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Abstract

Selective breeding of resilient organisms is an emerging topic inmarine con-
servation. It can help us predict how species will adapt in the future and
how we can help restore struggling populations effectively in the present.
Scleractinian corals represent a potential tractable model system given their
widescale phenotypic plasticity across fitness-related traits and a reproduc-
tive life history based on mass synchronized spawning. Here, I explore the
justification for breeding in corals, identify underutilized pathways of ac-
climation, and highlight avenues for quantitative targeted breeding from
the coral host and symbiont perspective. Specifically, the facilitation of en-
hanced heat tolerance by targeted breeding of plasticity mechanisms is
underutilized.Evidence from theoretical genetics identifies potential pitfalls,
including inattention to physical and genetic characteristics of the receiv-
ing environment. Three criteria for breeding emerge from this synthesis:
selection from warm, variable reefs that have survived disturbance. This in-
formation will be essential to protect what we have and restore what we can.
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1. INTRODUCTION

1.1. Our Climate Future: The Critical Difference Between Every 0.5°C

Global surface temperatures have already warmed by 1.2°C, on average, since the preindustrial
era (1850–1900), and the likelihood of ocean temperatures exceeding 1.5°C, a commonly reported
threshold, is high (1) (Figure 1a–c). This rapid increase in warming has pushed up both the
frequency and intensity of marine heatwaves. Different modeled warming scenarios are used to
describe when these conditions are likely to occur given the various emissions scenarios (Intergov-
ernmental Panel on Climate Change global greenhouse gas emission pathways). An intermediate
pathway (SSP2–4.5) is becoming increasingly likely, where warming of 1.5°C or 2°C may occur
within 9 to 31 years from the present (2). At +1°C, heatwaves are already predicted to occur 2.8×
more frequently; at 1.5°C, they are 4.1× more likely, and conditions may be approximately 1.9°C
hotter. Heatwaves may occur once every 5 years in some locations. At 2°C, heatwaves are 5.6×
more likely, and conditions might get up to 2.6°C hotter (2). These temperature extremes will
push already struggling ecosystems to their limits.

All organisms exist within a range of temperatures needed for optimal physiological function-
ing. The limits at which organisms can survive are described as their thermal safety margins (3).
This has meant that ecosystems, and marine habitats in particular, have suffered rapid composi-
tional changes in biodiversity (4). The impacts of warming can manifest in a variety of ecosystem
impacts, including as large-scale die-offs in kelp and seagrass forests or as bleaching and mortality
on coral reefs (5). As global climates change, organisms will be required to acclimate and adapt
more quickly than ever to increasing extremes in temperature to survive.

These warming trends have already impacted the ability of some critical biomes, like coral
reefs, to provide the ecosystem functions necessary to support biodiversity and livelihood values
(6). Coral reefs are one of the most sensitive ecosystems globally (7). Most reef-building corals
are holobionts, meaning they are a composite organism of host and multiple microbial partners,
including dinoflagellate photosymbionts, bacteria, fungi, and viruses (reviewed in 8). The coral
animal is made up of either single or multiple polyps to compose a clonal, modular organism. The
physiological responses of corals can therefore bemeasured together or individually as constituent
parts of the holobiont under different empirical conditions [i.e., genomics, transcriptomics of
each partner, photophysiology of the dinoflagellate symbionts, or tissue extension/calcification
(i.e., growth) of the host coral], among many other traits.

Corals’ sensitivity in response to warming stems from the fact they already exist close to their
upper thermal limits. Life in proximity of the upper thermal limits occurs in many ectotherms,
especially in lower tropical latitudes, where growth form, life history, or phylogeny can also pre-
dict extinction risk based on thermal thresholds (9). Some estimates for coral reefs predict that
an increase in 1.5°C is expected to cause a 70–90% loss of corals, and at 2.5°C, a 99% loss is ex-
pected (2).Warming on reefs globally is also occurring more rapidly than initially predicted, with
Caribbean reefs warming at a linear rate of 0.2°C per decade (0.17–0.26°C) over the last 36 years,
and is predicted to reach +1.6°C by 2100, equating to 5 heatwaves annually (10). This frequency
would likely not leave time for recovery given limited reproductive cycles. The rate of warming in
other reef regions, like the Red Sea (11), is also increasing. Clearly, coral reefs across latitudes will
be impacted differently, with high northern latitudes projected to experience the largest increases
(up to 6°C) compared to lower latitudes [4°C (9)]. It thus becomes clear from these future climate
scenarios that each degree matters.

1.2. Exceeding the Thermal Safety Margins

When biological thermal safety margins are exceeded, organisms perish.This is because biological
systems are constrained by physiology and can be pushed only so far before limits are met, leading
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to processes like protein denaturation (12).Thesemargins appearmore restricted in the tropics (3),
exacerbating species diversity losses in these equatorial regions (13). The limits of organisms can
be described using concepts like thermal tolerance, defined as the range of temperatures in which
an organism can function. Thermal performance, which can be defined as a quantifiable trait, is
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reproductive mixing of
gametes in specific
combinations
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determined by the
interaction between
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environmental
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Figure 1 (Figure appears on preceding page)

The impacts of marine heatwaves on coral reefs and the unknown acclimation and adaptation gap.
Predictions of the impact of climate change on reefs are dire. (a) Previously once-a-decade events, heatwaves
on earth are increasing in frequency and magnitude. Increases of +1°C, +1.5°C, and +2°C above present
temperatures are projected to result in heatwaves that are +1.2°C, +1.9°C, and +2.6°C warmer and much
(2.8–5.6×) more frequent. Data from IPCC, 2021: Summary for Policymakers using mean projections for
SSP12.6, SSP5–8.5, and SSP2–4.5. Panel adapted from a public domain diagram by the Guardian. (b) If
extreme enough, heatwaves on land may translate to marine heatwaves on reefs, resulting in coral bleaching
and mortality. Each 0.5° increase (+1°C to >3°C) matters, and coral cover is expected to decline from 70%
to 99% if not kept below +2.5°C of warming. (c) Higher temperatures are projected to result in mass
extinctions. This sets up a gap that organisms, namely scleractinian corals, must overcome via four pathways:
move, acclimate, adapt, or die. This gap grows as emissions increase and temperatures become warmer. The
likelihood of acclimating or adapting fast enough also shrinks as evolutionary pathways and potentials run
out. Figure adapted with permission from Reference 19, which gives permission that publications may be
reproduced in whole or in part and in any form for educational or nonprofit services without specific
permission from the copyright holder, provided acknowledgment of the source is made.

also constrained by underlying genetics, shaped by selective pressures, which can be measured
using metrics like narrow- or broad-sense heritability (14). Importantly, this trait (tolerance) can
be described mathematically using thermal performance curves, in which the performance of an
organism is a function of temperature, where optimal performance is maximal thermal tolerance
(CTmax) (15, 16).

These margins describe underlying, quantifiable mechanisms. Thermal safety margins as a
function (i.e., the shape of the curve) then become key parameters to be determined, measured,
and used as metrics for activities like conservation or active restoration (i.e., selective breeding).
Selective breeding is the process of the directed reproductive mixing of individuals based on a
trait of interest (phenotype) to produce offspring with an enhanced value for that trait(s) (17).
The mean phenotypic value is determined by both the environment and additive genetic variance,
and this information can be used in breeding designs. These include metrics like thermal range,
CTmax, and temperature averages (e.g., temperatures at the warmest months). Importantly, these
metrics can explain a vast majority of organismal responses and may vary by as much as 9.1°C
(3). From these, other derived metrics can be calculated, including future warming risk, defined
as the difference between the maximum trait temperature and predicted mean temperature of the
warmest three months at a specific time of interest (e.g., 2050, 2070, 2100) (9). Taken together,
physiological mechanisms can then be linked to environmental conditions. Hence, understanding
these patterns will inform the thresholds and drivers of thermal tolerance limits, essential for
forecasting species outcomes and for the development of applied conservation action like selecting
and breeding corals resilient to warming.

1.3. The Pivotal Role of Acclimation and Adaptation for Coral Reef Futures

The rate of increase in fitness of any organism at any time is equal to its genetic variance in fitness at that time.

—Ronald Fisher, 1930, fundamental theorem of natural selection

Species may contend with environmental pressures via acclimation (plastic shifts, within
generations) and/or adaptation (evolved shifts, between generations) through directional changes
in populations to more tolerant phenotypes (16). Over geologic and global timescales, evolution
via natural selection has favored variability in reef communities (18). Climate scenarios predict a
range of temperature trajectories for reef futures (discussed above), which include uncertainties.
What is certain is that reef corals likely will not be able to bridge the gaps caused by temperature
extremes without some form of acclimation or adaptation (19) (Figure 1c) and will likely change
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Future warming risk:
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warming trend will
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within-generation
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changes that allow
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species content with
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pressures through
increased fitness

Adaptation:
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genetic changes that
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temperature tolerance
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here to high survival
under elevated
temperatures

Mean monthly
maximum (MMM):
month of the year with
the warmest,
on-average, sea-surface
temperatures for a
particular location

and/or decline even under “low” emission scenarios. For coral reefs to survive as we know them
today, a strong and fast bend to the emissions curve, likely paired with rapid adaptation, will be
needed. Adaptation can be supported in two general forms, through the protection and conser-
vation of populations of high adaptive potential or, alternatively, through the active restoration of
species or populations. One example of active restoration includes the use of selective breeding
to generate corals that are more resilient to global warming. In this review, I present multiple
pathways by which selective breeding methods can target corals’ underlying acclimatory and
adaptive potentials. I also outline the key considerations for future directions of research to
connect the molecular underpinnings of adaptation to applied conservation outcomes.

1.4. What Is Coral Bleaching, and Why Is Understanding Bleaching Mechanisms
Critical for Selective Breeding?

Rapid or extreme changes in environmental conditions, like warming temperatures, impact corals
by disrupting the symbiosis between the coral animal (host) and their algae from the family Sym-
biodiniaceae (symbionts), termed bleaching. Symbiodiniaceae are made up of a diverse group of
physiologically distinct dinoflagellate families (20), each with a varying propensity for symbiosis
with their host corals; distinct biogeographic patterns in hospite and free-living; and tolerances to
stress, especially heat tolerance. Hosts may have relatively low-diversity communities, made up
of single or few distinct symbiont taxa, or more complex communities of multiple partners, influ-
enced by the mode of symbiont transmission during corals’ early life-history stages. This diversity
in genetic and physiological backgrounds of the symbionts provides an opportunity for targeting
breeding of corals for particular microbial backgrounds, given this is a heritable trait across many
coral species (21).

This breakdown typically occurs approximately 3°C above the mean monthly maximum
(MMM) sea surface temperature of the reef and if temperatures stay above the threshold for ex-
tended periods of time or if combined with other stressors (e.g., high light) (22–24). However,
even lower temperatures over extended periods of heat exposure can lead to bleaching from the
impairment of the photosynthetic apparatus of Symbiodiniaceae (25). Early experimental tests and
field-based observations suggested that the causative agent was the dysregulation of the symbionts,
caused by the disruption of different steps along the photosynthetic process (photoinhibition
model) and the production of reactive oxygen species (26). This process was thought to lead
the host to expel the cells. However, further analyses (27), and a series of elegant experiments
(28), have revealed the relative contribution of four bleaching pathways: in situ degradation, ex-
pulsion, host-cell detachment, and host-cell death. Importantly, this information revealsmore than
just the underlying cellular mechanisms of bleaching; it also highlights that multiple levers can be
modified to enhance heat tolerance (i.e., high survival under elevated temperatures). The relative
contribution of enhanced tolerance for both the coral host and its range of symbiotic partners
(combined, the holobiont) may differ for each of those levers. In practical terms, this means that
for breeding, we have multiple targets of action and optimization.

1.4.1. Accelerating rapid acclimation and adaptation with selective breeding. Theory, nu-
merical modeling, and field studies suggest that rapid evolution is possible. Population genomic
studies have revealed that adaptation in the wild can occur rapidly (29, 30) from predation pres-
sure (∼10 generations), artificial selection, or experimental evolution for benefits like pesticide
resistance [3–10 generations (3)]. Indeed, Haldane’s classic peppered moth experiments quanti-
fied how strong selection (S = ∼0.5) can elicit rapid adaptive changes in populations. Although
adaptive mutations can be very common, genetic drift paired with a fluctuation between very
strong and nonadaptive selection can create genetic variation that occurs independently across
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anticipated local
conditions
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intentional
translocation of
individual within
(assisted gene flow) or
outside (assisted
colonization) the
natural range of a
species

many populations, resulting in a mosaic of adaptive evolutionary potentials (31). Unsurprisingly,
strong selection coupled with unlimited mutation rates (θ) can result in the highest probability
of adaptation (32). In light of this information, will underlying adaptive potentials be enough for
the current projected warming rates? Given enough time (evolutionary timescales), the occur-
rence of heat-tolerant corals in very warm locations like the Red Sea (11) suggests the potential
for adaptation in corals given enough time. Unfortunately, even if organisms like corals can adapt,
adaptation may not be extensive enough due to processes like evolutionary load (i.e., imperfect
adaptation), which result in incomplete adaptive responses (sensu 33). This mosaic of interacting
processes may therefore impede organisms’ ability to benefit from rapid adaptation. This opens
the potential for interventions like selective breeding. In corals, this can be readily facilitated given
their propensity for mass spawning and the simultaneous production of hundreds of thousands of
individuals in a single breeding period event (34).

1.4.2. Selective breeding using mass coral spawning. The first records of coral spawning
and early documented work in locations like the Caribbean and Indo-Pacific focused largely on
spawning slicks (large aggregations of spawned bundles and fertilized and developing eggs). Break-
through observations of mass coral spawning in locations like theGreat Barrier Reef (GBR), led by
pioneers in the field like Drs. CardenWallace and BetteWillis, culminated in a joint Eureka Prize
for their team in 1992 (35), and many of those observations are now cataloged in the Indo-Pacific
Spawning Database (36). These early days of coral breeding used hermaphroditic spawning and
coral reproduction (the release and subsequent separation of eggs/sperm bundles) to disentangle
species boundaries and understand the adaptive benefits of inter- and intraspecies hybridization
in coral evolution (37, 38). Only later did researchers apply these concepts to conservation and
restoration contexts to take advantage of the mass (e.g., large-scale) nature of reproduction of
many coral species to maximize conservation potential.

Selective breeding is one potential strategy to maximize applied conservation outcomes
through the scalable potential of coral reproduction (39, 40). Breeding for conservation and
restoration can take various forms, including assisted gene flow (movement of breeding adults or
bred offspring within a species range) and assisted migration (movement between species ranges)
(41). The end goal of these methods is to expedite the movement or spread of adaptive phenotypes
from one location to another.These methods originated from observations showing that naturally
interbreeding populations during range expansion can have distinct genetic impacts on genetic
structure. These impacts stem from introgression of genes accompanied by increases in genetic
fixation and drift from expanding populations at the range margins. Hence, this gene surfing at
the range edge can increase fixation rates of positive or deleterious alleles. Importantly, fixation of
specific genes may lead to decreases in fitness due to drift and expansion loads and is often seen at
the range expansion edges of populations (42). This can also occur artificially through the directed
breeding of different populations across a larger species range. Indeed, genetic mixing based on
current or future distributions of climate or traits has been proposed (43, 44). For corals, this has
included the movement of heat-tolerant corals within their ranges [GBR (45)] or research into
the breeding of low-latitude thermal extremes (e.g., the Persian Gulf, which has average summer
temperatures of 35°C) to reefs of more moderate temperatures (41, 46, 47).

Breeding for heat tolerance is feasible in corals because, at least in some species, thermal
tolerance is heritable from parents to offspring and appears to persist across multiple life stages,
at least to some degree [i.e., larvae and juveniles (48, 49)]. Trait heritability can be calculated by
analyzing parent–offspring regressions or sibling relationships (see 21 for worked examples). Both
methods have been applied to corals, and the production of offspring is needed for both methods.
The mechanics of selective breeding via coral reproduction have been detailed extensively in
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recent reviews (39, 50). Generally, reproductive modes can be divided into broadcast spawners
with the release of combined bundles of eggs and sperm or the release of brooded larvae (21,
51). Briefly, we focus on the use of broadcast spawners, which involves isolating eggs and sperm
from individual corals by capturing gametes either in the field with a net or in the lab in isolation
containers. After washing, the sperm and eggs can be mixed across a range of phenotypes for
specifically selected combinations to achieve offspring within a desired phenotypic range (the full
details of coral breeding are given in References 34, 39, 50).

Even with this propensity for mass reproduction through spawning, baseline gene flow be-
tween reefs may not be sufficient to rescue reefs affected by mass coral bleaching if the increased
frequency and intensity of these events continue (45), suggesting targeted breeding may be a
viable restoration option if risks are mitigated and minimized (52). In these targeted breeding
experiments, reproductively mixing (crossing) parents from warmer to cooler reefs (of an average
differential of ∼2°C) increased survival of larvae with one or both parents from warmer regions
(49, 53, 54). This suggests that specific coral populations are locally adapted to higher ocean tem-
peratures and can contribute enhanced thermal tolerance alleles to reefs that are under stress from
recurrent periods of above-average ocean temperatures through breeding (55).

2. UNDERSTANDING PHENOTYPIC VARIABILITY
THROUGH PLASTICITY

2.1. What Are Plastic Responses?

Species, populations, and individuals exhibit a range of phenotypes, from a narrow to a more
variable range of responses. Phenotypic plasticity (hereafter, plasticity) can be defined as the adap-
tive or nonadaptive range of variation in a phenotype in response to environmental clines, not
attributable to underlying genetic changes (sensu 56). This underlying natural variation is rep-
resented here in corals and their symbionts, quantified via manipulation and experimentation
(Figure 2a,b, subpanel i). Plasticity is critical for organisms because it allows for themaximization
of fitness in ever-changing environments (57). For individual traits, plasticity occurs when fitness
is enhanced with increased variation in a trait (Figures 2b, subpanel ii and 3a) and is recognized
by an increase in variation of a fitness-related trait (e.g., survival) relative to an experimental con-
trol treatment or a proxy environment in the wild. A well-studied example includes the variation
in wing patterns in some butterfly species (58), where adaptive selection can lead to the increased
frequency of that phenotype under a range of environmental conditions (Figure 2b, subpanel ii),
underpinned by causing adaptive changes in the genome (Figure 2b, subpanel iii). Concepts like
phenotypic reaction norms, which describe how trait values change across varying environmental
clines, are especially helpful to describe this variation and how different organismal units (species,
populations, individuals) respond differently to their environments. Importantly, this can be de-
scribed quantitatively, using a range of functions [e.g., linear, quadratic, threshold; see Figures 2
and 3 (59)]. Reaction norms and trait performance curves are useful when selecting for plas-
tic responses. Operationally, this can include breeding successive generations of individuals with
wider-than-average trait responses, theoretically resulting in wider population distributions in that
trait over time or more rapid convergence on a fitness-enhancing trait value.This is especially true
given that plasticity likely has a heritable genetic component via the generational transmission of
mechanisms determining the range of phenotypic plasticity (56, 60). However, maximal plasticity
comes at a cost (e.g., energetic costs) and is therefore limited but has selective advantages where
more plastic populations evolve more quickly. Aside from the genetic underpinnings of plasticity,
there is also a likely understudied epigenetic influence via methylation or histone modification
(see 61, 62). It has long been thought that organisms with higher-than-average plasticity should
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have a greater ability to maintain that plasticity in changing environments, effectively buying time
for populations to adapt (61). This may be true to a certain extent, but given that trait plasticity is
constrained by underlying genetics, this also sets the limits, and therefore the shape, of the fitness
functions (Figure 3a). In the case of thermal tolerance, it would set the limits of thermal perfor-
mance curves and therefore tolerance levels (63) (bounded as CTmin and CTmax) but not breadth
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Figure 2 (Figure appears on preceding page)

Leveraging plasticity for the selective breeding of resilient corals. (a) The coral holobiont phenotype is made
up of the coral host and a range of partners, including dinoflagellate photoautotrophs from the family
Symbiodiniaceae. Different taxa of these symbionts themselves display a wide range of phenotypes,
represented here in different colors. Various corals and symbiont species and individuals within those species
may contend with environmental pressures via acclimation (plastic shifts, within generations) and/or
adaptation (evolved shifts, between generations) through directional changes in populations to more tolerant
phenotypes. (b) Phenotypic variation of either the host or the symbiont can be selected for breeding, which
can be best tested in an experimental factorial tank setup. An experimental setting can confirm which
individuals have a resilient phenotype under stress (red coral in dark green tank) compared with less-resilient
individuals (white coral in dark green tank). These tests render information about the scope of trait variation
across clines, as well as the mechanisms underpinning them [like genomic architecture, shown here using
single-nucleotide polymorphisms (SNPs)]. (c) Selective breeding can then be performed via directed mixing
of eggs and sperm from donor colonies using a range of criteria, including corals from reefs of high and
variable temperature and those that have survived disturbance and moved to a suitable wild environment
(yellow or brown). Figure adapted with permission from Reference 30.

(64). Finally, and importantly, phenotypes can encompassmultiple fitness functions acrossmultiple
environmental parameters of an organism (multi-trait space envelopes), which together encom-
pass that organism’s or population’s niche. Taken together, this information is critical to facilitate
enhanced heat tolerance through targeted breeding in the wild. It also highlights underutilized
knowledge around acclimation and plasticity that will also be helpful to facilitate enhanced heat
tolerance (Figure 2c), which I focus on below.

2.2. How Far Can They Go? Investigating the Extent of Thermal Range
and Phenotypic Plasticity

There are limits to plastic responses (57, 61, 65). In relation to thermal tolerance, the range
of temperatures an organism can withstand is a fundamental biological principle dictated by
biochemical processes. This property then scales from individuals’ metabolism (e.g., stability of

b

27 35

Hotspot refugia
4.1.1

4.1.2

4.1.3

Fi
tn

es
s/

pr
ob

ab
ili

ty
of

 b
le

ac
hi

ng

c
Survivors

Tolerant

Sensitive

Pr
ob

ab
ili

ty
 o

f b
le

ac
hi

ng

Temperature stress (°C)Temperature (°C)
Temperature (°C)

Fi
tn

es
s

a

Width

Fitness
function

Upper
thermal

limit
Topt:

thermal optima
(heat tolerance)

CTmax
Tlimit

Acclimation 
(plasticity)

Adaptation
(genetically

�xed)

Variation in
tolerance

within
population

Figure 3

Conceptual illustration of how we can use quantitative functions to facilitate enhanced thermal tolerance through plasticity mechanisms
of both coral hosts and their algal symbionts. Quantitative functions like thermal performance curves (a) allow us to extract specific
parameters like the widths of curves to predict the breadth of possible adaptation in nature for conservation or via restoration practices
like selective breeding. To best optimize breeding across a range of traits, and to manage risks associated with these practices, a range of
mechanisms should be combined, including targeting individuals that fit three criteria: those sourced from hotspot refugia (4.1.1,
genetically fixed adaptation) (b), individuals from highly variable reefs resulting in wide phenotypic ranges (4.1.2, plastic acclimation)
(b), and survivors from disturbed reefs that are therefore likely to again have wide phenotypic ranges (4.1.3, plastic acclimation) (c).
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lipid membranes) up through to ecosystems (66). Hence, each species has a range of tempera-
tures at which it can function optimally, which can be defined quantitatively by the width of the
fitness function (Figure 3a). Determining the upper thermal tolerance limits for organisms is
essential given the immense pressure climate change–induced warming is putting on ecosystems
worldwide. In the context of thermal tolerance, the upper thermal limits are set by the measurable
ability of cells to physiologically contend with high temperatures and oxygen transportation. At
the population and ecosystem level, this control of temperature sets fundamental limits on several
ecological processes, including dispersal, reproduction, and ontogeny (67).

Developmental cost theory predicts a tight linkage between environmental temperature and
optimal physiological temperature (68) that, in turn, sets strict biological constraints on heat tol-
erance. Hence, there may be a limited capacity to constantly evolve upward (e.g., an evolutionary
cap), with evidence suggesting that tolerance may not go beyond 39–50°C (69, 70). This is possi-
ble through the reconstruction of evolutionary patterns and calculation of adaptive tempos after
historical disturbance events, ultimately inferring the limits to tolerance acquisition across the tree
of life (plants, ectotherms, endotherms) in aquatic and terrestrial systems. These limits, of course,
will depend on local adaptation, reflected in species distributions, and are thought of as develop-
mentally “costly” (63). Although ocean temperature is one, if not the, dominant driver of adaptive
genomic variation in the ocean (reviewed in 71), environmental tolerance limits and the upper lim-
its of marine organisms are driven by multiple pressures (e.g., hypoxia tolerance/O2 supply) (69)
as well as parental and developmental influence (63) (Figure 3a). In particular, early life-history
stages appear to have lower plasticity relative to adults, with 4.2–7.5°C, on average, needed during
development to induce a 1°C increase in tolerance (63).These various competing and constraining
influences shape the high variability documented across species in their ability to respond to stress
and the speed at which temperature tolerance evolves (70). They also give a strong fundamental
theoretical basis to understand how selection can be used in an applied conservation context.

2.3. Link Between Plasticity and Adaptation Potential

In the oceans, the central question is whether species, like corals, can acclimate or adapt fast enough
to a warming world. With ocean temperatures increasing (72), both increased thermal acclima-
tion (plasticity) and an evolutionarily conditioned underlying genomic architecture of tolerance
(adaptation) should increase fitness and be selected for (73). Therefore, both are potential routes
for enhanced thermal tolerance (73). Plasticity can take a somewhat mystical feel, whereas adap-
tation may appear a more tangible process given selection for underlying genetic changes over
generations. Plasticity can be demystified via a more mechanistic definition—that it smooths the
quantitative genetics fitness function (phenotype by fitness) (60). To illustrate, one can imagine a
single trait with two fitness peaks (see Topt in Figure 3a for an example of a peak). Increased phe-
notypic variance (the range of plasticity of the trait) increases the potential to transverse between
these two fitness peaks, although increased plasticity tends to accelerate only the initial phases of
adaptation by speeding up the search and selection of an optimal genotype (60).

However, it is important to distinguish between mechanisms of genetic adaptation and those
of plastic acclimation in traits like heat tolerance. Firstly, in the acquisition of heat tolerance,
plastic versus evolved responses are likely independent (16), meaning that the within-generation
enhancements of tolerance may not result in increased between-generation enhancements. The
contribution of plasticity to adaptation may vary generationally [e.g., decrease from the initial
generation (F0) to later generations (Fn) (74)] and spatially [increase plasticity and adaptation in
new environments—the Baldwin effect (75)]. This occurs when the initially plastic response is
optimized in the new environment, leading to enhanced fitness in that novel context (76).
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Secondly, when examined across a range of taxa and locations, plastic responses alone will
be insufficient to keep pace with warming trends, potentially due to the on-average lower lev-
els of plasticity potential relative to adaptation (16, 77). Encouragingly, ancestral plasticity can
lead to rapid selection and then adaptation [fewer than 1,000 generations (78)]. A good exam-
ple of this is coloration in lizards, which can vary their color based on length of occupancy on
lava flows (78). Genetic crosses of different-colored lizards revealed that the genetic underpin-
nings of this trait were attributed to de novo mutations under strong selection for coloration.
This ultimately led to rapid phenotypic changes given the short generation time for these lizards
(1–3 years). Generally, genetic adaptation follows the potential for plasticity (78). The role that
evolved and/or plastic adaptive responses have in helping species escape extinction is (a) inter-
active; (b) dependent on selection; and (c) influenced by the rate, variance, and autocorrection of
environmental change (56). Plasticity may also accelerate [Baldwin effect (74)] or slow [Bogert
effect (52, 56)] adaptation and itself may be adaptive [i.e., have an underlying genetic component
(56)]. Interestingly, the relative contribution of heritable variation will likely have a stronger effect
if plasticity is low (63), and if bothmechanisms are low, a more rapid pathway to extinction is likely.
Therefore, both acclimatory and adaptive mechanisms are necessary given their interactive effect,
and their interplay in driving thermal tolerance is of critical interest for predicting future species
longevity.

Linking adaptive potential to phenotype, plasticity of environmental tolerance, and underlying
genetics is a central theme of evolutionary research. Tractable systems like coloration in lizards
have become a key model (78). Genetic crosses of different-colored lizards have revealed the ge-
netic underpinnings of adaptive coloration (79) from genetic differences attributed to de novo
mutations on two genes under strong selection (S= 0.007–0.008) (78). Other systems, like corals,
have also received significant attention, especially for understanding the underpinnings of genetic
thermal adaptation, including variation between individuals and species in bleaching and mortal-
ity responses (sensitive versus tolerant; Figure 3b). Studies have also mapped seascape variability
(80) and heritability (48, 49) and quantified the mechanisms driving them at both the genetic
and transcriptomic level (49, 81, 82). Given that ocean temperatures are increasing (72) on reefs
that already exhibit high daily temperature variability, high thermal plasticity should be adaptive
(62, 83). From a breeding perspective, plasticity has received relatively less empirical scrutiny in
corals. Indeed, corals are highly plastic in their responses across a range of critical traits, includ-
ing temperature changes, coral metabolism, symbiont photosynthetic rates, gene expression, and
calcification (84). Coral tolerance to temperature ranges includes both lower and upper thermal
limits that cause bleaching (85–87). The lack of empirical study and manipulation is surprising
given the importance of the breadth and variation in plasticity in corals. The importance of plas-
ticity for coral survival is also underscored by modeling results showing that breadth of tolerance
was the most important parameter for predicating their long-term survival (88). Selective breed-
ing therefore should take advantage of the underlying phenotypic plasticity inherent in corals to
facilitate enhanced thermal tolerance (52) (Figure 3c).

3. LEVERAGING PLASTICITY IN CORALS FOR SELECTIVE BREEDING

3.1. Antagonistic, Synergistic, or Cumulative?

High plasticity increases the speed of and potential for adaptation (57). Within the conserva-
tion literature, successful rescue of populations has occurred when the abundance of individuals is
paired with the widening of fitness distributions, reflected in reaction norms (89). This knowledge
has direct implications for the feasibility of selective breeding in corals, where high and increasing
plasticity in both the host and the symbiont should be leveraged.The initial evidence, summarized
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below, suggests that a widening, not shifting, of fitness functions (Figure 3a,c) is beneficial, is likely
occurring, and may be a persistent feature of heat tolerance acquisition. Evolutionary constraints
of a widening, versus shifting,of tolerancemust also be considered.The literature on thermal niche
evolution of functional traits suggests that higher fitness is achieved with a narrower envelope and
higher thermal optimum, but that this requires greater nutrient requirements (90). Therefore, a
more generalist physiology may be easier to maintain during high-temperature stress, providing
a reason for its pervasiveness in both the coral and dinoflagellate symbiont systems. Finally, using
natural, underlying plasticity also provides an insurance against further changes in future environ-
ments because individuals or populations should be better able to maintain higher fitness across
a greater breadth of environments (91). How long this buffer can hold out will depend on the
thermal safety margins, the cumulative impact of multiple stressors, and the range of change in
the environment. How might these theories be operationalized?

3.2. Accounting for Plasticity in Both Partners

Variation in phenotypic plasticity is widespread across scleractinian corals, which is demonstrated
mainly by their variable growth forms but also in other traits, like their responses to environmental
stimuli.Of particular interest is the wide range of phenotypic responses of different species in rela-
tion to heat stress. This is often described as the “winners and losers” of marine heatwaves, which
may help to explain the highly patchy distribution of temperature tolerances across individual
genotypes and populations observed in many species across the globe (24, 92, 93).Mechanistically,
variability across coral taxa may be due to differences in mass transfer rates across growth forms
that influence the ability to eliminate radical oxygen species produced during stress. For exam-
ple, growth forms with higher volume-to-surface-area ratios may reduce heat exposure through
thicker tissue, leading to a greater shading of symbiont cells and allowing for the maintenance
of photosynthesis (24). Investigation has also revealed substantial individual genotypic variation
(94–96), which further contributes to explaining these broader patterns. Whatever the mecha-
nism(s) at play (62), this variation is critical to selective breeding, as it may reflect the underlying
genetic diversity. Increased genetic diversity provides the needed variation on which natural selec-
tion may act. This in turn increases adaptive potentials, through which either natural or artificial
mechanisms, like breeding, may act.

3.3. Plasticity of the Host

Breeding has focused mainly on targeting species or individuals at the extreme end of the phe-
notypic range for thermal tolerance, i.e., those that are highly tolerant to heat—the “survivors”
(39, 47, 49, 54, 55, 81, 97, 98, 99). Breeding has resulted in initial gains in heat tolerance, in-
cluding boosts of 2.6–3.08°C (mean 2.9°C ± 0.08) above the expected summertime maximum
temperatures for specific reef locations (39, 54, 55). Importantly, there have been calls for a more
nuanced approach to selection that includes other critical fitness-related traits, like growth (100,
101).Determining the key traits or combination of traits to focus on for breeding is essential. This
is because an increase in the hard upper thermal limit of corals likely will not be as helpful as ini-
tially thought, and instead, an emphasis on widening the phenotypic scope may be best. Firstly, it
is unlikely that specific individuals will be the best performers in every transplanted environment
(see 95). Furthermore, the phenotypic margins (i.e., the extremes or edges) of thermal limits often
hold the lowest potential for evolutionary rescue (74), because tolerance may initially peak in the
middle of a species range before decreasing asymmetrically outward (e.g., by 25%), likely due to
hitting the hard upper limits of tolerance dictated by the physiological constraints discussed in
Section 1.2 (e.g., protein denaturation) (74).
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Given this information, facilitating enhanced heat tolerance via targeted breeding of plasticity
mechanisms should be examined.This would include a greater emphasis on widening fitness func-
tions, including selecting individuals with wider-than-average fitness functions, instead of only
increasing the upper limits, when assessing selective breeding. This may be especially true for
corals returned to the wild after breeding. After being selectively bred in the laboratory using a
crossing design for heat tolerance, coral offspring were returned to the ocean to assess their trait
performance in the wild (i.e., outside of the selective regime of a laboratory-based setting). These
results demonstrated that selectively bred corals showed no reduced fitness in growth or survival
during non-warming years, relative to purebred corals native to that specific reef. This work also
showed that breeding for specific crosses could widen rather than shift the mean fitness function
and therefore environmental tolerance (100).

3.4. Symbiont Plasticity

The interplay between coralmetabolism and Symbiodiniaceae photosynthesis fuels the physiology
of the coral holobiont [see the concept of the extended genotype (20, 102)]. This interdependence
is evidenced by the obligate nature of the symbiosis across coral taxa (103). Dynamic processes
regulate the symbiont community composition inside corals, including recognition, engulfment,
proliferation, and dynamic stability (reviewed in 104). These symbiont communities, regulated
through host mechanisms, are heritable (105) and likely driven by ligand proteins of both part-
ners (reviewed in 104). In particular, the initial gateway—recognition—is one of the underlying
mechanistic limitations for symbiont infection driving specificity.

Patterns in specificity are evident across distinct host–symbiont pairings across corals (106),
underscoring the finely tuned and dynamic nature of the symbiosis (107).The diversity of Symbio-
diniaceae taxa in the Indo-Pacific is generally high (20), with many taxa present at low abundances
(108, 109) and some evidence for single-taxa domination, especially in the Caribbean (110) (but
see 111 for full discussion). Stable symbiosis with a complex community is possible under con-
ditions of resource partitioning (112). Therefore, the total community of symbionts makes up a
symbiont phenotype,which goes on to influence the host phenotype and can therefore be selected,
and manipulated, via breeding (113). For example, if an ideal symbiont phenotype is known (res-
cue genotype, sensu 113)—for instance, one that is stress or heat tolerant—that information can be
used for targeted breeding. This is achieved by calculating the difference between the phenotypic
mean of the offspring and the current phenotypic mean of the breeding adults to determine R,
the response to selection, needed to achieve a desired phenotype after breeding. Simulations show
breeding interventions targeted at selecting tolerant symbiont phenotypes are achievable across
multiple coral species after only relatively few generations (see figure 2 in 113).

Importantly, this underlying, natural variation in symbiont phenotypes represents the opportu-
nity in which the holobiont phenotype can be enhanced, outlined numerically using quantitative
genetic models (113). Phenotypic changes under experimental settings show the potential for
manipulating hosts and symbionts simultaneously (49). For example, tightly linked experiments
between hosts and symbionts manipulated at high and low temperatures also demonstrate that
host phenotypic changes were followed by corresponding phenotypic changes in the symbionts
(114). Hence, plasticity in the composition of the symbiont community, not just in the sym-
biont phenotypes themselves (115), determines the holobiont response to environmental stress.
This response is underpinned by the vast diversity of symbionts that can be found within corals,
which can span across at least seven described and phenotypically distinct genera from the family
Symbiodiniaceae, including Cladocopium, Durusdinium, Symbiodinium, and Breviolum (20). Repre-
sentatives from some or all of these taxa can be found simultaneously in the tissues of different coral
species. Plasticity in the trait of symbiont community therefore manifests in the wild, when these
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communities undergo dynamic regulation of diversity to modify community abundances from the
reservoir of Symbiodiniaceae within their tissues (shuffling), and then potentially shuffle back to
similar communities pre-bleaching (116). The replacement of community members (switching)
may also occur and parallels other systems [e.g., plants that eject microbes through the forceful,
host-directed, wave expansion of hair cells (117)]. Shuffling, in particular, contributes to rapid
acclimation and adaptation (118).

Given their mathematically tractable properties, the quantification of the symbiont community
becomes possible to parameterize, including how various aspects of tolerance can be manipulated.
Interestingly, the breadth of symbiont thermal tolerance appears to be the critical parameter in
determining long-term survival of coral reefs, generally, in a modeling context (88, 118). If ap-
plied to the quantification of plasticity of individual taxa, selection influencing the width (again,
not directionality) of the fitness function was predicted as critical to enhancement (115). So, as
discussed theoretically above, the natural capacity for tolerance via plasticity will reach a limit, as
shown experimentally in the host coral. Specifically, although the onset of the shuffling response
is rapid (multiple seasons or 5–10 years), its capacity to ameliorate heat stress will likely run out by
2040, when all “possible” heat-tolerant symbionts are projected to dominate in abundance (118).
Moreover, complete transitions to heat-tolerant communities in corals are unlikely (see 119) due
to the heritable constraints on symbiont communities (21). This highlights the possible use, but
also limits, for plasticity in selective breeding. Looking forward, these symbiont manipulations (as
described above) can also be used to amplify tolerance past what is possible if focusing only on the
coral host.

4. USING PLASTICITY FOR BREEDING

The patterns discussed above in phenotypic plasticity in host and symbiont tolerance have led
researchers to search for populations of corals that naturally exhibit a wide range of tolerances to
temperatures, as a proxy for the ability to adapt rapidly (see 120–122). Recent reviews (34, 39, 50)
have set out the more technical aspects and critical husbandry steps in the process of selectively
breeding corals, and the reader is referred to those texts for details. Further important technical
aspects include the limitations or unknown information around coral breeding and rearing, espe-
cially for gonochoristic corals and those with unknown reproductive timings (51). There is also
a need to expand methods to new species, perform in-depth risk assessments of trait trade-offs,
and characterize the underlying mechanisms of heat tolerance. In the short term, three lines of in-
formation concerning plasticity can be used for breeding as criteria to locate select resilient coral
genotypes with the ability to survive warming and simultaneously transmit heat tolerance to future
generations. In this way, the thermal history of adult coral can be used to build predictive models
to guide conservation management or intervention science using a “climate predictive strategy”
outlook (123). This strategy can be further operationalized to finding resilient coral genotypes
once criteria are chosen (55). Other criteria for selection have been reviewed elsewhere, includ-
ing proxy measures like rapid heat stress tests (124). Therefore, the targeted breeding of genetic
backgrounds associated with plasticity (plasticity alleles) should be incorporated into coral selec-
tive breeding moving forward. This highlights that where possible, experimental evidence should
bridge the gap with theoretical genetics in design.

Various experiments can be performed to examine the extent of host and symbiont plasticity. In
host corals, this is readily tested via crosses of parental corals from distinct ends of a physiological
trait’s spectrum of phenotypes (74) (Figure 2). Given that most impacts from climate change stem
from warming, the predominant traits of interest for breeding have been survival under warming
stress, bleaching tolerance (measured as a change in coloration or symbiont cell density), and
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photosynthetic health of the symbiont. Accompanying data include photographs that can track
coral color, growth through skeletal deposition, survival, or tissue necrosis. In the symbiont part-
ners in which sexual reproduction remains somewhat elusive (20), asexual propagation of cell lines
under selection in the laboratory over multiple generations is an ideal setting for studies of plas-
ticity and adaptation (115). As with the host corals, various stressors (often heat or nutrients) can
be applied to replicate cell lines of symbiont cells and then compare those to cell lines grown un-
der control ambient conditions. Various traits can be measured, including photosynthetic health,
pigment content, cell division rate, host cell infectivity, and a range of other metabolic parameters.

4.1. Selecting Resilient Broodstock

It is now clear that the thermal history of corals shapes their future responses as being more sen-
sitive or tolerant to predicted heatwave conditions (125). Adult corals used for breeding, termed
broodstock, should be selected from specific refugia reefs that include short-term exposure (ac-
climation, i.e., a post-bleaching event) and local conditions with long-term high temperature
variability (adaptation of populations) (122). Indeed, the term climate refugia has been used to
describe locations that will escape warming largely due to local oceanography (126) or locations
that already demonstrate a greater likelihood of adaptation to future conditions, exemplified by the
back reefs of American Samoa (83).The latter type of climate refugia are ideal locations for brood-
stock selection, given that these refugia encompass signatures of both acclimation and adaptation
to warmer temperatures.This corresponds to theory predicting that in stressful environments, the
variance—not only the mean effect—should increase resilience (127).Hence, stress begets plastic-
ity. The importance of finding the optimal broodstock is outlined as one of the “10 Golden Rules
for reef restoration” (119) to facilitate conservation and restoration action including adaptation
(8, 128). This information is critical because, absent genetic information, trait and habitat diver-
sity are likely to be useful proxies (129). In summary, various lines of evidence now exist in our
understanding of what makes some corals more resilient to stress compared to others, including
(a) long-term exposure to high temperatures (Persian Gulf ), (b) exposure to more variable com-
pared to more stable thermal environments (55, 122, 130–133), and (c) past exposure to heat stress
(119, 134, 135). These are outlined individually below. Importantly, each can be used in a targeted
breeding approach.

4.1.1. Long-term exposure to high temperatures. Corals are generally thought to exist close
to their thermal optima (Topt) (Figure 3a), generally approximately 1°C above their summer
MMM (136), with the exact value depending on local adaptation, driven by the evolutionary his-
tory of that region. The search for hardy corals and the survivors that can exist well above MMM
during mass-bleaching events is being explored (97, 121, 137), and experimental validation of
these colonies is underway (54). For example, corals from the Red Sea are thought to be some of
the most heat tolerant given their thermal history and responses to warming (hotspots concept),
where metabolism can be maintained to potentially 8–15 degree heating weeks (136). This range
corresponds to temperatures around 31.9–33°C (138). This may equate to lower MMM in other
locations, like the GBR [26.7°C (55)] or Palau (139). Selecting corals from these hotspot reefs for
breeding should render resilient broodstock but would be the equivalent to targeting the extreme
end of the spectrum in terms of phenotypic tolerance (Figure 3a,b).

4.1.2. Exposure to more variable thermal environments. Aside from high temperatures,
temperature variability, and in particular daily variability, has also created pockets of heat tol-
erance. This includes the GBR (daily range conditions of ∼0.51°C) (55), Palau (e.g., pockets with
85% higher mean diurnal range of ∼0.59°C) (139), and other locations globally (0.5–5°C) (131).
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As discussed above, these patterns should be unsurprising given evidence that environmental vari-
ation leads to increased plasticity (56), thereby facilitating adaptation. The evidence from rapidly
deteriorating environments leading to faster evolution supports this, compared to stable environ-
ments (140), including evidence of changing breeding patterns in birds and mammals in response
to increased environmental variability (56). These highly variable reefs (locations within Palau,
American Samoa, and GBR) represent environmental conditions that are ideal to target individ-
uals with variable (wide) phenotypic responses (Figure 3b,c), and corals selected there will more
likely exhibit high plasticity. Aside from selecting broodstock directly from the wild, another op-
tion would be to subject adults or offspring to ecologically relevant thermal variation to select for
increased plasticity (39, 40). As discussed above, it is not completely clear what mechanism(s) these
highly variable conditions create (e.g., physiological underpinnings that make themmore resilient
to stress). These environments may select for corals with gene expression mechanisms primed for
heat (81); those that are highly flexible; or those that have adaptively rapid, robust, and reactive
responses (frontloading) when stress is applied (82).

4.1.3. Past exposure to heat stress. Reefs should also be selected considering those that have
survived disturbance and past exposure to stress (39, 141). As suggested above, this not only must
include selection for coral genotypes of surviving corals but also should select for their com-
munities of symbionts as well as a phenotype (Figure 3b,c). Global meta-analyses using remote
sensing have revealed that bleaching-resistant reefs are often associated with temperature metrics
like high variability in seawater temperatures (130) or specific signatures of symbiont commu-
nities (119, 135). This again suggests the importance of temperature variability (Section 4.1.2).
The ability to shuffle or switch symbionts is essential (116) for maintaining those changes under
repeated bouts of stress (142). Environmental data related to stress, combined with genetic (gene
flow) and ecological processes (dispersal) (45, 143), will help to resolve the underlying patterns in
survival across large reef expanses to identify these locations. Indeed, studies are already describing
the upper thermal limits of “winning” and “surviving” corals and where protective heat tolerance
mechanisms “run out.” For corals, this may occur at +4.4°C (141) or up to +7°C, at temperatures
as high as 37°C (133).

4.2. Selecting the Receiving Environment

A long-standing worry in conservation and restoration is the impact of the interaction between
genetics and the environment [G × E (41)]. This interaction manifests when the “new” genotypes
exhibit unexpected phenotypes in their new environment. These new genotypes are produced
either from the directed movement of collected individuals from the wild or from breeding of
preadapted genotypes. Many studies have attempted to quantify the impact of G × E but have
done so in experimental plots that are, by design, as homogeneous as possible (44), potentially
underestimating G × E impacts. Recent meta-analysis suggests an overestimation of impacts of
trait trade-offs, which are a manifestation of G × E impacts (144). Given the highly heterologous
environments of reefs, critical information is needed to better understand how selectively bred
phenotypes perform in novel environments (100). Importantly, we can look to natural systems to
understand this, for example, the large impact that parental population history has on the success
of population mixing during range expansions (42).

In the coral context, the receiving environment is critical. If climate change emissions are not
addressed, the receiving environment will not be adequate for these individuals if thermal tol-
erance limits are exceeded (limits discussed above). Next, the biophysical considerations of the
environment are essential, including the spacing of reefs and connectivity (reviewed in 145). The
amplitude of climate change variability is also important, where the selective advantage of bred
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corals diminishes in cold years, and the timing of arrival and frequency of those cold years im-
pact the retention of heat-tolerant alleles in the receiving populations (52). This is likely caused
by changes in fluctuating selection driven by differences in climate amplitude and predictability
(146). Finally, gene flow, selection, and demographics are all critical to population persistence (147)
and must be quantified and modeled within any scenario of selectively bred release into a particu-
lar environment. Systems that are particularly tractable to experimentation and molecular studies
of evolution (i.e., model systems) are essential to answering these questions. These may include
organisms with short life cycles and amenability to laboratory rearing, manipulation, and molecu-
lar techniques. Indeed, the importance of the receiving environment can be highlighted in classic
evolutionary model systems like Heliconius butterflies, which demonstrate the interplay between
pressure exerted by admixture and divergence driven by selection and isolation, underscoring that
divergence does not necessarily occur in a linear manner (148).

In summary, selective breeding holds high potential for understanding both fundamental in-
formation about the potential for acclimation and adaptation in marine species and can be used
as an applied conservation tool. However, the unpredictability of evolutionary change poses a
challenge. Climate change will also bring instability in weather, likely increasing the cumula-
tive impact of other stressors with warming, including changes in salinity or nutrient inputs.
Our current challenge is to develop predictably heat-tolerant corals that can withstand a range
of other stressors simultaneously. A focus on leveraging phenotypic plasticity at the same time
as adaptive potentials (i.e., genetic main effects) is the paradigm shift needed now. Ultimately,
the use of such methods must be balanced between investing in resources that use adaptive prin-
ciples to conserve and other strategic resourcing around restoration (149). As an applied tool,
breeding will likely only buy limited time. Emphasis should thus be on mitigating the impacts of
warming. Indeed, this is the difference between proactive (conservation) versus reactive (restora-
tion) approaches (4). Eventually, corals’ natural adaptive capacity will run out, no matter the
resiliency of the source population selected, underscoring the need for rapid action on climate
change.

SUMMARY POINTS

1. Given the extreme trajectory of warming the oceans are on, coral reefs as we know them
today are unlikely to persist without significant acclimation or adaptation.

2. Facilitating enhanced thermal tolerance via targeted breeding of plasticity mechanisms
is underutilized. Breeding from the perspective of heat-tolerance plasticity, compared to
maximal heat tolerance, has received comparatively less attention.

3. Breeding with a focus on the underlying symbiont community compared to the genetics
of the host is also lacking. Both plasticity and breeding for the symbiont community
should be undertaken.

4. Various methods have revealed that high monthly mean temperatures, high daily vari-
ability, and past signatures of bleaching are all predictive of corals with high tolerance
and, importantly, an enhanced ability to transfer that tolerance. This information must
be used to find resilient, highly plastic reefs for breeding of the host or symbionts and to
identify vulnerable populations, assisting managers in protecting “high-value” reefs.

5. Given the unpredictability of future climates, selective breeding must use genetic main
effects and phenotypic plasticity to produce corals able to withstand cumulative stressors.
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