc.) and data collection (instrument, column, gradient, collision
energy, etc.). GNPS (25), the Metabolomics Workbench (105), and MetaboLights (106) are the
major MS data sharing platforms (12) that house a collection of mass spectra, metadata, proto-
cols, and known metabolite structures. Of these, GNPS has many additional functions that use
its community data repository Mass Spectrometry Interactive Virtual Environment (MassIVE)
to make the analysis of user-submitted spectra and metadata particularly approachable and use-
ful for researchers (25). MassIVE is a living library of user-submitted MS data that are continu-
ously curated by researchers and GNPS to identify compounds as their spectra become known.
Thus, previously submitted data to MassIVE will be updated with the identity of compounds and
substructures based on the newest annotations. The MASST search function in GNPS allows
researchers to find what other sample types contain similar unidentified spectra based on their as-
sociated metadata, which can give clues to the identity of the unknown (107). Although increased
data sharing in user-submitted libraries is ultimately beneficial, it is important to extensively and
accurately curate data. Errors in submitted chemical identifiers and spectral peak intensities due to
coelution of peaks can greatly impact compound identifications with libraries like GNPS that use
these data to annotate other data sets (102). Moving forward, the deposition of mass spectra from
validated standard compounds run on a variety of instruments will become increasingly important
to improve not only the size but also the quality of data sharing in metabolomics.

6. CONCLUSION

Through recent advancements in instrument technology, experimental techniques, and analysis
software, many of the challenges with MS-based metabolomics have been mitigated. The task
of identifying unknown compounds from mass spectra has been improved by the structural in-
formation acquired from additional cycles of fragmentation and MS (MSn), numerous softwares
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that have been developed to generate increasingly accurate in silico fragmentation spectra, and
the machine learning tools that use real MS data to predict features or candidate structures from
experimental MS. For example, by analyzing plant extracts with LC-MS/MS and combining mul-
tivariate statistical analysis inMetaboAnalyst andmolecular networking inGNPS,Demarque et al.
(108) could prioritize features in the data that appeared to impact bioactivity and identified the
active compounds to be acetogenins. Although MS data sharing continues to expand, the lack of
high-quality spectral data from a diversity of instruments and collision energies remains one of the
largest difficulties for metabolite identification. Distinguishing metabolites or important features
from environmental small molecules has been another challenge in metabolomics. Computational
feature dereplication and the use of isotope-labeled organisms to differentiate true metabolites
from contaminants can reduce the number of important features by more than tenfold. However,
additional strategies are needed to filter undesired features from exposome studies and samples
taken from human subjects that cannot be isotope labeled. The ongoing issue of inconsistent
elution from chromatography has been improved with retention indices, which help to normal-
ize retention time values across instruments and enable the use of retention time databases for
compound identification. Future funding should be applied to techniques that remove unimpor-
tant MS features, expand MS databases and data curation, and automate metabolite identification.
In addition, the centralization of data deposition, curation, and computational spectrum analy-
sis, as well as the standardization of analytical methods across various platforms, will improve the
confidence of compound identification from MS-based datasets. With this, biologically relevant
metabolites will continue to be elucidated for drug discovery, diagnostics, and other applications.
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19. Shaw JB, Lin T-Y, Leach FE, Tolmachev AV, Tolić N, et al. 2016. 21 Tesla Fourier transform ion cy-
clotron resonance mass spectrometer greatly expands mass spectrometry toolbox. J. Am. Soc. Mass Spec-
trom. 27(12):1929–36

20. Buszewski B, Noga S. 2012. Hydrophilic interaction liquid chromatography (HILIC)—a powerful sep-
aration technique. Anal. Bioanal. Chem. 402(1):231–47

21. Kind T, Tolstikov V, Fiehn O, Weiss RH. 2007. A comprehensive urinary metabolomic approach for
identifying kidney cancer. Anal. Biochem. 363(2):185–95

22. da Silva RR, Dorrestein PC, Quinn RA. 2015. Illuminating the dark matter in metabolomics. PNAS
112(41):12549–50

23. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, et al. 2010. MassBank: a public repository for sharing
mass spectral data for life sciences. J. Mass Spectrom. 45(7):703–14

24. Guijas C, Montenegro-Burke JR, Domingo-Almenara X, Palermo A, Warth B, et al. 2018. METLIN:
a technology platform for identifying knowns and unknowns. Anal. Chem. 90(5):3156–64

25. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, et al. 2016. Sharing and community curation
of mass spectrometry data with Global Natural Products Social Molecular Networking.Nat. Biotechnol.
34(8):828–37

26. Wishart DS,Tzur D,Knox C, Eisner R,Guo AC, et al. 2007.HMDB: the human metabolome database.
Nucleic Acids Res. 35:D521–26

27. Cuthbertson DJ, Johnson SR, Piljac-Žegarac J, Kappel J, Schäfer S, et al. 2013. Accurate mass–time tag
library for LC/MS-based metabolite profiling of medicinal plants. Phytochemistry 91:187–97

28. Sawada Y, Nakabayashi R, Yamada Y, Suzuki M, Sato M, et al. 2012. RIKEN tandem mass spec-
tral database (ReSpect) for phytochemicals: a plant-specific MS/MS-based data resource and database.
Phytochemistry 82:38–45

29. Tada I, Tsugawa H, Meister I, Zhang P, Shu R, et al. 2019. Creating a reliable mass spectral-retention
time library for all ion fragmentation-based metabolomics.Metabolites 9(11):251

30. Zhu Q-F, Zhang T-Y,Qin L-L, Li X-M, Zheng S-J, Feng Y-Q. 2019.Method to calculate the retention
index in hydrophilic interaction liquid chromatography using normal fatty acid derivatives as calibrants.
Anal. Chem. 91(9):6057–63

31. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, et al. 2015. MS-DIAL: data independent MS/MS de-
convolution for comprehensive metabolome analysis.Nat. Methods 12(6):523–26

32. Tada I, Chaleckis R, Tsugawa H, Meister I, Zhang P, et al. 2020. Correlation-based deconvolution
(CorrDec) to generate high-quality MS2 spectra from data-independent acquisition in multisample
studies. Anal. Chem. 92(16):11310–17

33. Junot C, Fenaille F, Colsch B, Bécher F. 2014. High resolution mass spectrometry based techniques at
the crossroads of metabolic pathways.Mass Spectrom. Rev. 33(6):471–500

34. Little JL,Cleven CD,Brown SD. 2011. Identification of “known unknowns” utilizing accurate mass data
and chemical abstracts service databases. J. Am. Soc. Mass Spectrom. 22(2):348–59

www.annualreviews.org • Mass Spectrometry–Based Metabolomics 483



Downloaded from www.annualreviews.org.

 Guest (guest)

IP:  3.12.155.151

On: Tue, 28 May 2024 18:53:46

35. Vaniya A, Fiehn O. 2015. Using fragmentation trees and mass spectral trees for identifying unknown
compounds in metabolomics. Trends Anal. Chem. 69:52–61

36. Böcker S,Rasche F.2008.Towards de novo identification ofmetabolites by analyzing tandemmass spectra.
Bioinformatics 24(16):i49–55

37. Ruttkies C, Schymanski EL,Wolf S,Hollender J,Neumann S. 2016.MetFrag relaunched: incorporating
strategies beyond in silico fragmentation. J. Cheminformatics 8:3

38. Wolf S, Schmidt S, Müller-Hannemann M, Neumann S. 2010. In silico fragmentation for computer
assisted identification of metabolite mass spectra. BMC Bioinform. 11:148

39. Heinonen M, Rantanen A, Mielikäinen T, Kokkonen J, Kiuru J, et al. 2008. FiD: a software for ab initio
structural identification of product ions from tandem mass spectrometric data. Rapid Commun. Mass
Spectrom. 22(19):3043–52

40. Bartlett RJ, Musiał M. 2007. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79(1):291–
352

41. Bauer CA, Grimme S. 2016. How to compute electron ionization mass spectra from first principles.
J. Phys. Chem. A 120(21):3755–66

42. Bauer CA, Grimme S. 2014. First principles calculation of electron ionization mass spectra for selected
organic drug molecules.Org. Biomol. Chem. 12(43):8737–44

43. Bauer CA, Grimme S. 2014. Elucidation of electron ionization induced fragmentations of adenine by
semiempirical and density functional molecular dynamics. J. Phys. Chem. A 118(49):11479–84

44. Bauer CA, Grimme S. 2015. Automated quantum chemistry based molecular dynamics simulations of
electron ionization induced fragmentations of the nucleobases uracil, thymine, cytosine, and guanine.
Eur. J. Mass Spectrom. 21:125–40

45. Spezia R, Salpin J-Y,GaigeotM-P,HaseWL,SongK. 2009.Protonated urea collision-induced dissocia-
tion.Comparison of experiments and chemical dynamics simulations. J. Phys. Chem.A 113(50):13853–62

46. Ortiz D, Salpin J-Y, Song K, Spezia R. 2014. Galactose-6-sulfate collision induced dissociation using
QM+MM chemical dynamics simulations and ESI-MS/MS experiments. Int. J. Mass Spectrom. 358:25–
35

47. Lee G, Park E,Chung H, Jeanvoine Y, Song K, Spezia R. 2016.Gas phase fragmentation mechanisms of
protonated testosterone as revealed by chemical dynamics simulations. Int. J. Mass Spectrom. 407:40–50

48. Macaluso V, Scuderi D, Crestoni ME, Fornarini S, Corinti D, et al. 2019. l-cysteine modified by S-
sulfation: consequence on fragmentation processes elucidated by tandem mass spectrometry and chem-
ical dynamics simulations. J. Phys. Chem. A 123(17):3685–96

49. Molina ER, Salpin J-Y, Spezia R, Martínez-Núñez E. 2016. On the gas phase fragmentation of proto-
nated uracil: a statistical perspective. Phys. Chem. Chem. Phys. 18(22):14980–90

50. Martin Somer A, Macaluso V, Barnes GL, Yang L, Pratihar S, et al. 2020. Role of chemical dynamics
simulations in mass spectrometry studies of collision-induced dissociation and collisions of biological
ions with organic surfaces. J. Am. Soc. Mass Spectrom. 31(1):2–24

51. Zhou J, Weber RJM, Allwood JW, Mistrik R, Zhu Z, et al. 2014. HAMMER: automated operation of
mass frontier to construct in silico mass spectral fragmentation libraries. Bioinformatics 30(4):581–83

52. Vaniya A, Samra SN, Palazoglu M, Tsugawa H, Fiehn O. 2017. Using MS-FINDER for identifying 19
natural products in the CASMI 2016 contest. Phytochem. Lett. 21:306–12

53. Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, et al. 2016. Hydrogen rearrangement
rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software.
Anal. Chem. 88(16):7946–58

54. Nguyen DH,Nguyen CH,Mamitsuka H. 2019. Recent advances and prospects of computational meth-
ods for metabolite identification: a review with emphasis on machine learning approaches. Brief. Bioin-
form. 20(6):2028–43

55. Allen F, Greiner R,Wishart D. 2015. Competitive fragmentation modeling of ESI-MS/MS spectra for
putative metabolite identification.Metabolomics 11(1):98–110

56. Dührkop K, Shen H,Meusel M, Rousu J, Böcker S. 2015. Searching molecular structure databases with
tandem mass spectra using CSI:FingerID. PNAS 112(41):12580–85

57. Ludwig M, Dührkop K, Böcker S. 2018. Bayesian networks for mass spectrometric metabolite identifi-
cation via molecular fingerprints. Bioinformatics 34(13):i333–40

484 Collins et al.



Downloaded from www.annualreviews.org.

 Guest (guest)

IP:  3.12.155.151

On: Tue, 28 May 2024 18:53:46

58. van der Hooft JJJ, Wandy J, Barrett MP, Burgess KEV, Rogers S. 2016. Topic modeling for untargeted
substructure exploration in metabolomics. PNAS 113(48):13738–43

59. van der Hooft JJJ, Wandy J, Young F, Padmanabhan S, Gerasimidis K, et al. 2017. Unsupervised dis-
covery and comparison of structural families across multiple samples in untargeted metabolomics.Anal.
Chem. 89(14):7569–77

60. Simón-Manso Y, Marupaka R, Yan X, Liang Y, Telu KH, et al. 2019. Mass spectrometry fingerprints of
small-molecule metabolites in biofluids: building a spectral library of recurrent spectra for urine analysis.
Anal. Chem. 91(18):12021–29

61. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, et al. 2012.Mass spectral molecular networking
of living microbial colonies. PNAS 109(26):E1743–52

62. Cho J-Y, Kang DW,Ma X, Ahn S-H, Krausz KW, et al. 2009. Metabolomics reveals a novel vitamin E
metabolite and attenuated vitamin E metabolism upon PXR activation. J. Lipid Res. 50(5):924–37

63. Wang M, Jarmusch AK, Vargas F, Aksenov AA, Gauglitz JM, et al. 2020. Mass spectrometry searches
using MASST.Nat. Biotechnol. 38:19–26

64. Mahieu NG,Patti GJ. 2017. Systems-level annotation of a metabolomics data set reduces 25000 features
to fewer than 1000 unique metabolites. Anal. Chem. 89(19):10397–406
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