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Abstract

Single particle tracking (SPT) has proven to be a powerful technique in
studying molecular dynamics in complicated systems. We review its recent
development, including three-dimensional (3D) SPT and its applications in
probing nanostructures and molecule-surface interactions that are impor-
tant to analytical chemical processes. Several frequently used 3D SPT tech-
niques are introduced. Especially of interest are those based on point spread
function engineering, which are simple in instrumentation and can be eas-
ily adapted and used in analytical labs. Corresponding data analysis methods
are briefly discussed. We present several important case studies, with a fo-
cus on probingmass transport andmolecule-surface interactions in confined
environments. The presented studies demonstrate the great potential of 3D
SPT for understanding fundamental phenomena in confined space, which
will enable us to predict basic principles involved in chemical recognition,
separation, and analysis, and to optimize mass transport and responses by
structural design and optimization.
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1. INTRODUCTION

Single particle tracking (SPT) is a set of methods to observe and analyze the position and motion
of individual particles or molecules. The object of SPT can be individual particles or molecules,
which will be generally called particles in this review. SPT includes single particle localization,
from which the particle position as a function of time is acquired and the trajectory constructed.
The trajectory of a single particle contains important information about the structural and
physicochemical properties of the medium it is in, as well as the interactions between the particle
and its environment.

In the biological sciences, SPT has been proven to be a powerful technique in studying bio-
logical processes (1–12). Prominent examples include resolving of individual steps for molecular
motors such as myosin and kinesin (13, 14). In addition, single-molecule localization has been
a major milestone for superresolution optical imaging, which discloses unprecedented structural
details of biological systems (7, 8). Currently, SPT has been used to probe a variety of cellular
activities. Its biological applications have been reviewed elsewhere (2, 3, 15, 16) and are beyond
the scope of this article.

Although a major push for the development of SPT techniques comes from the biological
research communities, SPT is also extensively used in non-life sciences. Especially of interest to
analytical chemists is its capability to probe interactions between molecules and surfaces, whether
that is a flat model surface or curved surface in a porous material. Such interactions, and the
resulting molecular binding and mass transport, play an important role in analytical chemistry,
such as separation, electrochemistry, sensors, and other surface techniques. For example, dating
back to the 1990s, Prieve, Bevan, and colleagues used total internal reflection fluorescence
(TIRF) microscopy to study the van der Waals interaction between colloidal particles and a wall
(17–19). Schwartz and coworkers (20–22) systematically studied molecules’ mass transport at the
liquid–solid interface, and a model was proposed to explain the observed non-Brownian surface
diffusion.Higgins et al. (23, 24) studied the confinement effect onmolecularmass transport in one-
dimensional nanopores. Yeung’s group (25, 26) investigatedDNA/proteinmolecules and nanopar-
ticles’ migration near a flat surface and in cylindrical micropores. They found that attractive
interaction in chromatography processes can extend to an extraordinarily long distance from the
wall. Similarly, particle or molecule binding and transport have been studied in three-dimensional
(3D) microporous polymers (27), in protein ion-exchange chromatography stationary phase (28),
and in reverse-phase high-performance liquid chromatography (HPLC) stationary phase (29).
Fang and coworkers (30) monitored catalytic reactions and subsequent molecular transport on
porous silica coated metal catalysts. They surprisingly found that the porous silica coating in-
creases rather than slows down the heterogenous reaction rate, which indicates that confinement
of the reactant molecules can play a role in promoting the reaction speed (30). These studies
helped our understanding of fundamental processes at interfaces, which are crucial to analytical
techniques.

Currently, most of the SPT techniques can only track 2D motion of the particles. However,
sample media in real world are 3D in nature and the particle probes usually move in a tortuous
and congested 3D space that is highly scattering. Developing robust 3D SPT techniques is thus
crucial for disclosing the complete structural information and dynamic interactions in the full 3D
space. Recently, great efforts have been made to develop 3D SPT techniques for this purpose. So
far, a very limited number of studies have been reported that are relevant to analytical science.
This review focuses on 3D SPT techniques that are especially of interest to analytical chemists;
corresponding data analysis methods and selected case studies are also reviewed.
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2. EXPERIMENTAL METHODS

2.1. Z-Information in Optical Imaging

It is important to point out that conventional diffraction-limited (or Airy disc-patterned) optical
microscopy actually gives partial z-information in a 2D image. When a particle is moved out of
the focal plane, the diffraction ring pattern becomes more apparent given that the image signal-
to-noise ratio (S/N) is sufficiently high (Figure 1a). Many studies have shown that the radii of
the rings change as a function of the particle distance away from the focal plane (31). However,
it is usually inconvenient to obtain the particle’s full 3D position using these diffraction rings for
two main reasons: (a) The symmetry with respect to the focal plane causes sign ambiguity of the
particle position along the z-axis, and (b) this method works best for the particle in a defocused po-
sition at which the diffraction ring pattern is clear.The image pattern is insensitive to the particle’s
z-position near the focal plane, at which the particle gives the strongest signal.

In order to obtain the 3D position of a particle conveniently, many methods have been em-
ployed in real applications. Depending on their working principles, current 3D localization tech-
niques can be classified into three main categories: multiplane scanning (either at the sample side
or the image side), tuning the spatial excitation/emission profile (at the sample side), and point
spread function (PSF) engineering (at the image side).

2.2. Multiplane Scanning

The 3D position of a particle can be obtained by scanning the sample with respect to the ob-
jective along the z-axis for multiple images (i.e., sample side scanning). The z-stack images can
be acquired using either wide-field imaging (e.g., bright-field, dark-field, differential interference
contrast microscopy, etc.) (32) or point detection–based confocal imaging. It is quite time consum-
ing to collect a whole stack of images to determine a particle’s z-position. However, the temporal
resolution of this approach can be significantly improved by reducing the total number of the
z-images (31, 33–37) or the total signal collection spots in confocal imaging (38–40).

2.2.1. Confocal imaging-based 3D single particle tracking. In the confocal imaging ap-
proach, it is realized that the particle’s 3D position can be determined by collecting the emission
from a minimum of four tetrahedrally distributed detection spots in the image space (Figure 1b)
or by collecting the emission from four excitation spots in the sample space. Tracking is then
achieved by a simple feedback loop in which the laser spot is moved to be near the current probe
position and scans the sample space at four spots for the next probe position. This process is
repeated until a sufficiently long trajectory is acquired or the signal disappears. Several groups
have developed confocal fluorescence microscopy-based 3D tracking by using this approach (39,
41–43). The temporal resolution can be as low as below 1 ms/frame (38, 39, 41, 44, 45).

Compared to current wide-field imaging-based 3D tracking techniques,which usually have a z-
working distance of several micrometers due to limited depth of field, confocal imaging-based 3D
tracking can have amuch wider z-range of tens to hundreds of micrometers without any additional
equipment. The shortcomings are expensive instrumentation, tracking limited to one particle at
a time, the high tendency of losing the particle, and relatively low precision (50–100 nm).

2.2.2. Bifocal plane imaging. Instead of scanning the particle at the sample side, z-information
can also be obtained by scanning the detector (camera) at the image side of the microscope. How-
ever, owing to the design of modern microscopes, scanning the detector is usually inconvenient.

www.annualreviews.org • 3D Single Particle Tracking 383



Downloaded from www.annualreviews.org.

 Guest (guest)

IP:  18.188.20.56

On: Thu, 25 Apr 2024 09:08:36

AC13CH18_Wang ARjats.cls May 27, 2020 12:16

z 
(μ

m
)

3.5

2.5

1.5

0.5

0
r0 (a.u.)

a b

c

d

Quantum dot
being tracked

Tube lenses

Excitation
laser beam

r0

Image plane B
DB

DA Image plane A

50/50 Beam splitter

Pellicle
beam splitter

Image plane B views
a different z-slice than
Image plane A.

z

y x

Specimen plane

Objective

Microscope

Mirror

Mirror

Beam splitter

Tube
lens

Lens-1 Lens-2

Focal
shift

Lens-3

30%

70%

CCD

Defocused
channel

Focused
channel

Bifocal imaging apparatus

x focus
z defocus
x defocus
Fits

x foc: 19.0 ± 1.9
x def: 18.4 ± 2.2
z def: 19.8 ± 1.70

0 35030025020015050 100

Po
si

ti
on

 (n
m

)

500

400

300

200

100

Time (s)

Figure 1

Z-information in an image and multiplane scanning-based 3D single particle tracking. (a) The linear relation
between the radii of the diffraction rings and defocused z-distance in diffraction-limited microscopy.
Adapted with permission from Reference 31. Copyright 2003, Optical Society of America. (b) Confocal
imaging setup and the tetrahedrally distributed detection spots for localizing a particle in the 3D space.
Adapted with permission from Reference 38. Copyright 2010, American Chemical Society. (c) Schematic of
bifocal plane imaging. (d) Representative paired images acquired in bifocal plane imaging and recovered
z-position in z-stepping experiments. Adapted with permission from Reference 33. Copyright 2007,
American Chemical Society.

In wide-field imaging-based 3D tracking, this approach can be used by the application of beam
splitters and mirrors since the total number of z-slices is limited. Because the minimum number
of the z-frames is two to unambiguously determine a particle’s z-position, simultaneous collecting
images at two z-planes at the image side is required. This can be achieved by splitting the image
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light beam into two: one imaged at the focal plane and the other at a slightly defocused plane
(Figure 1c) (33). The two image light beams can be projected to the same camera chip so only
one camera exposure is needed (Figure 1d). The particle’s z-position can then be recovered by
comparing the two images’ patterns or intensities.

A variation of this method is achromatic aberration-based bifocal plane imaging (46). In this
approach, the image light beam is split into two color channels by a dichroic mirror. The two
light beams have different focal planes due to achromatic aberration of the microscope objective.
When projected to the same camera chip, one light beam can be focused and the other slightly
defocused, giving sufficient information to recover the particle’s z-position.

Themain advantages of bifocal or evenmultiple focal plane imaging are high position accuracy
and precision (∼10 nm), fast imaging rate (video rate), and the ability to acquire long trajectories.
The disadvantage is that the instrument needs a major customization to allow the image light
beam splitting and realignment so that the two beams can be projected to the same camera chip.
Alternatively, a major add-on accessory named the DualView multichannel imaging system may
achieve similar functions but needs additional customization.

2.3. Tuning the Spatial Excitation/Emission Profile at the Sample Side

Axial tracking can also be achieved by using a second group of techniques: tuning the excitation
or emission profile at the sample side. The z-position of a particle can then be recovered from the
particle intensity or other properties that are determined by the excitation/emission profile.

2.3.1. Total internal reflection fluorescence microscopy. The most frequently used method
in this group is total internal reflection fluorescence microscopy (TIRFM) (47, 48), which uses
an interface to define the excitation intensity along the z-axis. Unlike other wide-field florescence
microscopy, the excitation in TIRFM is by the evanescent field at a total internal reflection surface.
The evanescent field intensity I decays exponentially as a function of the distance z from the TIR
surface (48):

I(z) = I(0)exp
(
− z
d

)
, 1.

where d is the penetration depth of the evanescent field determined by the wavelength of the light,
the refractive indices of the materials at either side of the TIR interface, and the light incident
angle. Consequently, the fluorescence emission intensity, which is proportional to the excitation
intensity, can be used to recover particle’s z-position.

TIRFM has been used to study particle–surface interactions since the early 1980s (17). More
recent publications by Fang’s group (6, 49) first reported the 3D active site distribution on a fre-
quently used catalytic platform, which consists of a solid silica core, a mesoporous silica shell,
and uniformly distributed Pt nanoparticles sandwiched in between. The 3D active site map was
constructed by imaging single fluorescent molecules produced at active sites followed by 3D lo-
calization: the lateral position that was obtained from the centroid of the single-molecule image
spot and the z-position from the intensity. A globular distribution of the active sites was recovered,
representing the Pt nanoparticles deposited on the silica spherical core. This approach shows the
great potential of TIRFM, which enables one to establish the structure-catalytic activity relation-
ship in real 3D heterogeneous catalysts that are highly porous and scattering.

2.3.2. Fluorescence lifetime imaging microscopy and fluorescence-interference contrast
microscopy. The second group of methods can also tune the spatial emission profile by intro-
ducing factors that affect the emission. For example, fluorescence lifetime imaging microscopy
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(FLIM) (50) utilizes the lifetime of fluorescent molecules near a metal or silicone surface to de-
termine its z-position: The molecules are quenched to different extents so they have different
fluorescence lifetimes, from which their z-positions can be estimated. Because quenching from a
surface is a relatively near-field effect, the working distance of this approach is short, ∼100 nm.

Another example is fluorescence-interference contrast microscopy (FLIC) (51), which is based
on interference between the direct fluorescence emission and the reflected emission from a nearby
surface.The optical path lengths for the direct emission and reflected emission are different for the
particle at different z’s, leading to constructive or destructive interference and thus enhanced or
reduced intensity on the detector. The z-position of the fluorophore can then be recovered from
the collected fluorescence intensity. Using this method, the corkscrew-like motion of quantum
dots attached to a microtubule (diameter ∼25 nm) gliding and rotating on a silicon surface was
observed.

To summarize, the second group of methods imposes a position-excitation/emission relation-
ship at the sample side of the microscope so that their z-position can be determined.They provide
new perspectives on the design of 3D SPT techniques. In particular, TIRFM has a very shallow
excitation depth and consequently very low image background, which makes it an ideal tool to
study low signals from single molecules. It has been used as an independent imaging platform or
in combination with other imaging techniques to achieve new functionalities (52).

The shortcoming of this group of methods for 3D SPT is apparent. (a) They usually need
to engineer the sample or the sample substrate, e.g., the addition of an interface near the sam-
ple, which limits the generality of their application. (b) The z-working distance is usually short
(∼100 nm) when a near-field effect of the interface is employed.

2.4. Point Spread Function Engineering at the Image Side

The axial information can be obtained through a third group of methods: those that tune the
PSF and make it z-sensitive, where PSF is defined as the spatial light intensity distribution in
the 3D space at the image side for a point-emitting object. As mentioned earlier, in conventional
diffraction-limited microscopy, a single z-slice of the 3D PSF contains partial z-information that
is inconvenient to recover. To unambiguously and accurately recover the z-position, information
frommultiple z-slices is required.Thus, it can be understood that tominimize the camera exposure
number to 1, as much useful information as possible in the 3D PSF should be collected in a single
image. Or, in other words, both in-focal and out-of-focal plane signals that would have been in
a conventional microscope need to be selected through engineering to show up in one image to
facilitate the z-localization.This process requires changing the PSF of a microscope, usually at the
image side. Thus, it is named PSF engineering. Frequently used approaches including astigmatic
imaging (52, 53), double-helix PSF imaging (54, 55), and parallax imaging (56) are discussed below.

2.4.1. Astigmatic imaging. A straightforward method to realize PSF engineering is to create
astigmatism in the imaging system. This can be achieved by inserting a weak cylindrical lens into
the imaging optical path, either after themicroscope objective or after the tube lens (Figure 2a), to
create two slightly shifted focal planes: one for horizontal rays and one for vertical rays (Figure 2b).
Depending on the strength of astigmatism, the image pattern of a point object can vary from an
ellipse (52) (aspect ratio changing with respect to emitter’s z-position) to an expanded diamond-
like shape (Figure 2c,d) (53), which allows the z-coordinate of the emitter to be unambiguously
determined from one image.

Astigmatic imaging was first introduced by Kao & Verkman (57). It became popular in re-
cent years ever since it was applied to stochastic optical reconstruction microscopy (STORM) to
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Figure 2

Astigmatic imaging-based 3D single particle tracking. (a) Schematic of the instrument setup. (b) Focusing of horizontal and vertical
rays. (c) Representative image slices of the elliptical PSF. The focal plane gap was ∼1 µm. The z-step size between images was 200 nm.
(d) Representative image slices of the expanded, diamond-like PSF. The focal plane gap was ∼5 µm. The z-step size between images
was 1.00 µm. (e) Recovered z-position in a stepping experiment using the expanded astigmatic PSF. Panels a, d, and e adapted with
permission from Reference 53. Copyright 2016, the American Chemical Society. Abbreviations: EMCCD, electron multiplying
charge-coupled device; PSF, point spread function.

achieve 3D superresolution, which has a lateral resolution of ∼20 nm and an axial resolution of
50 nm (52). Because this method is simple in both instrumentation and data analysis, it is popularly
used in 3D SPT.

Note that the astigmatic PSFs can vary from small ellipses to large diamond-like shapes, de-
pending on the strength of astigmatism. The rationale for using expanded PSFs is that the more
dispersed the PSF, the more sensitive its image pattern to the particle’s z-position. The working
distance also becomes larger. When the photon flux is sufficient, the expanded PSF is advanta-
geous in localization accuracy and precision. However, in practice, larger image dispersion means
lower photon counts per camera pixel, which impairs localization. It is a compromise in selecting
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Double-helix point spread function (DH-PSF) for 3D single particle tracking. (a) Schematic setup. (b) Top panels are xz and yz cross
sections of a DH-PSF whereas the bottom panels are from the standard PSF from a conventional microscope. (c,d) Real-space image
pattern and its fitting output. Adapted with permission from Reference 55. Copyright 2009, American Chemical Society. Abbreviations:
L, lens; P, image plane; SLM, spatial light modulator.

the proper PSFs for specific studies. Zhao et al. (53) used expanded astigmatic PSF to study flu-
orescent particle diffusion in cylindrical nanopores. The gap between the horizontal and vertical
ray focal planes was tuned to ∼5 µm (53, 58) in contrast to ∼1 µm for elliptical PSFs. As such,
it can observe up to 10 µm into the substrate with an axial localization precision of ∼20 nm for
100-nmfluorescent polystyrene particles (Figure 2e).The time resolution can be up to 8ms/frame
(59).

2.4.2. Phase plate-based point spread function engineering. The diffraction-limited PSF
(i.e., Airy discs) can also be modified by changing the amplitude and/or the phase profile of the
image light beam behind the microscope objective. A popular method today is the double-helix
PSF, which is generated by inserting a double-helix PSF phase mask (54, 55, 60) in the detection
optical path in a conventional fluorescence microscope. A pair of image spots (or two lobes at
high S/N) form and continuously rotate around a common center as the point emitter’s z-position
changes (Figure 3).The 3DPSF has a double-helix shape and is thus named the double-helix PSF.
Moerner and coworkers (54) demonstrated that this method shows∼10 nm localization capability
along the x, y, and z dimensions even with weak emitters.

It is worth noting that double-helix PSFs are possibly one of the two most used 3D localiza-
tion methods, together with astigmatic PSFs. The advantages of double-helix PSFs include easy
instrumentation and data analysis. Compared to astigmatic PSFs, the size of the pair of image
spots in a double-helix PSF is mostly the same throughout the depth of field, meaning that the
z-localization is robust against noises in a wide z-range.

Phasemasks are easy to implement.With the help from spatial light modulators, designing new
phase plates became simpler. A variety of phase mask–based PSF engineering methods emerged
and showed excellent 3D localization performance. These include tetra pods (61), corkscrew (62),
self-bending (63), extended double-helix PSFs (64), and others.

2.4.3. Translated point spread functions or parallax imaging. The third type of PSF en-
gineering method encodes axial position information using translated PSFs, or parallax imaging
(56). This method was first introduced by Yajima and coworkers (56), who employed a wedge
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prism at the back focal plane to divert the direction of half of the image light beam. As a result, a
pair of split image spots along the y-axis will form at the image plane for a point-emitting object.
The displacement of the point object in the z-axis shifts the relative position of the split images
along the x-direction, from which the defocused distance of the point object can be recovered.
The corkscrew-like motion of particles attached on gliding and rotating microtubules was for the
first time directly observed using this technique. Because this approach is similar to viewing the
same object from two different positions, like how human beings view a distant object, it is named
parallax imaging. Similarly, parallax imaging can be achieved using a pair of closely spacedmirrors,
or a bisected, linearly ramped spatial light modulator to split the image light beam (65, 66).

To summarize Section 2.4, all of these PSF engineering methods can be applied on current
commercial microscopes with simple modifications to achieve 3D SPT. Thus, they are of interest
to a wide range of labs, including analytical chemistry labs.

2.5. 3D Single Particle Tracking for Nonfluorescent Particles

Thus far, all of the techniques we have reviewed were developed for fluorescence microscopy. For
nonfluorescent probes, other modes of microscopy need to be used, such as dark-field microscopy.
The aforementioned 3D localization principles can be adapted for these nonfluorescent detection
techniques with little modification.

It is worthwhile to note the special type of detection scheme for nonfluorescent particles: the
interference-based detection that is used to enhance imaging sensitivity.The scattering from small
particles scales with their radius to the sixth power so the signal drops quickly as the particle size
becomes smaller. In interference-based imaging, a reference beam is introduced to interfere with
the scattering signal, which brings the signal level up to their radius to the third power (67). Thus,
the signal is enhanced. One such detection technique is interferometric scattering (i-SCAT) mi-
croscopy, which can detect gold nanoparticles as small as 5 nm (68). Interestingly, the 3D interfer-
ometric PSF has a unique, asymmetrical ring pattern along the z-axis, allowing their xyz positions
to be determined from a single exposure (69). This detection scheme is powerful, yet a laser beam
is required, which adds to the cost and complexity of the instrument.

3. DATA ANALYSIS

Among all of the 3D SPT techniques reviewed above, the PSF engineering methods introduce
3D resolution in one image. They require a simple instrument but no special sample geometry.
However, these methods may involve more complicated image patterns, which makes data anal-
ysis challenging. To recover the 3D position of a particle from an image, a reliable estimator is
required. It needs to be established through the standard calibration procedures, which involves
the collection of calibration images at different z-positions, image pattern analysis, the establish-
ment of an image feature-z relationship, and the same image pattern analysis for the samples (70,
71). The key procedure is the image pattern analysis.

Generally, analysis of image data can go through two routes:

1. When the image pattern is relatively simple, image features can be extracted and a feature-z
relationship can be established using the calibration set; the z-position of a sample image
is determined depending on its feature. The image feature vector can be as simple as only
one variable, such as the aspect ratio of the astigmatic image spot or the rotating angle of
the paired image spots in double-helix PSF. To extract clearly defined image features, one
needs to be able to predict the image patterns and approximate the experimental images
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to the theoretical ones. Nonlinear least squares fitting is the most frequently used method
(52). More sophisticated statistical methods such as maximum likelihood estimation (72)
were also introduced to improve the extraction accuracy. Data analysis methods using this
approach have been studied and their accuracy and precision as a function of the photon
flux have been presented in recent studies (73–76). Here, we do not discuss these methods
but focus on more complicated PSFs and their analysis methods below.

2. When the image pattern is so irregular that the PSF cannot be described using a simple
function, the calibration and data analysis cannot use the aforementioned approach and be-
come more challenging. In fact, complicated PSFs are frequently encountered and are of
more general importance in a variety of imaging techniques (e.g., DIC imaging, defocused
imaging), including 3D localization. For example, at a high S/N, the frequently used double-
helix PSF shows a pattern of two asymmetrical rotating lobes (77). For astigmatism-based
imaging, the PSF deforms and changes from an elongated circle to a cross and then a di-
amond shape when the astigmatism strength increases (53). Similar irregular patterns can
be found in other methods such as wedge prism and tetrapod PSFs. Even worse, due to op-
tical aberrations of individual imaging systems and different experimental conditions, it is
challenging to predict the exact PSF patterns. In this case, a general data analysis approach
without clearly defining the image features is needed to analyze these images.

3.1. Complicated Image Pattern Recognition for 3D Localization

Data analysis for irregular image pattern–based single particle 3D localization, by essence, is an
image classification process, which classifies sample images into categories (i.e., z-positions) de-
fined by calibration image sets. There are multiple methods for image classification, from the
simple correlation coefficient method to supervised machine learning algorithms and deep neural
networks.

The Pearson correlation coefficient method is a universally applicable and arguably the most
reliable pattern recognition method (78). In this method, the sample image is compared pixel by
pixel with each image in the calibration set. The similarity is determined based on the correlation
coefficient p, which is defined as

p(sample,model) = 1
m− 1

m∑
i=1

[Imodel(i) − Imodel(avg)]
σmodel

[Isample(i) − Isample(avg)]
σsample

, 2.

where the summation is over all of the m pixels in the sample image, I is the intensity, and avg
and σ denote the average and standard deviation of all intensities in the model (i.e., the image
in the calibration set) or the sample, respectively. For sparse calibration sets (i.e., the number of
calibrated z-values is sparsely distributed over the whole z-range), a weighing or fitting procedure
is usually used to obtain subframe resolution (53).

The correlation coefficient method is a simplified linear machine learning method, which pre-
sumes that the calibration image sets are a well-trained model and uses this model to evaluate
the experimental data. This is true only when experimental data and calibration data are collected
under the same experimental condition and have high image quality, including high S/N and low
interfering background. With these restrictions, the correlation coefficient method does show
decent localization accuracy and precision (53). However, in realistic conditions, when noise and
background interference cannot be avoided, the method shows its limitations because the assump-
tion is no longer valid.

More sophisticated machine learning methods (79) train models with a decision function Y =
f (X), or equivalently, the conditional probability distribution P(Y |X ), in which X stands for input
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data, and Y stands for classification result. Depending on how the decision function is obtained,
there are two main groups of supervised learning approaches: generative approaches [e.g., Naïve
Bayes (79)] and discriminative approaches [e.g., logistic regression/maximum entropymodel (80)].
The generative approaches generate the decision function (or the joint probability distribution)
directly from the constraints (i.e., data in the training set), while the discriminative algorithm only
explores and optimizes the decision function in a given hypothesis space for models.

Traditional machine learning algorithms have been applied in SPT and some achievements
have been made (73). However, they are not generally used partly because of their intrinsic defi-
ciency in analyzing large and complicated images: First, the machine learning models are usually
too simple to model image data that contain multiple relevant and irrelevant features; second,ma-
chine learning algorithms perform poorly for large image data due to convergence and overfitting
issues.

3.2. Deep Neural Networks

Zhong et al. (81) show that by using deep neural networks (DNNs), recognition and differen-
tiation of similar, complicated z-image patterns can be satisfactorily achieved. DNNs are a type
of forward-feeding artificial neural network inspired by animal visual cortex organization (70,
71, 82–84). One of the biggest successes of DNNs is their image pattern recognition in com-
plex, highly interfering backgrounds, as shown in recent high-profile image recognition contests
(82, 83, 85). In fact, practical facial recognition in the presence of background had been a diffi-
cult problem for many years, but solutions have been developed recently since the introduction
of DNNs.

In traditional machine learning methods, the sample images and the logical results are directly
linked in the regression process. In contrast, in a DNN, there are multiple hidden layers in be-
tween, which is why it is named deep learning (Figure 4a) (70, 84). In the shallow layers, the local
and simple features such as lines, corners, and edges are extracted, while in the deep layers, more
global and complicated profiles are extracted because these layers have a larger receptive field. In
the regression process, these multiple hidden layers bearing information about special features of
the image at multiple levels are fully connected, resembling how a neural network works. Thus,
this method achieves high-level extraction of image features and ideally is more resistant to noises
and other interferences.

Zhong et al. (81) introduced DNNs to 3D SPT techniques with the expanded astigmatic PSF.
They showed that a DNN-based algorithm is more resistant to noises for image pattern recog-
nition and particle z-localization. For high S/N images, both DNN- and correlation coefficient–
based methods perform well. However, when the S/N drops to ∼1, the correlation coefficient
method completely fails, whereas DNNs show strong resistance to both artificial and experimen-
tal noises (Figure 4b). This excellent result is achieved by optimizing the training depth: as the
training depth becomes deeper in DNNs, the reported z-probability distribution for an arbitrary
image becomes narrower, which indicates that more image features are extracted and considered
in the calibration process (Figure 4c,d). However, a training that is too deep may also cause over-
training, which means it falsely recognizes noises as the signal, and the recovered probability dis-
tribution becomes noisier. The localization precision becomes worse. An optimized DNN shows
more resistance to noise, which potentially allows one to reduce camera integration time signifi-
cantly. As a result, the frame integration time can be shortened by 1 to 2 orders of magnitude from
microseconds to 50 µs compared to current methods without losing accuracy significantly. This
study sheds new light on developing robust image data analysis methods and improving the time
resolution for 3D SPT.
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Deep neural network (DNN)-based algorithm for 3D single particle tracking using the expanded astigmatic point spread function.
(a) Schematic of a convolutional neural network. (b) For an image signal-to-noise ratio (S/N) of 1, the conventional correlation
coefficient method completely fails to recover the steps, whereas the DNN-based method is barely affected. (c) 3D presentation of the
reported probabilities for images in a stepping experiment using a single-layer neural network (shallow training). A total of 19 steps
were made, and each step has 50 images. (d) Reported probability distribution for the same stepping experiment using a 20-layer neural
network (deep training). Adapted with permission from Reference 81. Copyright 2018, American Chemical Society.
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4. APPLICATIONS OF 3D SINGLE PARTICLE TRACKING
IN CONFINED ENVIRONMENTS

4.1. Nanoconfined Environments and Molecule-Surface Interaction

Understanding interfacial phenomena is important not only to fundamental sciences but also
emerging applications such as those in human health and renewable energy (86–92). Especially
of interest are media that show nanoconfinement, e.g., voids, pores, extended tubes, and planar
channels, where molecules are confined by interfaces within a length scale of nanometers. These
materials are broadly used in analytical techniques such as separation (28, 29, 93–95), electro-
chemistry, sensors, and micro- to nanofabricated tools (96). Molecular transport processes such
as diffusion, migration, and adsorption/desorption in nanoconfined environments can be signifi-
cantly different from those in bulk solution (25, 26, 97–104). Having a thorough understanding of
mass transport and molecule-surface interaction in a confined space will enable us to predict basic
principles involved in chemical recognition, separation, and analysis, and optimize mass transport
and responses by material structure designing.

Thus far, our capability to investigate these problems is still limited by technical challenges. In
particular, insufficient spatial resolution in the z-direction hinders our understanding of phenom-
ena in these 3D structures. 3D SPT opens up a new avenues and allows us to probe interactions
between particles and molecules with surfaces, whether on a flat model surface or the surface in
porous media. Practically, 3D SPT will enable us to (a) probe nano- to mesostructures in situ,
i.e., under working conditions; (b) probe particle–surface interactions in a confined space; and
(c) monitor particle movement in the 3D space under active control. There remain a limited num-
ber of studies using 3D SPT to approach these problems; we selectively review a few important
case studies.

4.2. Probing Local Nanostructures

The 3D trajectory of a particle in part reflects the physical confinement of the environment on
the particle. Thus, it can be used to in situ probe nano- to mesostructures that are challenging
to measure using other methods. For example, Zhao et al. (53) studied the particle 3D diffusion
in anodic aluminum oxide membrane filters that contained cylindrical pores using the expanded
astigmatic PSF. They were able to observe fluorescent polystyrene nanoparticles diffusing in and
out of the anodic aluminum oxide membrane filters. Figure 5 shows that a particle diffuses in
one pore, moves out of the pore, diffuses in the bulk solution briefly, and enters another pore.
The recovered 3D trajectory in part reflects the nanopore’s cylindrical geometry. It was found
that the pores are not perfectly cylindrical: They show slight twisting and distortion. Such tortu-
osity information discloses how far the actual condition can deviate from the ideal model. More
interestingly, it was observed that particles can move from one pore to its neighboring pore in-
side the membrane filter, indicating that the pores are interconnected by defects. Such particles
crossing over were commonly observed, again showing detailed structural information and an as-
sessment of actual conditions in the model system that are challenging to measure and usually
ignored.

In another study, Zhong & Wang (58) used 3D SPT to study lipid membrane morphology
changes at different pHs by attaching fluorescent polystyrene nanoparticles on glass-supported
lipid bilayers. They found that at neutral pHs, supported lipid bilayers show a mainly planar
structure. There are also rare defects, which were captured in the 3D particle trajectory. Figure 6
illustrates an example of a micrometer-sized bulge protruding from the plane, showing the capa-
bility of 3D SPT to probe 3D structures in a highly dynamic environment.When the solution pH
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Figure 5

Three-dimensional particle trajectory when diffusing in and below an anodic aluminum oxide (AAO) membrane filter. (a) 3D view,
(b) top view, (c) side view. (d) The top view of the particle distribution in a thin slice in the z-direction. Adapted with permission from
Reference 53. Copyright 2016, American Chemical Society.

was tuned to be basic at 10.0, transiently confined diffusions of the particles with a lateral size of
∼100–200 nm were frequently observed, similar to those entrapments of the probe by lipid do-
mains reported in the literature. Most interestingly, these areas that trap the particles showed
3D bulged structures protruding from the planar lipid bilayer. These 3D structures trapped
the particles for a short period of time (∼0.75 s) with an estimated escape activation energy of
∼4.2 kBT. Nonuniform distribution of pH-sensitive lipids in the membrane was proposed to ex-
plain the formation of these 3D heterogeneous structures.

This work for the first time suggests that the geometry of the 3D lipid structures can play a role
in tuning the particle–lipid surface interactions. Further research is needed to investigate whether
these heterogeneous 3D structures are traditionally defined as lipid domains, which show lateral
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Morphology of solid supported lipid bilayer probed using 3D single particle tracking at pH 7.4. Adapted with permission from
Reference 58. Copyright 2018, American Chemical Society.

phase segregation.Nevertheless, it sheds new light on the origin, structure, and function of lateral
heterogeneity in a conventionally viewed 2D lipid membrane.

4.3. Probing Particle–Interface Interactions in Confined Environments

As stated earlier, understanding molecule-surface interactions and mass transport in porous media
is important to a range of analytical techniques and beyond. Numerous studies have been carried
out to investigate dynamic behavior of molecules and nanoparticles in confined environments. So
far, most of these studies are limited by tracking particles in the 2D plane, whereas the complete
understanding of interfacial transport relies on the 3Dmotion of the particles even on a flat model
surface.

Molecule-surface interactions directly play a role in the molecular mass transport in a con-
fined space. To have a better understanding of the interactions, Schwartz and coworkers (105)
studied the 3D feature of molecular interface diffusion on a series of flat model surfaces. It has
been hypothesized that “hops” of the molecules or particles through the solution above dominate
the molecular motion on and near the surface, while the nature, origin, and details of the hops
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are largely unclear. They used double-helix PSFs to track fluorescently tagged individual human
serum albumin molecules with a spatial precision of 15–20 nm in 3D and a time resolution of
0.1 s. It was found that during the hops, the molecules encounter multiple unproductive con-
tacts with the surface before being readsorbed on the surface stably. The average failed collision
number increases as the surface repulsion increases. Moreover, the duration and distance of the
hops are also favorably elongated by the surface repulsion while the waiting time between hops
increases with respect to the attractive interaction strength. As such, the motion of the molecules
on and near the surface no longer follows simple Brownian motion but is biased by short- and
long-range adsorbate-surface interactions. This study provides a detailed picture of the behavior
of biomolecules in the process ofmass transport near a surface and is valuable tomultiple industrial
applications, including molecular separation.

Zhao et al. (53) studied slow mass transport in cylindrical nanopores in anodic aluminum oxide
(AAO) membrane filters using 100-nm polystyrene nanoparticles (Figure 5). Under two model
conditions, (a) increased solvent viscosity, which slows down the particle throughout the whole
pore and solution, and (b) increased pore wall affinity, which only slows down the particle at the
wall in theory, particles are macroscopically slowed down by showing apparently elongated reten-
tion times inside the pores in both cases.However, detailed analysis of the particles’ 3D trajectories
shows that in viscous solvents, the particles are microscopically slowed down, showing decreased
microscopic steps proportional to the increment of the viscosity. In contrast, the particles in sticky
pores are microscopically active by showing limited reduction of the step sizes. The inconsistent
diffusion behaviors observed at different length scales in sticky pores—macroscopically active but
microscopically slow—are possibly caused by non-Brownian motion due to a heterogeneous en-
vironment and long-range attractive interaction rather than direct adsorption on the wall. This
study shows that it is possible to differentiate slow diffusions in confined environments caused by
different mechanisms using 3D SPT techniques.

The liquid–liquid interface is also frequently used in industrial processes such as partition and
separation. Molecules diffuse to and at the interface, which is important to molecular partition.
In nano- to mesoporous substrates, the curvature of the liquid–liquid interface can be quite large.
However, despite the progress made in theoretical studies, how molecular diffusion is affected by
a large curvature is largely unclear owing to experimental challenges. Zhong et al. (59) used ex-
panded astigmatic PSF to study 3D trajectories of polystyrene nanoparticles diffusing on a highly
curved water-silicone oil interface on oil droplets. They were able to recover particle trajectories
on oil droplets with a size of ∼400 nm to several micrometers (Figure 7a). Unexpectedly, they
found that the diffusion slows down significantly when the curvature becomes larger, or the oil
droplet becomes smaller (Figure 7b). A diffusion-induced droplet deformation and interface fluc-
tuation model is proposed to explain the unexpected experimental results (Figure 7c). This study
suggests that molecular processes may be significantly different on highly curved interfaces such
as those on lipid vesicles, micelles, emulsions, and droplets, or a chromatographic stationary phase
attached to the wall of nanopores to mesopores. It would be interesting to further investigate
molecular transport and chemical reactions on these highly curved interfaces.

4.4. Monitoring Particles in the 3D Space Under Micromanipulation

Controlled 3D positioning and delivery of particles in a contactless manner are important topics in
modern analytical techniques.How to achieve this is still challenging, but the ability tomonitor the
particles in a confined to semi-open 3D space helps to design these micromanipulation systems.
This can be achieved using 3D SPT techniques.

For example, Yu et al. (77) used a nanopipette to deliver polystyrene nanoparticles and capture
them with an electrically charged substrate at designated locations. The delivery and positioning
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Figure 7

Particle diffusing on a water-oil droplet interface. (a) A representative 3D trajectory of a 100-nm nanoparticle diffusing on a 2,600-nm
oil droplet surface. (b) Diffusion slows down as the droplet becomes smaller. (c) Proposed diffusion-induced droplet deformation and
interface fluctuation model. Adapted with permission from Reference 59. Copyright 2017, American Chemical Society.

were achieved by balancing the pressure-driven flow in the pipette tip and the electric attractive
force from the substrate. They used a double-helix PSF to monitor the whole controlled delivery
process in real time with a precision of tens of nanometers. They observed that, as the nanopar-
ticles approached the substrate, they experienced hindered diffusion and directed motion under
the forces exerted on them. This study demonstrates that real-time monitoring and manipulation
in the 3D space at the level of individual nanoparticles can be achieved, which is important to a
variety of applications, such as surface patterning and drug delivery using colloidal nanoparticles.

Similarly, Sandoghdar and coworkers (69) used the i-SACT technique to show that a fluidic
slit with appropriately tailored topography has a spatially modulated electrostatic potential that
can trap and levitate charged particles in solution for up to several hours. They show that particles
with different materials, such as gold, polymer, and lipid vesicles with varying diameters of tens
of nanometers, can all be trapped without external intervention. The stability of the electrostatic
trap can be easily tuned by changing the system shape, charge, andmedium ionic strength.Because
these kinds of traps can be easily combinedwith othermicromanipulation techniques, it is expected
that they can have a broad range of applications in contactless confining, sorting, or assembling
of biomolecules to nanoobjects.

5. CONCLUSION AND FUTURE PERSPECTIVE

We have reviewed several frequently used 3D SPT techniques. Especially of interest are those
based on PSF engineering, which are simple in instrumentation and inexpensive. They can be
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easily adapted and used by many researchers, including analytical chemists. Corresponding data
analysis methods for PSF engineering are briefly discussed with an emphasis on irregular PSF pat-
terns. Thus far, there are a remarkably limited number of 3D SPT studies in the field of analytical
chemistry. A few important case studies are presented with a focus on understanding mass trans-
port in confined environments, which is important to many analytical techniques. The presented
studies demonstrate the great potential of 3D SPT not only for these techniques but also far be-
yond, including solving problems in human health and renewable energy, such as heterogeneous
catalysis and drug delivery. It can be envisioned that significant breakthroughs will be made in the
near future in the quantitative understanding of nanoconfinement effects at the single-molecule
and single-nanopore levels, which will have a profound impact on solving the aforementioned
problems. In summary, these techniques are still in their infancy, and much work is needed in the
future to improve these techniques and expand their applications. Three specific issues in need of
further research are the following.

First, the most relevant issue to the topic of this review is the capability of 3D SPT to overcome
challenges in observing molecular processes in a real medium, e.g., porous materials, which have
strong scattering and background fluorescence from impurities. This problem can be alleviated
using two approaches: (a) Improving the instrument. We noticed that efforts have already been
made to combine other techniques, such as light sheet illumination, to reduce the background
(106). We anticipate that these techniques will soon be applied to solve analytical chemical prob-
lems. (b) Developing new data analysis methods. More robust data analysis methods are needed,
which can minimize the impact of high background and low signal problems in single-molecule
imaging. In this sense, DNN is a highly potential method to achieve this goal.

Second, a practical challenge of current SPT techniques is the low throughput, i.e., only one
or a few particles can be tracked in one experiment. The expanded image patterns in engineered
PSFs make this problem worse. To increase the throughput, one can increase the particle den-
sity, which will cause two new problems: (a) the particle images overlap with each other, which
harms 3D localization, and (b) the connection of dots between frames into 3D trajectories in the
presence of a high density of particles becomes challenging. However, these problems can also be
alleviated by neural networks–based artificial intelligence. DNNs show great resistance to inter-
fering background (e.g., signal from an overlapping neighboring particle) in image pattern recog-
nition, which makes simultaneous tracking of multiple particles possible. Additional work could
be accomplished by introducing recurrent neural networks, which have superior performance in
recognizing and predicting a time sequence, for dot connection between frames. With the help
of deep learning methods, we expect that multiple particle tracking can be developed, which will
significantly move this field forward.

Third, there is a need for the use of nonfluorescent probes. Nonfluorescent particles such
as gold nanoparticles have become more popular in recent years because of their many advan-
tages, such as high signal, nonbleaching nature, tunable shape, and tunable resonance wavelength.
These particles need to be detected using other modes such as differential interference contrast
microscopy, which has a unique, non-Airy disc pattern for point objects. They can be used in a
broad range of fields and provide complementary information to that from fluorescent studies.
How to develop 3D particle tracking technique using these nontraditional detection schemes re-
mains to be investigated.
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