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Abstract

Animals harbor diverse communities of microbes within their gastroin-
testinal tracts. Phylogenetic relationship, diet, gut morphology, host
physiology, and ecology all influence microbiome composition within and
between animal clades. Emerging evidence points to host genetics as also
playing a role in determining gut microbial composition within species.
Here, we discuss recent advances in the study of microbiome heritability
across a variety of animal species. Candidate gene and discovery-based stud-
ies in humans, mice, Drosophila, Caenorbabditis elegans, cattle, swine, poultry,
and baboons reveal trends in the types of microbes that are heritable and
the host genes and pathways involved in shaping the microbiome. Heritable
gut microbes within a host species tend to be phylogenetically restricted.
Host genetic variation in immune- and growth-related genes drives the
abundances of these heritable bacteria within the gut. With only a small
slice of the metazoan branch of the tree of life explored to date, this is an
area rife with opportunities to shed light into the mechanisms governing
host-microbe relationships.
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INTRODUCTION

Animals harbor ecosystems of microbes on and within their bodies, from bacteria and archaea to
protists and fungi, collectively referred to as the “microbiome.” Microbiome research has bloomed
in the past 15 years owing to technological advances and growing interest in its association with
health and disease. Collaborative efforts like the Earth Microbiome Project and the Human Mi-
crobiome Project facilitate exploration of the microbiome (1, 2). Although humans have emerged
as the most well-studied animal host, the microbiomes of myriad animals have been characterized
to broadly understand the impact of the microbiome on animal health, behavior, and evolutionary
history (3-5).

Animal microbiomes are as individualized as their hosts. The total number of resident microbes
varies across body sites and species. In animal guts specifically, estimates of microbial counts range
from 10'* bacteria in humans, to 10'! microbes per gram in birds, to 10710’ microbes in insects
(6-8). Composition varies significantly even within animal classes. Some insect microbiomes con-
sist of only a few crucial gut symbionts, whereas others have diverse microbiomes. Similarly, bird
microbiomes differ depending on flight traits (9, 10).

A variety of factors are responsible for the variation in microbiome composition both be-
tween and within host species. Host phylogeny significantly shapes the microbiome at broad
scales. Trends in core microbiota tend to be restricted within host phylogenetic clades, a find-
ing observed both within mammals and broadly across the animal kingdom (11-13). For some
animals, carrying endosymbionts is imperative for their survival. For example, bobtail squid de-
pend on Vibrio fischeri to assist in camouflaging from predators, and corals rely on their endosym-
bionts to facilitate adaptation to rapidly changing waters (14, 15). Other animals, like Drosophila
melanogaster, birds, and bats, show little evidence of a core microbiome, suggesting less reliance
on commensal microbes (16-18). Many animals reside in the middle—a core microbiome ex-
ists that may provide a fitness benefit but is influenced by dietary variation (12). For example, in
mammals, Firmicutes and Bacteroidetes comprise the majority of bacterial abundance in the gut,
and variations in composition mirror major dietary patterns (11, 19). Within an individual ani-
mal species, similar factors shape interindividual microbiome variation. Diet, social groups, and
environmental exposures all determine what microbes colonize within a host, as well as their
abundance (20-22).

One emerging factor of interest is the role of host genetics in determining microbiome com-
position. Host genetics determines a variety of intrinsic host factors that can influence microbial
composition in the gut, including immunity, metabolism, and morphology. Identification of host
genes and pathways associated with particular components of the microbiome offers a window into
the physiological mechanisms important for host-microbiome interactions. Additionally, host ge-
netic control of commensal microbes opens up opportunities for evolutionary pressures to work
on the host and microbiome in concert.

Here, we discuss the role of genetic variation in determining animal microbiome composition.
We focus on gut microbiomes specifically, as the gut is the most well-studied body site across ani-
mals. We discuss methodologies for studying genetics of microbiomes in different systems; present
recent advances in human, laboratory, agricultural, and wild animal microbiome genetic research;
and highlight host processes found to play similar roles across host species. Finally, we outline
promising areas of future study for furthering our understanding of the complex relationships
between host genetics, the microbiome, and animal health.

Ryu o Davenport



STUDYING GENETICS OF THE MICROBIOME
How to Study the Microbiome

Despite the many ways to characterize microbiomes, the two most common approaches in animal
studies include either sequencing a phylogenetic marker gene to examine microbial composition
or sequencing all genomic content to analyze potential functional capacity. The first step for both
approaches is to extract total DNA from samples—often fecal, cecal, or luminal digesta specimens
or aspirates, swabs, and biopsies of tissue.

The most common and cost-effective approach is to sequence a phylogenetic marker gene,
most often the 16S ribosomal RNA gene (16S rRNA) from bacteria and archaea. All extant life
forms possess genes encoding ribosomal RNA, which consist of both conserved and hypervari-
able regions intrinsic to their structural features that help assemble the ribosome (23). As such,
these conserved regions provide locations for primer binding, and by PCR (polymerase chain re-
action) amplification, primers flanking one or more hypervariable regions are used to amplify this
intervening region. These amplicons can then be sequenced to high depth using next-generation
sequencing platforms for subsequent microbiome analysis.

Although this cost-effective targeted approach paints a rich picture of the taxonomic com-
position of the microbiome, it has limitations and biases. First, short-read sequencing platforms,
such as the commonly used Illumina MiSeq, can sequence only one or two hypervariable regions
rather than the full 16S rRINA gene. This limits phylogenetic resolution such that classification
of sequences below the genus level cannot be made with high confidence. Second, primers target-
ing each conserved region have different taxonomic biases (24). As a result, comparing findings
from different regions is challenging. Finally, phylogenetic approaches are limited to assessing
taxonomic composition only, rather than functional potential. Even with these concerns, 16S am-
plicon sequencing is a powerful and cost-effective method for assessing taxonomic composition
of complex microbiomes in a generally unbiased manner.

Metagenomic sequencing overcomes many of these limitations. With this approach, all DNA
in a sample is fragmented, and libraries of these fragments per se, rather than PCR amplicons,
are sequenced. The reads are either profiled or assembled to reveal the taxonomic composition
and functional potential of the microbiome (25). Although a powerful approach, metagenomic
sequencing is far more costly than amplicon sequencing. It can be especially challenging in sam-
ples containing high amounts of host DNA. Although many animal microbiome studies rely on
16S data, metagenomic studies shedding light on the functional potential of animal microbiomes
are emerging (13, 26).

Once sequence data are generated, various methods are applied to analyze the microbiome.
For the 16S-based or other gene amplicon approaches, sequences are either clustered into op-
erational taxonomic units or collapsed into amplicon sequence variants as a proxy for species to
assess microbial abundance. For metagenomic sequencing, reads are either profiled directly or as-
sembled into genomes (so-called MAGs—metagenome-assembled genomes) to assign taxonomy
or function. In genetic studies of the microbiome, typically the diversity of the microbiome or
relative abundances of certain taxa or functional units are treated as the trait of interest. Although
these are the current general workflows for microbiome analysis (25, 27), methods are advancing
constantly as researchers discover new ways of characterizing microbiomes.

Genetic Approaches

The effect of host genetics on the microbiome is typically examined using three methods: estimat-
ing microbial heritability, identifying a relationship between a candidate gene and the microbiome,
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or applying genome-wide approaches to identify associations between host genetic variation and
the microbiome.

Heritability is the degree to which phenotypic variation in a trait within a population is due to
host genetic variation, as opposed to environmental influences. In microbiome studies, these traits
are usually either the abundances of individual microbes or pathways or microbiome diversity
(Figure 1). In animals, heritability is often estimated by comparing the mid-parental value of
a trait to the observed trait in the offspring. The more tightly correlated these values are, the
more heritable a trait is. One challenge with this approach is discerning between host genetic
and maternal effects, as distinguishing between microbes that have been transmitted vertically or
selected for genetically can be difficult (28, 29).

Human studies circumvent this issue by calculating heritability from monozygotic (MZ) and
dizygotic (DZ) twin pairs (30-32). Because MZ twin pairs have identical genomes, any differences
in a trait between twins can be attributed to environmental factors. In contrast, DZ twin pairs share
only 50% of their genetic material. By comparing similarities in traits across pairs of MZ twins
compared to DZ twins, an estimate of the genetic effects on that trait can be calculated. Because
the rates of microbial vertical transmission are not expected to differ between MZ and DZ twin
pairs, differences in similarity can be attributed to genetic factors alone. Importantly, heritability
is a population-level statistic that can change depending on the amounts of environmental and
genetic variation between populations.

A candidate gene approach involves identifying an association between a particular gene of in-
terest and microbes. For example, a candidate gene approach identified the role of MEFV, the gene
responsible for familial Mediterranean fever in humans, in determining microbiome composition
(33). Although this approach is useful for providing insight into pathways that may contribute
to shaping the microbiome, it has limitations. Prior knowledge of potentially important genes
or pathways in host-microbe interactions is imperative for a candidate gene approach, limiting
discovery opportunities. Additionally, candidate gene studies may not be able to properly charac-
terize the genetic architecture that underlies microbial traits. In many ways, the microbiome can
be considered a complex trait. The underlying genetic architecture is likely polygenic, with many
genes collectively influencing microbial abundance. Limiting the scope of study to only one gene
may explain very little overall trait variation (34).

Genome-wide approaches, like linkage analysis and genome-wide association studies (GWAS),
allow for the identification of genetic variation across the entire genome that associates with
components of the microbiome. Linkage analysis involves analyzing chromosomal inheritance
based on the likelihood that genetic loci are linked. This method is commonly used in ani-
mal genetic studies, because crossing two inbred strains allows for the controlled investigation
of genetic impact with minimal environmental influence (35). Linkage intervals are often large
and contain many genes, and further investigation with fine-mapping approaches is necessary
to identify specific causal loci. GWAS, in contrast, explore associations between specific ge-
netic variants and phenotypic traits in large populations of unrelated individuals. Historically,
GWAS have been valuable for uncovering the genetic basis for myriad human diseases and traits
valuable for agricultural animals (36-38). Recently, they have been used to identify host ge-
netic variants associated with specific microbes (Table 1). Although easier to implement than
linkage studies, a major concern of this method is statistical power. Large sample sizes are re-
quired to detect significant associations after a multiple-testing penalty is applied to correct for
the high numbers of SNPs (single-nucleotide polymorphisms) and taxa combinations typically
examined.
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Figure 1

Methodology for studying genetic effects on the microbiome. (#) The abundances of individual taxa in the gut vary across individuals in
a population (/ef). A major open question in microbiome research is to what extent environmental versus genetic factors determine the
variability in microbial abundance in a population (right). (b)) Heritability of a trait in animal studies is often calculated by comparing
offspring trait values (microbial abundance) to the mid-parental traits (the average microbial abundance of the offspring’s parents).
Highly heritable microbes show a tighter correlation between offspring and mid-parental abundance measurements (/ef?) compared to
less-heritable microbes (right). (¢) Quantitative trait locus (QTL) mapping identifies host genetic variation associated with microbial
abundance. A significantly associated QTL is identified if bacterial abundance stratifies by genotype class.

GENETIC STUDIES OF THE MICROBIOME IN HUMANS

One of the first studies to evaluate whether host genetics played a role in determining micro-
biome composition was performed in humans (30). Microbiome similarities were higher between
MZ twin pairs compared to unrelated individuals via denaturing gradient gel electrophoresis of
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16S rRNA gene amplicons. Although only a general measure, this pointed to a role for the host
genome in determining microbiome abundance in humans. Further studies in a large twin co-
hort demonstrated which specific microbes are heritable by examining the gut microbiomes of
MZ and DZ twins from the TwinsUK data set (31) and determining which host genetic vari-
ants may play a role in that process (32). Specifically, the most heritable taxon identified was the
family Christensenellaceae. This taxon co-occurs with other heritable taxa, such as methanogenic
archaea, and is protective against obesity phenotypes in humans and mice. Similar analyses of data
sets from Korean and Canadian cohorts replicate heritability estimates for Christensenellaceae and
methanogenic archaea (39, 40).

With microbiome heritability established, the search commenced for the host genetic variants
responsible. GWAS have now been performed in several populations, including those in North
America, Europe, and the Middle East (32,40-47). Several themes, reviewed extensively elsewhere
(48-51), have emerged about what types of host genes and processes are associated with the human
microbiome.

First, the only well-replicated association to date is between the genetic variant responsible
for lactase persistence and the abundance of Bifidobacteria in the gut (32, 41, 47, 52). This
association occurs only in individuals who report consuming dairy products, an example of a
gene-by-environment interaction involving the microbiome.

Second, other diet- and metabolism-related variants have been implicated. For example, ge-
netic variation in the vitamin D receptor is associated with microbiome composition (44). Several
genes responsible for taste are associated with components of the microbiome, including ORA6A2,
which is responsible for the soapy taste of cilantro some people experience, and CD36, which is
responsible for tasting long-chain fatty acids on the tongue (32).

Finally, immune genes have been consistently found to play a role. Studies of the Human Mi-
crobiome Project and TwinsUK data sets have found that immune pathways are enriched in genes
significantly associated with gut microbes, with the TwinsUK study specifically noting that the
relative abundance of Akkermansia is associated with genetically predicted gene expression of the
immune suppressor gene SIGLECIS in the transverse colon (32, 41). Whereas some of these as-
sociations may be specific to humans, such as the association of Bifidobacterium abundance with
lactase persistence, similar host physiological processes have been identified in genetic studies of
the microbiome across other animals as well.

GENETIC STUDIES OF THE MICROBIOME IN LAB ANIMALS

Studies of organisms reared in a research lab control for environmental exposures, allowing for
the genetic effects on the microbiome to be more apparent. Mice, zebrafish, Drosophila, and
bobtail squid are feasible model systems for studying host-microbiome interactions at both
simple and complex levels (53). A major advantage of microbiome research in these study systems
is the already-extensive laboratory infrastructure developed to study host genomes. In addition,
it is feasible to maintain a high sample size, maximizing power to identify genome-microbiome
associations.

Mice

The mouse is the most well-studied model organism with regard to the effect of the host genome
on the microbiome. Compared to other model organisms, such as Drosophila or Caenorbabditis
elegans, mice have complex, diverse gut microbiomes (53). Additionally, they have one of the
best-studied genomes and a variety of available resources for conducting genetic studies. As a

www.annualreviews.org » Host Genetic Determinants of the Microbiome



result, mouse studies have pioneered the exploration of animal genome-microbiome interactions
through linkage analysis, candidate gene approaches, and association studies. Host genetic effects
have a greater influence on microbiome composition than maternal effects, sex, time, litter,
housing cage, and even vendor (54-59). A closer investigation into these associations via GWAS
and quantitative trait locus (QTL) mapping reveals that some genes have pleiotropic effects
on the microbiome (58, 60). More specifically, Leamy et al. (58) found that QTL associated
with body weight and fat have pleiotropic effects on microbial taxa. Furthermore, Benson et al.
(60) observed that QTL associate with both closely and distantly related taxa, showing the
multifaceted means by which genes control the microbiome.

Despite clear evidence that host genetics influences the murine microbiome, environmental
effects dominate. In particular, diet plays a larger role than host genetics in shaping the mi-
crobiome (61, 62). When analyzed in conjunction, however, host genotype appears to mediate
the diet-microbiome relationship. Interactions between host genotype and dietary fat levels
significantly impact microbial abundance (58). A closer investigation reveals that host genotype
and dietary fat jointly modulate abundances of particular taxa, including Clostridiaceae and Ru-
minococcaceae (63). Finally, evidence suggests that host genes impact gut microbiome plasticity in
response to diet, but more research is needed to identify the specific genes interacting with diet
to shape the microbiome (64).

Drosopbila

Whereas mice have diverse commensal gut microbiomes, Drosophila melanogaster have a very
different relationship to their microbiota. The microbiota recovered from wild Drosophila tend
to have relatively low species richness compared to mammals, with anywhere from a few to
30 species within the gut (65). Laboratory stocks of Drosophila typically have even less diverse
microbiomes, often composed of only a few taxa (66). Unlike most mammalian systems, Drosophila
also possess a transient microbiome. They do not sustain gut microbial communities without
constant exposure to new microbes (67). As a result, Drosophila do not possess a core gut micro-
biome (16). It is not entirely clear how or why Drosophila maintain low levels of gut microbes,
although genetic mechanisms and/or transit time potentially plays a role.

One hypothesis is that Drosophila immune systems are overactive, resulting in the inability for
gut microbes to colonize. The microbiomes of immune-compromised flies are shaped primarily
by genotype, whereas the microbiomes of wild-type flies are independent of host genetics (68).
When examining specific genes for associations with the microbiome, several immune-related
genes are implicated. Nubbin is the Drosophila homolog of the mammalian transcription factor
Oct1/Pou2f1. Loss of this gene in mice increases colon tumor incidence, suggesting a valuable role
in immunity (69). In Drosophila, however, it operates as an antimicrobial repressor and promotes
microbial colonization (70). Similarly, the intestinal homeobox gene Caudal serves as a global
antimicrobial peptide gene regulator through nuclear factor kappa B (71). Perturbing normal
expression levels of this gene results in disruption to the normal microbiota, leading to increased
abundance of pathogenic taxa.

In addition to the immune system, other genetically determined physiological traits shape the
gut microbiome. There are heritable differences in total gut microbial abundance levels between
fly lines (72). GWAS implicates genes for neuronal and cellular growth and development, which
ultimately shape gut morphology. Considering that gross gut morphology significantly shapes the
microbiome (11), it is reasonable that genes relating to interindividual differences in morphology
would be associated with specific microbes. Finally, the microbiome is associated with neural genes,
although the precise mechanisms have yet to be explored fully (73).
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Regardless of the mechanisms responsible for maintaining low microbial levels in the fly gut,
genetic variation interacts with the microbiome to influence traits that affect host health. Many
aspects of nutrition are the result of interactions of host genetics and the microbiome, including
circulating triglyceride, glucose, and protein levels (73). Abundances of Acetobacter tropicalis, for
example, are associated with genetic variation in six genes in the Drosophila genome in laboratory
conditions where a controlled microbiome is introduced. In turn, flies display triglyceride level
differences, but only when A. #ropicalis is present, demonstrating the necessary interaction between
host genetics and this particular taxon.

Caenorbabditis elegans

C. elegans is emerging as a powerful model for host-microbe interactions (74). For decades,
C. elegans have been a major player in the fields of development and aging, owing to their fast
life cycles and transparency for imaging (75, 76). However, laboratory C. elegans were historically
fed simple diets of Escherichia coli, limiting their utility for host-microbe investigations. Recent
work has focused on maintaining more natural microbiomes in this organism, opening up oppor-
tunities to examine the role of host genetics in shaping these communities. C. elegzns microbiomes
display variation distinct from their environments, but reproducible within line (77). This points
to a possible role of host genetics in determining microbiome composition. Genes in immune and
digestive processes likely play a role, as evidenced from gene expression analysis between colo-
nized and axenic C. elegans populations (78) and mutants in immune genes (79). The development
of publicly available mock-microbiome panels, such as the CeMbio resource, will provide further
insights into which host genes and functions may play a role in this process (80, 81).

Although lab-adapted organisms offer us an opportunity to study genetics in a very controlled
and powerful way, there are limitations to these systems. Microbiomes of lab organisms do not
necessarily match what is observed in the wild. Drosophila and C. elegans microbiomes in the lab
tend to be less diverse than in the wild (65, 82-84). They can be heavily influenced by site-based ef-
fects, for example, facility effects across mouse lines (85). Additionally, laboratory lines often have
narrower genetic variation than outbred populations, but not necessarily less phenotypic variation
(86). This limited view of genetic variation could hamper our abilities to detect associations. Fi-
nally, organisms like mice exhibit coprophagic behavior, which can confound genetic estimations
if not controlled for properly (87). Nonetheless, model organism studies have provided valuable
insight into precisely identifying the genes and processes involved in shaping the microbiome.

GENETIC STUDIES OF THE MICROBIOME IN AGRICULTURAL
ANIMALS

Agricultural animals, such as cows, swine, and poultry, provide another powerful system for study-
ing host genetic impacts on the microbiome. Similar to model organisms, there is already an ex-
tensive understanding of agricultural animal genetics. Farm animals are the product of decades to
millennia of breeding to select for desirable traits, such as greater muscle mass or increased milk
production (88). Traditional breeding involved selection by phenotype; however, with improved
sequencing technology, researchers began using genomic methods to investigate the genetic
and molecular bases for phenotypic variation (89). As a result, and similar to animal models, inbred
lines of agricultural animals can provide a powerful, reproducible tool in studies of host genetics.

Major areas of interest in the microbiomes of agricultural animals are for maximizing yields
of meat, milk, or fiber; feed efficiency including reduced methane emissions, and improving
animal health and infectious disease resistance. The microbiome is associated with weight gain,
feed efficiency, and milk and egg production (90-94). Additionally, the microbiome is associated
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with the general health of an animal and pathogen resistance (95). Naturally, there is interest
in whether these outcomes can be selected for via interactions of the microbiome through host
genetics.

Ruminants (Cattle and Sheep)

Ruminant animals depend heavily on their microbiome within the reticulo-rumen, proximal to
their true stomachs, to properly digest their cellulose-rich diets. As a result, the relationship be-
tween ruminants and their microbiomes may be more than simply beneficial—it may be coevolu-
tionary (96). For example, Ruminococcus thrives off complex plant-derived undigestible molecules
like cellulose. Cellulose consumption therefore benefits both the host and commensal Rusminococcus
(97). Studies in both dairy and beef cattle demonstrate the role genetics plays in determining ru-
men and hindgut microbiome composition (91, 96, 98-103). Heritable taxa include methanogens,
Ruminococcus, Oscillospira, and Succinivibrionaceae. Similar to other vertebrates, genetic variation in
immune, mucin, and metabolic genes appears to be responsible for this heritability (103, 104). For
some traits, such as methane production, host genetic and microbiome contributions are largely
independent (99). In these cases, the host genome and microbiome can be targeted separately to
influence the trait. Conversely, for other traits, such as feed efficiency, host genetic variation in-
teracts with the microbiome to determine final levels (96, 98, 105). These examples point to the
utility of examining gene-by-environment interactions that include the microbiome.

Swine

Similar to in ruminants, there is a complex interaction between host genetics and the microbiome
in swine, which can influence agriculturally relevant traits (106-109). One study in particular de-
veloped a novel method for incorporating microbial information into predicting traits (107). In
animal breeding, genomic best linear unbiased prediction (G-BLUP) is used to predict host traits
from genetic relatedness (110). Camarinha-Silva et al. (107) take this one step further and use mi-
crobial relationships to predict host traits (coined M-BLUP). They find that M-BLUP is a better
predictor than G-BLUP for all host traits, demonstrating the influence of the microbiome on host
phenotype variability. One impactful area of future work could be to build a predictive model that
considers the effects of host genetics and the microbiome jointly.

One potential confounding factor for genetic effects in mammalian agricultural animals is ver-
tical transmission via nursing. Microbes can be vertically transmitted via vaginal delivery and suck-
ling and colonize infant guts (111, 112). In piglets, nursing mother identity shapes the microbiome,
although whether this influence is due to variation in milk composition or transmission of specific
microbes is unclear (113). Although many studies involving infant animals aim to minimize mater-
nal effects by randomizing mother—infant pairs (98, 104), it remains challenging to fully separate
maternal and genetic effects in large animal microbiome studies.

Poultry

Although poultry are well studied, we still have a relatively limited understanding of the influence
of host genes on the microbiome in poultry owing to the narrow range of genetic backgrounds
studied to date. Oftentimes, only a few chicken genotypes are examined for microbiome dif-
ferences, limiting the discovery space of which genes may play a role. Perhaps unsurprisingly,
conflicting reports exist about the role of host genetics on the chicken microbiome. Several
studies report that body weight— and growth-related genotypes significantly influence chicken
microbiome composition, although the mechanisms by which this occurs remain unclear
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(114-117). Conversely, others claim there is minimal correlation between host genes and mi-
crobes when comparing microbial similarity and genetic relatedness across subjects (118). When
examining individual taxa, however, between 5% and 15% genera in the duodenum, jejunum,
ileum, cecum, and feces had significant SNP-based heritability estimates, most from Firmicutes
and Proteobacteria. Similar to studies in humans and cattle (31, 105), these results further support
that the effect of host genetics on the microbiome tends to be targeted and phylogenetically
restricted. This suggests that across organisms, host genetics selects for taxa that occupy a
particular niche (119). The niche, and the microbes that occupy it, differs depending on the host.

GENETIC STUDIES OF THE MICROBIOME IN WILD ANIMALS

Captivity and domestication shape the microbiomes of nonhuman primates, dogs, and mice (120,
121). It is highly likely that host gene—microbiome interactions differ in natural settings compared
to managed systems such as the laboratory or the intensive farming systems used with cattle, swine,
and poultry. There are, however, several challenges with studying the genetics of wild animals.
First, it is difficult and expensive to collect a sufficient number of genetic and microbiome samples
without disturbing the natural environment and/or the animals. Second, some microbes are trans-
mitted within social networks (21, 122, 123). It can be difficult to discern the effects of genetics
and social factors when the animals are in high densities. Third, accurately calculating microbiome
heritability is challenging, because both microbiome and environmental factors fluctuate naturally
over time. Large sample sizes and extensive metadata are especially crucial in this context.

That said, Grieneisen et al. (124) demonstrated recently that it is possible to effectively in-
vestigate the genetics of wild baboons while circumventing these issues. The gut microbiomes of
585 wild baboons were examined longitudinally, with approximately 28 samples collected per ba-
boon over a period of 4.5 years. Whereas previous microbiome genetics studies typically involved
one sampling time point per subject, this longitudinal design minimizes noise associated with daily
variation in microbiome composition. Subsequently, nearly all taxa are heritable, although most
of them with only modest heritability of less than 0.15 (124). Interestingly, randomly subsetting
the data set to 1,000 samples, similar to sample sizes in human studies (47), weakened heritability
estimates. This finding emphasizes the importance of adequate sample size and data density to
avoid being underpowered to detect genetic effects.

EMERGING THEMES FROM STUDIES OF MICROBIOME
HERITABILITY ACROSS ANIMALS

As more and more studies of microbiome genetics across animals are completed (Figure 2),
key themes are emerging. First, regardless of whether an animal’s microbiome consists of
only a handful or hundreds of species, host genetics plays a role in determining composition
(Figure 3). Although environmental factors tend to have a greater influence than host genetics
(47,62), modestly heritable taxa are identified consistently across organisms (33,103, 124). Second,
heritable taxa tend to be phylogenetically similar within a host species. In humans, heritable taxa
tend to fall within the Ruminococcaceae and Lachnospiraceae families (31); in cows, the Bacteroidetes
and Firmicutes phyla (105); and in poultry, the Firmicutes and Proteobacteria phyla (118). Finally,
certain host genes and processes seem to be implicated across host organisms, including those in-
volved in immunity and growth and development. In the future, greater consideration also needs
to be directed to subcommunities residing in the gut mucosa. These communities are known to
differ from those in the fecal stream (125) but are also more likely to be strongly influenced by
the outputs of host genetics and gene expression.
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Figure 2

The landscape of genetic studies of the microbiome across animals. Genetic studies of the microbiome exist for only a few host taxa
across the metazoan tree of life, including humans, mice, and fruit flies. This tree includes 1,000 randomly sampled metazoan taxa from
TimeTree.org, displayed by timescale (149). Organisms for which genetic studies have been conducted are highlighted, with gray bars
proportional to the number of independent studies completed to date. Major animal clades of interest are indicated by background
color on the phylogenetic tree.

The innate immune system can play a key role in shaping the microbiome, by affecting mi-
crobial colonization and persistence. It serves as the host’s first line of defense against any foreign
object (126). As a result, an important component of the innate immune system is the recogni-
tion of an object as self or nonself. Several types of receptors play this role, including Toll-like
receptors (TLRs). Some TLRs signal interleukin proteins (IL), which subsequently trigger pro-
or anti-inflammatory responses (127, 128).

In the context of host-microbiome interactions, many QTL significantly associated with her-
itable microbes are found in genes involved in TLR and IL signaling pathways. IL-22, Irak3, and
CARDSY genes in mice; CHGA in swine; C100RF$§ in poultry; and AKIRIN? in cattle were signif-
icantly associated with various taxa (60, 129-132). IL-22 is known for its role in the pathogenesis
of gastrointestinal diseases (133), so it would be intriguing to further explore its role in shaping
the gut microbiome in various animals.

Another component of innate immunity is the family of transforming growth factors (T'GFs),
and specifically TGF-B. The role of this protein is complex, impacting both innate and adaptive
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Bacterial genera with evidence of heritability across animals. Bacterial genera with evidence of heritability across humans (orange),
mouse (dark orange), cow (pink), pig (purple), chicken (blue), or Drosophila (brown) are listed. To generate the taxonomy, 500 bacterial

genera from the Genome Taxonomy Database (GTDB) release 202 were subsampled randomly (150). Major phyla lineages are traced
in color and labeled. Genera with evidence of heritability in more than three species are emphasized: Ruminococcus, Anaerostipes,

Clostridium, and Streptococcus. Note that not all genera reside in all organisms listed, nor have they necessarily tested for heritability.

Absence of detected heritability for any given genus in a host organism should not be interpreted as the evidence of absence of
heritability. Plot generated using GraPhlAn (151).
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immunity; however, one important function is in regulating macrophages, B cells, and T cells
(134). The genes encoding for this protein are significantly associated with microbes in poultry
and C. elegans (78, 131), showing another possible avenue by which host genes control the micro-
biome. The recurring observation of TGFs and TLRs across animal microbiome genetic studies
suggests that these genes play an important role in modulating microbe colonization. One poten-
tial mechanism could be via recognizing specific microbes and triggering pathways so that only
specific taxa remain.

In those animal hosts where it exists, the adaptive immune system plays an important role in
managing complex microbial communities (135). Similar to innate immunity, distinguishing be-
tween self and nonself is important for microbial identification so that lymphocytes can appropri-
ately produce antibodies and attack pathogens but not commensals. Antigens presented by major
histocompatibility complex (MHC) proteins help T cells recognize pathogens (136). Although
the role of the MHC as a defense against pathogen invasion is well known, its role in shaping
the microbiome is also now being investigated. Variation in MHC haplotypes can shift microbial
abundance (44, 137), likely owing to differences in antibody production (138). Although overall
genetic background seems to have a greater influence than MHC variation in shaping the micro-
biome (137), the role the MHC plays in preventing pathogen colonization demonstrates that host
genetics may exert some control on the microbiome via the MHC. Immune genes generally seem
to control the microbiome by recognizing specific microbes and influencing which can colonize,
although the exact mechanisms responsible remain to be elucidated.

Growth and development genes are important factors in determining microbiome heritability.
Drosophila potentially control their microbiomes via growth-related genes that influence gut mor-
phology, impacting which microbes can colonize (72). Similarly, methanogens are associated with
growth-related genes in cows and poultry (102, 116, 132). This archaeon is known for its role in
methanogenesis and in facilitating interspecies hydrogen transfer in the rumen. This ultimately
results in increased volatile fatty acid production that can be used as fuel for the host, thus boost-
ing host fitness, albeit at the cost of methane production, a potent greenhouse gas (139). This may
also explain the high heritability detected for this taxon, which was found to be above 0.5 (132).
Although the biology underpinning these host gene—microbiome associations is not yet clear, such
understanding may support the intriguing possibility that the host controls the microbiome for
fitness benefits.

FUTURE OPPORTUNITIES

Although the microbiota of animals has been the topic of many studies for more than a century,
the scope of microbiome research has focused primarily on humans and preclinical animal models
of disease. As such, much still needs to be learned about the biodiversity resident in domesti-
cated and non-domesticated animal species, and new methods are currently in development.
One area of interest in the animal microbiome field, for both agriculture and medicine, is the
interrelationships between host genetics, the microbiome, and phenotypic traits. Farmers have
a vested interest in maximizing the retention of costly feed ingredients in high-quality food
and fiber, thereby reducing the environmental footprint of their enterprises and sustaining their
profitability and consumer acceptance of their products. Prior studies have generally explored
how genes or microbes may directly impact these traits, but whether genes influence traits via
direct or indirect influences on the microbiome is still not fully understood. We propose that
mediation analysis could address these knowledge gaps. In mediation analysis, a mediator variable
is used to identify causal relationships between two associated variables. Within biology, it has
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been used to investigate pathogenesis (140), but recent studies have explored its application to
other traits. Tiezzi et al. (141) identified several genetic variants that affect swine fatness via the
microbiome, and Jin et al. (142) found that the microbiome partially mediated the influence of
mice genetics on anxiety (141, 142). In humans, Mendelian randomization has been proposed as
a way of identifying causal relationships between the microbiome and phenotypes (143), with a
successful application demonstrating the causal role of microbially derived short-chain fatty acids
on insulin response (144). Further extension of these methods could incorporate information
from several mediator variables to account for interactions between microbes.

Our understanding of how host genetics influences the microbiome is also currently limited
to only thin slices of animal phylogeny (Figure 2). Perhaps unsurprisingly, most studies to date
have been conducted in large, terrestrial mammals, often in human-influenced settings (Table 1).
What does microbiome heritability look like across animals, in particular to those populations
in the wild? Are there conserved genetic signals across animals of a similar size or with similar
digestive physiologies (11)? Considering that heritability measurements depend on environmental
variation, how does microbiome heritability change even within a single animal species living in
different environments? Two gaps that would be particularly interesting to fill are with flighted
animals and marine animals.

Drosophila have largely transient microbiomes, resulting in unusually high compositional varia-
tion between individuals and less dependence on having a core microbiome. Interestingly, flighted
birds also demonstrate a weak correlation between the microbiome and host phylogeny or diet
(17). Bats also exhibit a similar trend, suggesting that the convergent evolution of flight may be
associated with the loss of dependence on the microbiome. Considering that Drosophila micro-
biomes are controlled primarily by genes for growth and development, it would be interesting to
see if birds and bats control their microbiome with similar pathways.

Additionally, the ocean is a largely uncharted area of microbiome research, as it is an under-
characterized ecosystem with microbes that reside within and alongside hosts. Modes of microbial
transmission in a marine context differ substantially from those in the largely terrestrial animals
studied to date, which could greatly influence microbiome heritability. Our greatest understanding
of marine host gene-microbiomes comes from corals. Corals depend heavily on their endosym-
bionts to provide nutrients and help them adapt to environmental stressors (145). This symbiotic
relationship is tenuous and can result in coral bleaching, a process by which corals lose their en-
dosymbionts and die. Recently, rising ocean temperatures, increased acidification, and other dras-
tic environmental shifts have been disrupting coral microbiomes and wiping out entire reefs (146,
147). As a result, there is considerable interest in investigating what host factors allow for certain
microbes to persist and how we could manipulate these factors to improve community stability.
So far, research shows that coral microbiomes are highly host specific (148), but more work is
necessary to tease out specific pathways involved. Considering the close relationship with their
endosymbionts, corals could push our understanding of host gene-microbiome interactions and
broad trends across myriad animals.

CONCLUSION

Across animal species, host genetics plays a role in determining gut microbiome composition.
Although the particular microbes affected and host pathways responsible may differ, growing ev-
idence supports the notion that genetically encoded variability in the host determines the abun-
dance of specific taxa residing in the body. As further studies are completed using larger sample
sizes and more highly powered methods, and across a wider variety of animals, the mechanisms
underlying these relationships will become clear.
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