"\ ANNUAL
.\ REVIEWS

s CONNECT

www.annualreviews.org

* Download figures

* Navigate cited references

* Keyword search

* Explore related articles

* Share via email or social media

Annu. Rev. Anim. Biosci. 2020. 8:171-98

First published as a Review in Advance on
December 17,2019

The Annual Review of Animal Biosciences is online at
animal.annualreviews.org

https://doi.org/10.1146/annurev-animal-020518-
115014

Copyright © 2020 by Annual Reviews.
All rights reserved

Annual Review of Animal Biosciences

Sabine E. Hammer,' Chak-Sum Ho,” Asako Ando,’
Claire Rogel-Gaillard,* Mathieu Charles,
Matthew Tector,’® A. Joseph Tector,>’

and Joan K. Lunney®

!nstitute of Immunology, Department of Pathobiology, University of Veterinary Medicine
Vienna, A-1210 Vienna, Austria
2Gift of Hope Organ & Tissue Donor Network, Itasca, Illinois 60143, USA

3Department of Molecular Life Science, Division of Basic Medical Science and Molecular
Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan

*GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France

Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294,
USA

SCurrent address: Makana Therapeutics, Wilmington, Delaware 19801, USA
7Current address: Department of Surgery, University of Miami, Miami, Florida 33136, USA

8 Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural
Research Service, US Department of Agriculture, Beltsville, Maryland 20705, USA;
email: Joan.Lunney@ars.usda.gov

Keywords

Sus scrofa, swine leukocyte antigen, SLA polymorphism, allogeneic,
xenogeneic, vaccine responses

Abstract

In pigs, the major histocompatibility complex (MHC), or swine leukocyte
antigen (SLA) complex, maps to Sus scrofa chromosome 7. It consists of three
regions, the class I and class III regions mapping to 7pl.1 and the class II
region mapping to 7ql.1. The swine MHC is divided by the centromere,
which is unique among mammals studied to date. The SLA complex
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spans between 2.4 and 2.7 Mb, depending on haplotype, and encodes approximately 150 loci, with
at least 120 genes predicted to be functional. Here we update the whole SLA complex based on
the Sscrofall.1 build and annotate the organization for all recognized SLA genes and their allelic
sequences. We present SLA nomenclature and typing methods and discuss the expression of SLA
proteins, as well as their role in antigen presentation and immune, disease, and vaccine responses.
Finally, we explore the role of SLA genes in transplantation and xenotransplantation and their
importance in swine biomedical models.

1. OVERVIEW

Pigs are a major source of animal protein worldwide. To ensure swine health and food safety, it is
essential to prevent infectious diseases via biosecurity and use of well-designed vaccines and thera-
peutics. Advances in genomics have informed our understanding of the complexity of the immune
system and the genes that influence disease and vaccine responses, with the most important being
the swine major histocompatibility complex (MHC) genes, the swine leukocyte antigens (SLA).
Gene sequencing data have advanced efforts to define the polymorphisms of class I and class II
SLA genes, setting the foundation for probing the role of these genes in swine health and disease.

Owing to their physiological similarity to humans, pigs are an important biomedical model,
particularly in the areas of heart and gut function, toxicology, and drug screening. SLA-defined
pigs have served as a significant transplantation model and, with gene editing, a potential source
of xeno-organs.

This review summarizes the current knowledge of the genomics of the SLA region, dissects
the polymorphisms of each locus, and discusses the methods now used to more effectively identify
these alleles and their assembly into haplotypes. We discuss the role of SLA gene regulation in
swine disease and vaccine responses. Finally, we explore the importance of SLA genes in allogeneic
and xenogeneic transplantation and their importance in swine biomedical models.

2. ORGANIZATION OF THE SLA COMPLEX
2.1. SLA Complex Genome Map

The SLA complex corresponds to a genomic region of 2.40 (haplotype Hp-1.1) to 2.66 Mb
(genome assembly Sscrofall.l) that maps to chromosome 7 (SSC7) and spans the centromere
(1) (Figure 1a; Supplemental Figure 1). It consists of three regions, the class I and class III re-
gions mapping to 7pl.1 and the class II region mapping to 7ql.1 (Figure 14). The split of the
MHC complex by the centromere in swine is unique among mammals studied to date. By con-
vention and in agreement with reports on other vertebrate species, the class I and class II regions
include the MHC class I and II gene series, respectively, together with many non-MHC genes
with various functions. The class III region, located between the class I and II regions, does not
contain MHC genes but comprises key immunity-related genes. Thus, as shown in Figure 1a
(more detail in Supplemental Figure 2), the SLA complex includes clusters of MHC gene series
embedded among non-MHC genes that were well conserved during evolution across mammals
and are referred to as anchor genes (2). The MHC gene clusters correspond to the hot spots
of functional polymorphisms from which SLA complex haplotypes in class Ia and II are defined
(Figure 1b).

Sequencing and mapping of the entire SLA complex of the very common SLA haplotype Hp-
1.1 (HO1) was completed in 2006, starting with the ubiquitin D gene (UBD) in the extended class I
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region and ending with the Ring finger protein 1 (RINGI) gene in the extended class II region
(1). To date, 151 loci have been manually annotated, and at least 121 genes are predicted to be
functional in swine genome build 11.1 (Supplemental Figure 2). These annotations have con-
firmed that the SLA complex is one of the most gene-dense regions in the swine genome. The
refined swine genome assembly Sscrofall.l has provided a second sequence of the entire SLA
complex, spanning 2.66 Mb from the MOG gene upstream from the class I region to RINGI. The
whole region is generally well assembled in the Sscrofall.l build and confirmed the order of the
anchor non-MHC genes between human leukocyte antigens (HLA) and SLA (Figure 14). How-
ever, because the reference Duroc female genome assembled in Sscrofall.1 is not homozygous at
the SLA, the annotations of the class I SLA genes based on automated annotation pipelines were
incomplete and could be misleading. Manual curation was necessary, particularly for assembling
the cluster of highly polymorphic classical class I genes within a 150-kb region. The annotation
of the SLA complex in Scrofall.l has been updated, and the individual loci are listed in Supple-
mental Figure 2 (M. Charles, B. Rosen, C.K. Tuggle, D. Ciobanu, A. Ando, S.E. Hammer, J.K.
Lunney & C. Rogel-Gaillard, manuscript in preparation).

2.2. The SLA Class I Region

The class I region (from the MOG gene to the SLA-6 gene) of the Hp-1.1 and Sscrofall.l as-
semblies spans 1.01 Mb and 1.06 Mb, respectively, in which 55 and 54 loci have been annotated
(Figure 1a4). The MHC class I gene series is separated into two groups, referred to as classical
class I (class Ia) and nonclassical class I (class Ib) genes. The class Ia genes are highly polymor-
phic, whereas the class Ib genes present limited polymorphisms. The class Ib genes have splice
variants that may lead to various protein isoforms (3). The SLA class I region also contains the
MHOC class I chain-related (MIC) genes. These three gene sets are organized in two genomic
clusters in pigs, whereas they are organized in three clusters in humans (Figure 14). Indeed, the
genomic organization of the SLA class I gene series is quite different from that of the HLA class I
genes, despite a well-conserved overall organization of the whole class I region between human
and swine (Figure 14). Phylogenetic analyses showed that the SLA class I genes displayed much
more sequence homology to each other than to the HLA class I genes. As such, the SLA class I
genes were designated with numbers to avoid misinterpretation that any of these loci are direct
orthologs of the HLA genes (4).

There are three functional class Ia genes, SLA-1, -2, and -3, and three class Ib genes, SLA-6, -7,
and -8. The genes SLA-4, -5, -9, and -11 have traditionally been annotated as pseudogenes owing
to lack of intact coding regions; however, transcription of SLA-9 and SLA-11 has been reported (5,
6). Recent data on alignment between genomic DNA and transcript sequencing results have shown
that SLA-11 is predicted to encode a functional protein (GenBank Accession No. AK233371,
AK395354, AK235068). Further studies are required to characterize the expression and function
of this putative protein-coding gene. Only the MIC-2 gene is predicted to be functional, whereas
the MIC-1 gene appears to be a pseudogene.

As in the bovine leukocyte antigen complex (7), the number of MHC genes may differ ac-
cording to haplotypes; differences between the Hp-1.1 haplotype and others have been reported
(Figure 15). An additional SLA-Ia gene, referred to as SLA-12, was found with either a single copy
(Hp-62.0) or two copies (Hp-28.0). Two copies of class Ib SLA-9 were detected for Hp-28.0 and
Hp-62.0 (8), and two copies of SLA-1 and SLA-5 were found for Hp-28.0 and in the Sscrofall.l
assembly. Further analyses are required to assess whether the duplicate copies of SLA-1 present
in the Sscrofall.1 assembly and other haplotypes are functional.

The three functional SLA class Ia genes (SLA-1, -2, and -3) have eight exons (Supplemen-
tal Figure 3). After removal of the peptide leader (exon 1), they code for 45-kDa glycoproteins

Hammer et al.
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Model structure of class I and II proteins and exon polymorphisms. (#) Protein structure of swine leukocyte antigen (SLA) class I
(SLA-2); (b) protein structure of SLA class II (SLA-DRB1); (¢) allelic variation within SLA class I molecules; and (d) allelic variation
within class IT molecules. Allelic variation occurs at specific sites within SLA molecules (highlighted in red). Variability plots of the
amino acid sequences of SLA molecules show that the variation arising from genetic polymorphism is restricted to the amino-terminal
domains (a1 and a2 domains of SLA class I molecules and mainly f1 domain of SLA class IT molecules). For the SLA class I molecule,
the variability of 20 SLA-2 allele sequences (one representative sequence for each allele group) is shown. For the SLA class II molecule,

the variability of 17 SLA-DRBI allele sequences (one representative sequence for each allele group) is shown.

(Figure 2a) consisting of three extracellular domains, al (exon2), a2 (exon 3), and a3 (exon 4); a
transmembrane domain (exon 5); and a cytoplasmic tail (exons 6 to 8). The extracellular domains
are noncovalently bound to 12-kDa B2-microglobulin that has been mapped to SSCI1 (9). The
al and 02 domains form the peptide-binding groove, and the a3 domain is a binding site for the
CDS8 co-receptor on porcine T cells (Figure 24). The extreme polymorphism of SLA class Ia
genes resides mainly in exons 2 and 3; Figure 2c¢ illustrates the degree of polymorphism of each
nucleotide residue in the al and a2 domains of class Ia genes.
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The functional SLA-Ib genes (SLA-6, -7, and -8) were reported to have full-length transcripts
with seven or eight exons (Supplemental Figure 3). Additional work is needed to affirm whether
SLA-11 is a functional class Ib gene. SLA-8 was found to be the most transcribed SLA-Ib gene,
followed by the SLA-7 and SLA-6 genes (10). SLA-7 has full-length transcripts with either seven
(11) or eight exons and splice variants that may lead to isoforms with a shorter exon 4 (¢3 domain)
(3). SLA-6 alternative transcripts may encode isoforms lacking exon 3 (ACC GU322912) or ex-
ons 3 and 6 (ACC GU322913). These alternative splicing events seem to be specific to class Ib
genes, as reported in humans.

2.3. The SLA Class II Region

The class II region (BTLN2 to RING]) of the Hp-1.1 and Sscrofall.1 assemblies spans 0.46 Mb,
in which 28 and 26 loci have been annotated, respectively (Figure 14). The SLA class II region is
more condensed than the class I region and mainly contains genes relating to peptide presentation
of the adaptive immune system. This region includes the loci for both protein chains of each
of the expressed SLA class II antigens (Figure 2b), i.e., the a- and B-chain genes for SLA-DR,
-DQ, -DM, and -DO proteins. The gene structures are detailed in Supplemental Figure 3. The
polymorphism of class II proteins is limited for the a-chain and most prominent in the -chain
genes forming the peptide-binding groove (Figure 2d). In contrast to the HLA system, there are
no loci encoding DP proteins. There are several class II B-chain pseudogenes (SLA-DRB2, -DRB3,
-DRB4, -DRBS, -DQB2, -DOB2, and -DYB) in the SLA class II region (Figure 1a).

The SLA class II region includes genes involved in antigen presentation, transporter-associated
with antigen processing genes (TAP1, TAP2), and proteasomes (PSMBS, PSMBY) (Supplemental
Figure 2). The overall genomic organization of the SLA and HLA class II regions is well con-
served, except that the SLA class II region is much shorter. Phylogenetic analyses showed that the
SLA class II genes had strong sequence homology with their HLA counterparts (12); therefore,
the functional SLA class II genes were designated after their human counterparts to reflect this
orthology (Figure 1a).

2.4. The SLA Class III Region

The class Il region (MCCD1 to BTNLG) of the Hp-1.1 and Sscrofall.1 assemblies spans 0.67 Mb
and 0.68 Mb, respectively, in which 61 and 59 loci have been annotated (Figure 1). This region
includes genes important for immune defense mechanisms and inflammation, such as the tumor
necrosis factor gene families (TNE LTA, and LTB), the steroid cytochrome P450 21-hydroxylase
(CYP21A2) enzyme, components of the complement cascade (C2, C44, and CFB), and allograft
inflammatory factor 1 (4IFI). This region also includes genes for heat shock proteins (HSPI1A4,
HSPIB, and HSPIL); six distinct BAT (orthologous to HLA-B associated transcript) genes; and
genes with complex functions, such as tenascin XB (TNXB) and Notch homolog 4 (NOTCH4).
Among the 61 loci annotated in Hp-1.1, the main divergence occurs in a RCCX module consisting
of four genes (C4B, CYP21A42, TNXA, and STK19P), possibly unique in SLA but known to vary
depending upon haplotype in humans (13, 14).

3. SLA NOMENCLATURE SYSTEM
3.1. IPD-MHC SLA Sequence Database

The SLA system is among the most well-characterized MHC systems in nonhuman animal
species. A systematic nomenclature for the genes, alleles, and haplotypes of the swine MHC is
critical to the research in swine genetic diversity, immunology, health, vaccinology, and organ and

Hammer et al.
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cell transplantation. The SLA Nomenclature Committee was formed in 2002 as a joint committee
of the International Society for Animal Genetics and the Veterinary Immunology Committee of
the International Union of Immunological Societies (15). The primary objectives of this commit-
tee are (#) to validate newly identified SLA sequences, according to the guidelines established for
maintaining high-quality standards of the accepted sequences; (¥) to assign appropriate nomen-
clatures for new alleles as they are validated; and (c) to serve as a curator of the Immuno Polymor-
phism Database (IPD)-MHC SLA sequence database (https://www.ebi.ac.uk/ipd/mhc/group/
SLA), the repository for all recognized SLA genes and their allelic sequences and haplotypes (16—
18). The IPD-MHC website has also added new sequence submission tools that allow continuous
updating of new allele sequences.

The IPD-MHC website provides investigators with a centralized platform to access the most
recent information in the field of SLA research, such as the nomenclature reports and lists of SLA
genes, alleles, and haplotype assignments (4). It serves as a convenient site to submit both new
and confirmatory allele sequences and their associated studies for consideration of allele name
assignments. A major update to the IPD-MHC SLA website was completed in February 2018

(16).

3.2. The SLA Alleles

The underlying principle of the SLA nomenclature system is assignment of alleles at each locus
into groups based on sequence similarity (identification of group-specific polymorphic sequence
motifs) (4). The allelic group assignments correspond to the polymorphisms in the exon 2 and 3
sequences for class I alleles and exon 2 sequences for class IT alleles (Figure 2¢,d), which encode the
peptide-binding domains and interact directly with the immune cell receptors and are therefore
considered to be functionally important (Supplemental Figure 3).

In 2016, the Committee decided to fully adopt the HLA Nomenclature System and redesig-
nated each allele with an official number, with colons as field separators (e.g., SLA-1*01rh28 —
SLA-1*01:03). Phylogeny will remain the primary approach for assigning SLA-1, -2, -3, -DRA,
-DRBI1, -DQA, and -DQBI alleles into allele groups with similar sequence motifs, whereas al-
leles of the other loci, including SLA-4, -5, -6, -7, -8, -9, -11, -12, -DMA, -DMB, -DOA, -DOBI,
-DOB2, -DQB2, -DRB2, -DRB3, -DRB4, -DRBS, -DYB, -MIC-1, -MIC-2, TAPI, and TAP2, are
designated sequentially as they are discovered. Currently 266 class I, 227 class II, 2 SLA-related
(MIC-1, MIC-2), and 2 non-SLA (TAPI, TAP2) alleles are officially designated.

Recent evidence has suggested certain loci in the SLA system, previously defined as pseudo-
genes (e.g., SLA-9, -11, -DQB2, -DOB2), may be expressed at the transcript level; e.g., SLA-11
is considered a putative protein-coding gene. The Committee will consider reclassifying some of
these loci as additional evidence accumulates. Continuous efforts to characterize SLA alleles and
haplotypes and their diversity in various pig populations will further our understanding of the
architecture and polymorphism of the SLA system and the role of SLA alleles in disease, vaccine,
and transplant responses.

3.3. SLA Typing Methods

The SLA genotyping methods are summarized and compared in Supplemental Table 1; earlier
serological and cellular typing methods have been replaced by more accurate molecular methods.
They include polymerase chain reaction (PCR)-based sequence-specific primers (SSPs) (19-24),
sequence-specific oligonucleotides using bead-based methodologies (25), and sequence-based typ-
ing (SBT) by traditional Sanger methods and/or next-generation sequencing (NGS) (26-28) or a
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combination of SBT and PCR-SSP (22, 29-33) (Supplemental Table 1). SLA typing by PCR is
fast with reasonable costs and can be designed for high throughput; however, results are limited
to alleles with previously known DNA sequences for which SSPs or probes have been designed.
Although SBT is the most direct and accurate approach, it usually requires cloning of the alleles
to resolve heterozygous sequences, which makes it time consuming and cost prohibitive; hence,
this methodology is not typically adopted for large-scale studies, e.g., in outbred pig herds. Based
on our collective experience, SBT is most suitable for characterizing the SLA types of parental or
founder breeding animals of pedigreed pig populations (29, 32).

Alternatively, single-nucleotide polymorphism (SNP)-based genotypes from a high-density
SNP chip were tested for their potential to predict haplotypes within the MHC region of the
swine genome. By genotyping 920 pigs with the Illumina SNP60 BeadChip, SNP haplotypes
corresponding uniquely to a MHC haplotype defined by a PCR-based method were found (34).
However, these methods often detect more than one pair of SLA alleles because of chromoso-
mal phase (cis/trans) ambiguity (35). The combination of PCR amplification of targeted SLA ge-
nomic regions with NGS platforms is expected to produce genotyping results that detect new
and null alleles efficiently without phase ambiguity and imprecise results (36-39). The latest SLA
typing approaches in human and nonmodel vertebrate species combine long-range PCR with
high-throughput NGS and Oxford Nanopore MinION sequencing technologies. This efficiently
achieves both the genotyping and assembly of complex genomic regions in multiple individuals
in the absence of a reference sequence and allows haplotype phasing (40-42).

3.4. Polymorphism and Recombination Within the SLA Class I
and Class II Regions

Numbers of confirmed SLA class I and class II alleles and proteins are summarized and compared
in Table 1. To date, 228 SLA class Ia alleles and 18 class Ib alleles have been identified; the highest
polymorphism was found for the SLA-1, -2, and -3 genes (4; C.S. Ho, A. Ando, S.E. Hammer,
J.H. Lee, C. Rogel-Gaillard, L.B. Schook & J.K. Lunney, manuscript in preparation) (Table 1).
As expected, exons 2 and 3 of the coding regions, which form the class I protein peptide-binding
groove, harbor the extreme polymorphisms of the SLA class I genes (Figure 2a,c).

To date, 277 SLA class II alleles have been identified (156 B-chain and 49 a-chain alleles),
with polymorphisms mainly located in exon 2 of the coding sequences (4; C.S. Ho, A. Ando, S.E.
Hammer, J.H. Lee, C. Rogel-Gaillard, L.B. Schook & J.K. Lunney, manuscript in preparation)
(Table 1). Similar to HLA, the porcine SLA-DRBI and -DQBI loci display a very high degree of
polymorphism (Figure 2b,d). As with HLA-DRA, the SLA-DRA locus shows very limited poly-
morphism, with 14 alleles representing three allele groups, despite the fact that it also encodes
part of the domain for binding antigenic peptides (Figure 25).

For several SLA alleles for both class I and II, sequence length variations have been described
(C.S. Ho, A. Ando, S.E. Hammer, J.H. Lee, C. Rogel-Gaillard, L.B. Schook & J.K. Lunney,
manuscript in preparation). Although the functional role of these sequence length variations is
still unclear, they most likely would affect the structural integrity of the proteins and thus modify
their surface expression.

Owing to strong linkage disequilibrium, it is sometimes more appropriate and convenient for
researchers to communicate and present findings in terms of haplotypes (a specific combination
of alleles of genes on the same chromosome) rather than individual allele specificities (4). The
SLA Nomenclature Committee has established a nomenclature system for SLA class I and II
haplotypes based on high-resolution DNA sequencing. These high-resolution SLA haplotypes
are noted with the prefix Hp-, followed by a number for the class I haplotype, separated by a
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Table 1 Numbers of confirmed swine leukocyte antigen (SLA) alleles and proteins

Category Locus Allele Protein
SLA class I (classical) SLA-1 90 88
SLA-2 97 94
SLA-3 41 39
SLA class I (nonclassical) SLA-6 10 10
SLA-7 3 3
SLA-8 5 5
SLA class I (unclassified) SLA-12 6 6
SLA class I (pseudogene) SLA-4 3 0
SLA-5 4 0
SLA-9 5 0
SLA-11 2 0
Total class I alleles 266 245
SLA class IT DRA 14 6
DRBI1 99 92
DQA 26 24
DQB1 53 48
DMA 7 5
DMB 1 1
DOA 2 2
DOB1 3 3
SLA class II (pseudogene) DRB2 12 0
DRB3 5 0
DRB4 1 0
DRBS5 1 0
DQB2 1 0
DOB2 1 0
DYB 1 0
Total class II alleles 227 181
Other non-SLA genes MIC-1 1 0
MIC-2 1 1
TAP1 1 1
TAP2 1 1
Total SLA-related alleles 4 3

period, then a number for the class II haplotype (e.g., Hp-1.1). The number 0 is assigned if there
is no information on the associated class I or class I haplotype (e.g., Hp-1.0). Further, a lowercase
letter is added to the haplotype numbers to indicate that they are closely related (e.g., Hp-1a.0
versus Hp-1b.0). As of July 2019, there are 73 independent class I (SLA-1, -2, -3) and 51 class I
(-DRBI, -DQBI) assigned haplotypes.

The overall recombination frequencies were reported to be 0.05% within the SLA class I re-
gion (reviewed in 43). In a herd of more than 400 Sinclair/Hanford crossbred miniature pigs
established for melanoma research, 3 animals with recombination between the SLA class I and
class I region, and 3 with recombination within the class I region, were described, corresponding
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to crossover frequencies of 0.56% and 0.39%, respectively (29). Recombination within the SLA
class IT region has not yet been reported. In general, recombination is believed to be repressed in
the genomic regions that are in close proximity to the centromeres, which include the SLA com-
plex (1, 44). With the SLA complex spanning the centromere, the recombination rates reported
thus far have nevertheless been comparable to the MHC of other species, e.g., HLA, that are not
at, or near, the centromere (45).

4. SLA EXPRESSION AND REGULATION OF SWINE IMMUNE
AND PATHOGEN RESPONSES

4.1. SLA Expression on Immune Cell Subsets

Expression of SLA antigens was reviewed earlier (43), so this report summarizes critical basic in-
formation and focuses on selected new data. As with HLA class I antigens, the class Ia proteins
are constitutively expressed on the surface of virtually all nucleated cells. They present peptides
to CD8* cytotoxic T cells and interact with natural killer (NK) cells to prevent NK-mediated
cytotoxicity (46). Kita et al. (36) used high-resolution, massively parallel pyrosequencing to esti-
mate gene-level expression of SLA class I genes, affirming the relative class Ia gene expression as
SLA-2 > SLA-1 > SLA-3 in white blood cells. Using high-density tiling arrays encompassing the
whole SLA complex, Gao et al. (5) affirmed alterations in expression of numerous SLA class I and
IT genes following activation of B and T cell proliferation.

Itis generally believed that the three functional SLA class Ib genes, SLA-6, -7, and -8, play spe-
cialized roles similar to those of the nonclassical HLA genes (HLA-E, -F, -G). The three genes were
shown to be expressed in a less-restricted manner than the HLA-Ib genes (11) but predominantly
transcribed in the lymphoid organs, the lung, and the digestive tract, with each gene presenting
tissue-specific expression (10). SLA-§ is the most transcribed SLA-Ib gene, followed by the SLA-7
and SLA-6 genes (10). Transfection experiments have revealed that the promoters of SLA-7 and
SLA-6 genes do not respond to interferon (IFN), suggesting distinct regulatory systems for pig
MHC class Ia and Ib genes (47). It is not yet known whether SLA Ib proteins have peptide pre-
sentation functions.

SLA class IT antigens function mainly in presenting exogenous peptides to CD4" helper T cells
(48-50). Swine B cells and macrophages express both SLA-DR and -DQ antigens. Unexpectedly,
swine T-cell subsets express SLA-DR and -DQ antigens, with preferential expression of class II
antigens on CD8™ T cell subsets (CD4~CD8* and CD4*CD8* T cells) (48-50). The importance/
relevance of this unusual class IT T-cell expression has yet to be fully explained. A minority of
the circulating porcine CD2+tCD8* 8 T cells coexpress MHC class IT (51). In fact, a subset of
circulating y3 T cells displays a phenotype similar to professional antigen-presenting cells (APCs)
and is able to present soluble antigen to CD4" T cells in a direct cell-cell interaction via SLA
class IT (52) (see sidebar titled Genomic Regulation of SLA Genes Including Noncoding RNAs
and Regulatory Variants).

Normal pig endothelial cells express SLA class I and upregulate class II in response to IFNy
(53-55). Induced pluripotent stem cells (iIPSCs) express only low levels of SLA class I antigens and
barely express SLA class II antigens; even with IFNy treatment, expression of SLA class I but not
SLA class II increased (56). Porcine intestinal and renal vascular endothelia, as well as epidermal
skin dendritic cells (DCs) and Langerhans cells, are SLA class It (57-59). SLA-DQ expression is
found at the maternal-fetal interface (60).

Porcine alveolar macrophages (PAMs) are SLA-DR*, but poor APC with low secretion of
interleukin-1p (IL-1p), when compared with peripheral blood monocytes (mos); they may, though,
be important immunoregulatory cells with cytokine suppressor activity (61). Summerfield et al.
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GENOMIC REGULATION OF SLA GENES INCLUDING NONCODING RNAS AND
REGULATORY VARIANTS

MicroRNAs are known to regulate posttranscriptionally the expression of several protein-coding genes and play
important roles in fine-tuning immune mechanisms and disease responses. As demonstrated for different porcine
tissues and several SLA genes (e.g., SLA-1, SLA-6, SLA-DQA, and SLA-DQBI), certain variants of the 3'-UTR (un-
translated region) microRINA target sites are linked to antigen processing and presentation functions. This is now
known to be associated with disease traits as reported for altered microRINA binding to major histocompatibility
complex (MHC) genes in humans (149). Interestingly, a whole blood transcriptome study detected numerous dis-
tant and local regulatory relationships within the swine leukocyte antigen (SLA) complex, revealing allele-specific
expression for most SLA class I and II genes (6). In Salmonella typhimurium—intected porcine mesenteric lymph node
cells, four microRNAs were identified as potential regulators of MHC-class I genes and suggested to be associated
with the induction of MHC-I and MHC-II antigen presentation pathways (150). In mock- versus porcine repro-
ductive and respiratory syndrome virus (PRRSV)-infected pig endometrial epithelial cells, differentially expressed
microRNAs targeting SLA-DQBI were found. These genes are known to participate in the apoptosis signal, an
indication of increased susceptibility to PRRSV infection (151). Thus, noncoding RNAs and regulatory variants
are critical regulators of pig antigen presentation and immune response networks.

(62) delineated porcine blood APC subsets: the blood mos, which are SLA class II*CD14", and
the blood DCs, which are SLA class II* but CD4-CD14". Plasmacytoid DCs (pDCs) are strong
type I IFN secretors after virus stimulation and are typically CD4"¢"MHC II'". Flow cytometry
demonstrated that both the cDCI1 and cDC2 subsets expressed very high levels of SLA-DQ (63)
(Figure 3a). The majority of mos were SLA-DQ™, whereas pDCs displayed a more variable ex-
pression profile. The mRNA sequencing data confirmed this very high expression of many SLA
class II genes by the ¢cDC1 and ¢DC2 subsets, with an intermediate expression in mos and the
lowest expression in pDCs and mo-derived macrophages (63, 64) (Figure 3b).

4.2. T-Cell Antigen Epitopes Bound by SLA Molecules

The Saalmiiller lab performed initial molecular analyses of T-cell antigen epitopes bound by SLA
molecules using foot-and-mouth disease virus (FMDV) synthetic pentadecapeptides. Unfortu-
nately, no common epitope was found, but they predicted that an overlapping peptide may prove
useful for FMD vaccine design (65). Later work has focused on swine influenza A virus (SWIAV) re-
sponses (66). With the immuno-informatics tool PigMatrix, Gutiérrez et al. (67) identified several
epitopes from representative US SwIAV strains binding SLA class I and II antigens and used its
predictions to distinguish nonimmunogenic from immunogenic peptides and to identify promis-
cuous class II epitopes. Holzer et al. (68) summarized T- and B-cell responses to flu infection and FMDV-:
identified SLA alleles and the exact SWIAV epitopes they recognized. Franzoni et al. (69) used a ¢, ,t_and-mouth
peptide library spanning the classical swine fever virus (CSFV) proteome to identify conserved disease virus
CSFV T-cell antigens and the corresponding antigenic regions/epitopes and assess the restricting
MHC class I haplotypes found on CSFV-specific T cells.

Modulation of SLA antigen expression during viral disease responses is complex, dependent

SwIAV: swine
influenza A virus

CSFV: classical swine

on tissue and time post infection [as previously reviewed (43)]. Transcriptomic approaches are fever virus

revealing important details of host—pathogen interactions on SLA class I and II allele expression,
along with relevant immune regulators. Susceptibility of DC subsets varies with different African
swine fever virus (ASFV) strains; for immature mo-derived DCs (moDCs) after maturation with
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Expression of swine leukocyte antigen (SLA) class II by porcine blood dendritic cell (DC) subsets and monocytes. (#) Cell surface
expression of MHC class II (SLA-DQ) by porcine blood DC subsets and monocytes was assessed by multicolor flow cytometry. The
Fluorescence Minus One Control fluorescence intensity (histograms in gray) was used as a negative control, and the corresponding
staining is shown in open bold histograms. Data shown were obtained from one pig and are representative of three independent
experiments. (b)) Expression of major histocompatibility complex (MHC) class IT-related genes determined from RNA-seq data and
displayed as a heat map. For each gene, the heat map ranges from the lowest number of reads (b/ue) to the highest number of reads (red).
For each class II gene, the results from three different pigs are shown. Abbreviations: MDM, monocyte-derived macrophage; Mo,
monocyte. Figure adapted with permission from Auray et al. (63).
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IFN-a, there was increased susceptibility to infection with ASFV virulent strains but reduced
susceptibility, and downregulation of SLA-I, with low-virulent strains (70). Van Chanh Le et al.
(71) have analyzed peptide-SLA binding by transfecting primary PAMs with both hTERT and
SVA40LT to establish immortalized PAM cell lines with different SLA class II haplotypes.

Mokhtar et al. (72, 73) hypothesized that conserved porcine reproductive and respiratory syn-
drome virus (PRRSV) antigens would be prime candidates for the development of a novel PRRS
vaccine and screened cells from SLA typed pigs to prove reactivity. Burgara-Estrella et al. (74) used
bioinformatic predictions to screen for potentially relevant T-cell epitopes. Similar approaches
were used to identify porcine endogenous retrovirus—derived peptides presented on porcine and
human MHC class I molecules to test their role in xenograft rejection (75).

4.3. Molecular Analyses of SLA Class I Genes and Tetramers

In China, several groups have cloned and expressed single SLA class I proteins and used X-ray crys-
tallography to evaluate cytotoxic T-cell epitopes for PRRS (76). For HIN1 flu peptides, a single
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Arg (156) in SLA-1*0401 may provide a unique binding groove (77). Further SLA class I struc-
tures have identified different SLA-1 and SLA-3 binding pockets (78). Analyses of SLA-2 proteins
with Asia 1 and O serotype FMDV peptides are underway (79, 80). A modified in vitro refolding
method indicated cross-reactivity between swine and human MHC I specificities for IAV peptides
(81). All of these efforts will provide critical data for viral peptide selection and vaccine design.

MHC class I and II tetramers have become essential tools for identifying protective immune
cells in response to vaccination and pathogen challenge. Pedersen et al. (82) used SLA class I
tetramers to prove the specificity of the CD8" T cell response to Ad5-FMDV-T vaccine. Pedersen
etal. (31) used cells from outbred SLA-1*04:01 pigs to verify tetramer staining of porcine CD4~
CD8alMe" T cells with 4 SwIAV-derived peptides and tested the effects of sequence-substituted
MHC ligands. Baratelli et al. (83) identified cross-reacting T-cell epitopes in structural and non-
structural proteins of swine and pandemic HINT1 influenza A virus strains in pigs. They used re-
verse vaccinology to identify cross-reacting MHC class I T-cell epitopes from two different SwIAV
H1 lineages in pigs and showed that SLA-1*07:02 T-cell epitopes worked in heterologous SwIAV-
infected pigs. Following viral infection, tetramer-specific T-cell populations were identified, sug-
gesting that targeting cross-reactive T-cell epitopes could be used to improve vaccines against
SwIAV in SLA-1*07:02-positive pigs. To date there are no reports of use of SLA class II tetramers.

Using the Babraham inbred pig model, Tungatt et al. (84) induced influenza-specific CD8
T cells in the respiratory tract after aerosol delivery of vaccine antigen or virus. Their team
developed a tool set that included successful long-term in vitro pig T-cell cultures, which were
used to identify immunodominant influenza-derived T-cell epitopes. They generated structures
of two SLA class I molecules to define the primary epitope anchor points. Finally, they generated
peptide-SLA tetramers to track influenza-specific T cells ex vivo in blood, lungs, and draining
lymph nodes. Overall, they concluded that pigs are now an effective model for studying protective
local cellular immunity against flu and other respiratory pathogens.

4.4. Vaccines and Disease Models

Alterations in swine vaccine and disease responses associated with SLA class I and/or class IT genes
or haplotypes have been reported for decades (reviewed in 43). With refinement in SLA typing
methods, alleles at individual SLA loci have been identified. Imaeda et al. (85) verified associations
between serum antibody titers to a swine erysipelas vaccine and reproductive and meat-production
traits of SLA-defined Duroc pigs. Correlation of SLA haplotypes with serum-neutralizing anti-
body titers, T-cell activation, and protection were used to design and evaluate peptide vaccines
against FMDV and to improve the humoral response against CSFV (86, 87; F. Sobrino, personal
communication).

Cortey et al. (88) reported a lack of correlation between the length and titer of PRRS viremia
in vaccinated pigs and the clustering of the sequences of CD163, four SLA class I, and two SLA
class II allele groups. Hess et al. (89) revealed dynamic relationships between PRRS serum anti-
body at 42 days postinfection with 3-day weight gain, suggesting that animals that placed more
emphasis on immune response early in infection reaped benefits of that later in infection by more
effectively clearing the virus. Genome-wide association studies (GWAS) identified 3 SNPs in the
SLA complex that explained 10-45% of the genetic variance associated with serum antibody but
were not associated with viremia or weight gain. Walker et al. (90) used haplotype-substitution
analysis to uncover potential DQBI alleles associated with divergent effects. These studies reveal
a possible biomarker for improved host response to PRRSV infection.

SLA-DR expression was correlated with reduced antigen-presentation capability and modified
inflammatory/immunosuppressive cytokine expression of induced moDCs from peripheral blood
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Swine leukocyte antigen (SLA) influence on breeding, disease, vaccine, and transplantation research. The
SLA complex plays a key role for swine models in biomedical research. In pigs, production traits are
influenced by SLA polymorphism and diversity. Pathogen effects on SLA gene expression drive the
regulation of swine immune responses. SLA-typed pigs are used in vaccine design, disease models, and
allogeneic and xenogeneic transplantation.

of piglets infected with porcine circovirus type 2 (91). Based on GWAS analyses, Walker et al.
(92) verified that host genotype explained 64% of the phenotypic variation for overall PCV2 viral
load, with two major quantitative trait loci (QTL), one identified on SSC7 near the SLA complex
class IT locus and, importantly, a missense mutation in the SYNGR2 on SSC12.

Opverall, the influence of SLA encoded genes on immune and disease traits is broad. SLA al-
leles regulate antibody levels to defined proteins and vaccine antigens, effectiveness of cellular
antibacterial and anti-viral reactions, and improved responses to foodborne pathogen challenges
(Figure 4). As biosecurity improves, the range of pathogens to which pigs are exposed is altered,
and consumers increasingly expect pork products free of antibiotics, the importance of disease-
resistant breeding stock increases. Numerous groups have attempted to evaluate the relationship
between SLA alleles and the level and function of circulating immune cells with average daily
gain, live and carcass measurements, and feed conversion. These results could help guide breed-
ers in selectively increasing the frequency of certain SLA alleles, i.e., those that are known to be
associated with enhanced disease resistance or QTL effects, while maintaining SLA diversity.

4.5. Important Considerations for Evaluating SLA Associations

In decades past, associations between specific SLA haplotypes and production, immune, or re-
productive traits were reported using serologically based SLA typing methods (reviewed in 43).
Results typically indicated specific SLA haplotype associations with significant effects on each
trait that differed among populations of pig breeds. However, it was difficult to define the corre-
sponding SLA locus owing to limitations in serological reagents and technologies. This resulted
in lack of ability to determine the exact locus and alleles within the proposed SLA haplotype re-
sponsible. Indeed, because the gene density of the SLA complex is very high, SLA alleles could
only be markers in linkage disequilibrium with causal quantitative trait nucleotides. As outlined
above, molecular-based SLA locus typing techniques now identify many SLA loci and their alleles
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(4; C.S. Ho, A. Ando, S.E. Hammer, J.H. Lee, C. Rogel-Gaillard, L.B. Schook & J.K. Lunney,
manuscript in preparation). These methods are now used for testing associations of growth, pro-
duction, or reproductive performance and SLA alleles (85, 93-95). These new association data
indicate that SLA alleles or haplotypes are useful genetic markers for improvement in pig breed-
ing programs. However, for many of these studies, trait associations were evident with only one
or a few SLA loci and/or found in limited pig populations and breeds. Indeed, multiple gene/trait
associations have been mapped on several chromosomes, including SSC7 (see Animal QTLdb
and CorrDB updates). QTL detection analyses for traits influencing growth and fatness mostly
excluded SLA complex genes on SSC7 as important candidates due to limited number of animals
or breeds analyzed (96, 97). To conduct a comprehensive assessment of involvement of the SLA
complex on reproduction and production traits, future association analyses will need to be car-
ried out using detailed SLA-DNA typing methods, including, if possible, NGS techniques and,
importantly, testing in multiple breeds and broader pig populations.

5. SLA IN ALLOGENEIC TRANSPLANTATION
5.1. Rationale for Swine as a Model in Allotransplantation

Swine are anatomically and physiologically more similar to human than almost any other animal
species. With the existence of significant amounts of background data, swine have been the pre-
ferred preclinical large animal model for transplantation, xenotransplantation, and regenerative
medicine research (98). In human allogeneic transplantation [solid organ and hematopoietic stem
cell/bone marrow (HSC/BM)], HLA matching has proven to be the most significant variable in-
fluencing graft function and longevity. Thus, the use of swine as transplantation models requires
the understanding and control of SLA complexity. SLA-inbred/-defined pig lines have been es-
tablished around the world, including the National Institutes of Health/Massachusetts General
Hospital (NIH/MGH) miniature swine model (99, 100), Westran pigs (101), Yucatan miniature
pigs (102), Korean Native pigs (21), Japanese Microminipigs (26), CLAWN miniature swine (103),
Gottingen minipigs (104), MINI-LEWE pigs (105), and British Babraham pigs (33). These have
been invaluable for studying the impact of SLA compatibility on allotransplantation. Recently, a
model of acute kidney allograft rejection was established using primarily outbred Yorkshire farm
pigs (106, 107) with 17 unique SLA haplotypes. Here, we briefly discuss recent data on the use
of swine as relevant preclinical allogeneic transplantation models. SLA typing provides informa-
tion to select recipient and donor pair SLA allele matching or mismatching for testing. However,
specific studies are needed to estimate and predict the level and speed of rejection caused by each
SLA mismatch.

5.2. Solid Organ Transplantation

In solid organ transplantation, the benefits of HLA matching have been clearly established in
various types of organs, primarily in kidney owing to the sheer volume of transplants performed
worldwide, but also in heart, lung, liver, and pancreas (108). Among the routinely typed HLA loci,
matching between donor and recipient HLA-A, -B, and -DR significantly contributes to improved
graft survival and reduced incidence of rejection (109). As with HLA, SLA compatibility has been
demonstrated repeatedly to mediate transplant rejection in swine solid organ transplantation. The
recognition of SLA alleles as transplant determinants on allograft survival was first documented
40 years ago in the NIH/MGH miniature swine transplant model (110), a model that has resulted
in the publication of numerous cutting-edge transplantation experiments worldwide (111-113).
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Without immunosuppressive conditioning, pigs receiving a kidney allograft with at least one
SLA haplotype mismatch had moderate to severe cellular rejection, whereas a “perfect” SLA-
matched kidney displayed normal renal allograft histology and serum creatinine with no evidence
of rejection (106). It should be noted that the pig that received a blood group-incompatible kid-
ney (A to O) experienced hyperacute rejection (114). In another swine renal allotransplant study,
mismatched minor histocompatibility antigens had been associated with acute cellular rejection in
SLA-matched pigs (115). SLA typing has been of utmost importance in the EU research program
(FP7 DIREKT) on end-stage renal disease and has greatly contributed to a successful porcine
transplantation model (M. Jensen-Waern, personal communication).

5.3. Hematopoietic Stem Cell/Bone Marrow Transplantation

In HSC/BM transplantation, clinical data highlight the benefit of patient-donor matching of HLA
determinants to promote engraftment and lessen risks of graft-versus-host disease (GVHD), inci-
dence of disease relapse, and transplant-related mortality (116, 117). Currently, the gold standard
in either related or unrelated HSC/BM transplants is the matching of HLA-A, -B, -C, -DRB1, and
-DQBI at the allele level (i.e., perfect 10/10 match). For swine HSC/BM transplantation, crossing
SLA barriers usually resulted in delayed engraftment and/or the development of severe GVHD.
Such correlations between SLA compatibility and clinical outcomes have been established mainly
in the SLA-inbred NIH/MGH swine model (118, 119). Recently, correction of a severe com-
bined immunodeficiency (SCID), in four of nine pigs having mutations in the Artemis gene, was
achieved by long-term engraftment of allogeneic bone marrow that was matched at all class I and
class II SLA genes (120).

5.4. Vascularized Composite Allograft and Cellular Transplantation

Vascularized composite allograft (VCA) transplantation, such as face, hand, arm, and genitalia, is
an emerging field of clinical transplantation. Owing to the small volume of VCA transplants per-
formed worldwide, limited data are available on the impact of histocompatibility on human clinical
outcomes. Despite the involvement of multiple tissue types in some VCAs, they have been treated
in the same way as solid organ transplants with regard to histocompatibility and immunosuppres-
sion (121, 122). Swine are becoming the preclinical large model of choice for this research (123-
126). SLA mismatches in Yucatan pigs drive the rejection of allogeneic musculocutaneous skin
flap (127). In vascularized skin transplants using the NIH/MGH swine, SLA class I mismatching
triggered rejection characterized by infiltration of recipient CD8% T cells, whereas SLA class II
mismatching was tolerated (126). Swine allotransplantation models using SLA-mismatched
Yucatan miniature pigs have been developed for orthotopic tibial bone (128, 129) and limb (130).

The impact of HLA matching on clinical cellular transplantation, such as islet cells, has not
been fully elucidated. SLA-mismatched cellular transplants have been performed to examine their
ability to treat (#) acute myocardial infarction (131-133), () errors of metabolism (134), and
(¢) spinal cord injuries using iPSC-derived neural precursor cells (135). The role of SLA antigens
in cellular transplantation remains a topic of active investigation.

6. SLA IN XENOGENEIC TRANSPLANTATION
6.1. Rationale for Swine as a Model in Xenotransplantation

Xenotransplantation could potentially increase organ availability by using pig organ donors;
however, numerous issues must first be addressed. Histocompatibility and donor-recipient cross-
match testing are critical to avoid allotransplants with incompatible organs based on patients
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having preformed HLA antibodies that can cause tissue damage (136, 137). Given the structural
similarities and >70% sequence identities between HLA and SLA genes, HLA-specific antibodies
will likely cross-react with SLA. Until recently, little has been done to evaluate the role of SLA
as a humoral barrier to clinical xenotransplantation. The abundance of human antibodies to pig
glycans concealed the presence of SLA antibodies in cross-matching assays; those could preclude
clinical application of xenotransplantation (reviewed in 138).

Immunoadsorption studies with pig erythrocytes, to remove antiglycan antibodies, followed
by cross-match with pig peripheral blood mononuclear cells (PBMCs), suggested that anti-HLA
class I antibodies could cross-react to SLA and form a barrier to xenotransplantation. The
creation of Gal/SLA class I knockout pigs made it possible to evaluate whether patients had
anti-SLA class I antibodies (139). Mixing human serum with triple knockout (TKO) pig PBMCs,
followed by elution of antipig antibodies and then binding to HLA beads, revealed that patients
with anti-HLA-A antibodies were more likely to cross-react with class I SLA (140). Similar
studies indicated that anti-HLA class II antibodies could cross-react with SLA class II.

Recently developed GGTAI/CMAH/B4GALNT?2 (TKO) pigs have eliminated multiple
carbohydrate xenoantigens and improved the cross-match to the point where clinical xenotrans-
plantation without the certainty of antibody-mediated rejection may be possible for at least 30%
of waitlisted patients (140-142). HLA-sensitized patients who are unable to find a suitable cross-
match with human donors make attractive initial candidates for xenotransplant clinical trials.
The successful identification of patients who can receive TKO pig organs requires understanding
whether or not anti-HLA antibodies in these patients bind to SLA and alter engraftment.

6.2. Anti-HLA-A and Class I SLA Cross-Reactivity

The presence of similar or identical epitopes in HLA and SLA makes it possible to predict which
highly sensitized patients are likely to have a positive cross-match with pig cells. Testing human
sera that bound to 16 specific class I HLA-A molecules identified lysine at position 144 of the
class I amino acid chain as a key residue in the epitope that is common to all 16 HLA-A proteins.
There are now 166 full-length class Ia SLA sequences in the IMGT SLA database. All of these
SLA molecules also contain lysine at position 144. Serum from patients with alloreactivity to 144K
had a positive cross-match to SLA-1#12. These same sera, when tested for reactivity to a mutated
form of SLA-1*12 (having glutamine rather than lysine at amino acid position 144), exhibited
reduced binding for some patients and no binding for others. This indicated that 144K is a key
residue that can drive cross-reactivity of antibodies with HLA and SLA (140).

These results are exciting for two reasons: (#) They enable identification of patients for whom
participation in initial trials will be unlikely to be successful, and () they indicate that simple
genome-editing strategies may eliminate the cross-reactive epitope in donor pigs. Because these
epitopes have been preserved for millions of years of evolution, it is not surprising that they are
found in all class Ia alleles (SLA-1, -2, and -3) and in all pigs sequenced (i.e., there is no magic

pig)).

6.3. Class II SLA Cross-Reactivity

Anti-class I HLA antibodies are implicated in transplant glomerulopathy, the most common
form of late renal allograft failure (141, 143). The importance of anti-HLA DQ antibodies as a
cause of graft failure has become clear in the past 5-10 years (144, 145). Earlier absorption studies
showed that anti-HLA class II antibodies in patients could cross-react with class II SLA, and
that immunoglobulin (Ig)M as well as IgG was reactive (146). More recent work using individual
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SLA-DR and -DQ antigens expressed in HEK cells confirmed these findings (147). Patients,
both unsensitized and sensitized to HLA, had antibodies that bound to class II SLA, and this
binding was to both SLA-DR and -DQ. Many anti-SLA-DR and -DQ antibodies were cytotoxic.
Therefore, the humoral response to SLA class II antigens will need to be considered carefully to
obtain acceptable outcomes in a clinical trial (148). Similar to the class I SLA epitope mapping
described above, it has been possible to use differential class Il HLA and SLA binding, along with
site-directed mutagenesis, to define an epitope common to many SLA-DQB proteins (147).

7. CONCLUDING REMARKS

The last decade has seen major progress in swine immunology and genetics, and particularly in
understanding of the SLA complex, its genetic loci, and the role of SLA in normal immunity and
in infectious disease and vaccine responses (Figure 4). The stage is now set for deeper probing
of the role of SLA alleles and haplotypes in controlling these responses, for determining specific
antigenic epitopes that stimulate immune and vaccine responses, and for identifying critical im-
mune cell subsets and the exact SLA loci that facilitate cellular interactions for effective immune
responses. As biosecurity improves and consumers expect pork products free of antibiotics and
swine pathogens, the need for vaccines will change. The relevance of disease-resistant breeding
stock will become more important, along with pigs with improved vaccination responses.

Research using improved swine genome sequence and updated genomic and proteomic tools
may reveal novel immune pathways regulated by SLA genes. It will help to verify the effects of
specific SLA alleles on QTL and disease responses and to identify exactly which genes enable pigs
to resist infection by specific pathogens. Detailed swine genomics, particularly of the SLA com-
plex alleles and their diversity, will amplify the importance of the pig for allotransplantation and
biomedical research. As appropriate genetically modified pigs are developed, the stage is now set
for determining the critical role of SLA genes and proteins in cell and tissue xenotransplantation.
The role of individual SLA antigens in swine biomedical models and for overall pig health and
productivity will continue to be clarified.

1. The SLA system is among the most well-characterized MHC systems in nonhuman
animal species. A systematic nomenclature for the genes, alleles, and haplotypes of the
SLA complex is critical to research in swine genetic diversity, immunology, health, and
vaccinology, as well as organ and cell transplantation.

2. Based on our new, detailed annotation of the Sscrofall.l genome assembly, the SLA
complex encodes approximately 150 loci, with at least 120 genes predicted to be
functional.

3. Despite the ongoing domestication process, involving selection for favorable traits, pigs
have still maintained a high degree of SLA diversity, as demonstrated by the presence of
the 266 and 227 class I and class II alleles, respectively.

4. Pig disease models provide better understanding of host-pathogen interactions.
Pathogen effects on SLA gene expression drive the regulation of swine immune re-
sponses. Novel trait association data indicate that SLA alleles or haplotypes may be useful
genetic markers for use in improving pig breeding programs.

Hammer et al.



5. Swine have become the preferred preclinical large animal model for biomedical stud-
ies, transplantation, xenotransplantation, and regenerative medicine research. Allogeneic
transplantation research in pigs has improved understanding of rejection mechanisms of
both host-versus-graft and graft-versus-host disease.

6. Improved cross-matched genetically engineered pigs could reduce antibody-mediated
rejection of pig xenografts in highly HLA-sensitized patients. Modifying SLA genes
could improve pigs as donors for xenotransplantation.

1. The impact of SLA genes on swine production and health traits needs to be attributed
to individual SLA locus alleles and not just haplotypes.

2. Renewed typing methods, from PCR SSP to NGS, will enable reliable typing of outbred
pigs. To truly explore diversity, data based on large cohorts of pigs are necessary.

3. Functional studies on MHC effects on cell interactions and on microbiota diversification
are needed to understand the impact of SLA genes on the education of the pig immune
system.

4. In-depth analysis of peptide presentation via major SLA genes will identify the broad
range of functionally relevant vaccine targets.

5. Identification and maintenance of important SLA-defined pig lines (e.g., NIH/MGH,
Yucatan, or Babraham pigs) are essential as resources for pig biomedical models.

6. Future tool development is needed for the swine biomedical model; this includes SLA
class T and first SLA class IT tetramers, T-cell receptor profiling, SLA-informed SNP
chips, and panels of monoclonal antibody reagents to swine immune proteins.

7. Availability of well-characterized, genetically engineered pigs for human disease mod-
els will lead to development and validation of novel therapeutics and improvements in
xenotransplantation research.

8. Human cross-matching with SLA class I and II will facilitate xenotransplantation. His-
tocompatibility testing of pigs needs to be improved in analogy to human allogeneic
transplantation.
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