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Abstract

Snake venoms are primarily composed of proteins and peptides, and these
toxins have developed high selectivity to their biological targets. This makes
venoms interesting for exploration into protein evolution and structure–
function relationships. A single venom protein superfamily can exhibit a va-
riety of pharmacological effects; these variations in activity originate from
differences in functional sites, domains, posttranslational modifications, and
the formations of toxin complexes. In this review,we discuss examples of how
themajor venom protein superfamilies have diversified, as well as how newer
technologies in the omics fields, such as genomics, transcriptomics, and
proteomics, can be used to characterize both known and unknown toxins.
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Because toxins are bioactive molecules with a rich diversity of activities, they can be useful as ther-
apeutic and diagnostic agents, and successful examples of toxin applications in these areas are also
reviewed. With the current rapid pace of technology, snake venom research and its applications
will only continue to expand.

1. INTRODUCTION

Although venomous snakes are associated with mortality and morbidity, responsible for the deaths
of more than 100,000 people and disabling more than 400,000 people each year (1), compounds
from their venoms have been developed into therapeutic and diagnostic agents, successfully be-
ing used to treat ailments such as hypertension and diagnose hemostatic disorders. Snake venoms
are complex cocktails of many different proteins and peptides, and a single venom protein family
within this mixture can exhibit a multitude of biological activities. This creates limitless oppor-
tunities for explorations into pharmaceutically interesting compounds that high-throughput and
sensitive omics technologies can help to identify and characterize.

Venom profiling with omics technologies, termed venomics (2, 3), has been proceeding at a
rapid rate, especially in regard to overall snake venom compositional characterization (4, 5). Ve-
nomics is an integration of the fields of proteomics, transcriptomics, and genomics. Technologies
in these fields are useful tools to explore toxin diversity, which can result from variations in nu-
cleotide sequences on a genome or transcriptome level, as well as posttranslational modifications
and formations of protein complexes observable at the proteome level.

This review highlights how certain venom protein superfamilies are able to functionally diver-
sify, what techniques are useful to study toxin diversity, and how these toxins have been repurposed
as therapeutic and diagnostic agents. Snake venom proteins are the products of millions of years
of evolution (6), and during this time they have developed high specificity to select receptors,
channels, and substrates. In addition to being versatile, these proteins are also incredibly stable,
commonly crosslinked by disulfide bonds that prevent degradation in an extracellular environ-
ment. Therefore, snake venoms provide a natural source of bioactive and stable proteins with
structure and function relationships of medical relevance.

2. VENOMOUS SNAKES

Of the more than 3,700 extant snake species (7), a minority are known to inflict clinically sig-
nificant bites on humans. Medically important venomous snake species are predominantly from
the families Elapidae and Viperidae, with tubular fangs positioned anterior in the upper jaw (8)
(Figure 1a,b). Snakes of the families Colubridae, Homalopsidae, and Lamprophiidae (9, 10) can
possess grooved or ungrooved fangs positioned posterior in the upper jaw (an exception being
some snakes of the subfamily Atractaspidinae) and hence are referred to as rear-fanged (10, 11)
(Figure 1c), but not all species in these families are venomous, and even fewer are of medical
significance (12, 13).

Although trends in venom composition are observed within each snake family, these trends are
not necessarily present for all species. For example, elapid snakes have venoms largely dominated
by three-finger toxins (3FTxs) and phospholipase A2 enzymes (PLA2s) (4, 14), whereas venoms
from viperid snakes contain primarily metalloproteinases, serine proteases, and also PLA2s (4,
14). Thus, elapid snakebites induce neurotoxic symptoms, and viperid snakebites result in tissue
destruction and coagulation symptoms. Venoms from rear-fanged snakes can be either elapid-like,
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Naja siamensis

a    Elapidae

Trimeresurus hageni

b    Viperidae

Spilotes sulphureus

5 mm

c    Various families; rear-fanged

Figure 1

Fangs in venomous snakes. Snakes of the families (a) Elapidae and (b) Viperidae have fangs anterior in the upper jaw, in contrast to
(c) rear-fanged venomous snakes with fangs positioned posterior. Elongated fangs are circled.Naja siamensis (Indochinese spitting cobra)
and Trimeresurus hageni (Hagen’s pit viper) images are reproduced with permission from Vonk et al. (10), and rear-fanged snake, Spilotes
sulphureus (Amazon puffing snake), images reproduced with permission from Modahl et al. (17).

with predominately 3FTxs, or viperid-like, with metalloproteinases in greatest abundance (15). A
single toxin superfamily can induce multiple pharmacological effects, and how such functional
diversity is achieved within each superfamily is briefly discussed below.

3. TOXIN DIVERSITY IN SNAKE VENOM

3.1. Functional Site Differences: Three-Finger Toxins

3FTxs make up the large majority of toxins in elapid snake venoms. They are abundant in the
venoms of some rear-fanged snake species (16–18), and they are expressed in the venom gland
transcriptomes of some viperid snakes (19–21). These toxins are small (60–80 amino acid residues
in length), nonenzymatic proteins that share a conserved structure of three β-stranded loops
crosslinked by four disulfide bridges (Figure 2a) (22–24). The three loops project outward, re-
sembling three fingers of a hand (hence the name three-finger toxins). 3FTxs can be neurotoxic,
acting as antagonists of nicotinic acetylcholine receptors (nAChRs) (25–27), muscarinic acetyl-
choline receptors (mAChRs) (28, 29), adrenergic receptors (30), and GABA receptors (31), and
even binding to and altering the activation of ion channels (32–34). These toxins can also be anti-
coagulants (35–37). The variety of pharmacological effects of 3FTxs are due to residue differences
between 3FTxs. These residue variations alter target interactions, and residue substitutions can
change binding affinities to entirely different receptors or substrates.
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Figure 2

Structural variations in three-finger toxin (3FTx) family. (a) Short-chain 3FTx erabutoxin a (PDB ID: 1QKE) with four disulfide
bonds. (b) Long-chain 3FTx, α-cobratoxin (PDB ID: 2CTX), has a fifth disulfide in loop II, and (c) nonconventional 3FTx candoxin
(PDB ID: 1JGK) has a fifth disulfide within loop I. Additional interlinking disulfides can create 3FTx complexes, such as
(d) heterodimeric irditoxin (PDB ID: 2H7Z) or (e) dimeric α-cobratoxin (PDB ID: 4AEA). Toxin structural loops are labeled and
relevant disulfide bonds circled.

Additional cysteines can generate minor alterations to the 3FTx scaffold by forming disulfide
bonds. Long-chain neurotoxic 3FTxs have a fifth disulfide in loop II (Figure 2b), and nonconven-
tional 3FTxs have a fifth disulfide in loop I (Figure 2c). These additional disulfide bonds alter the
confirmation of these loops and the toxin’s binding ability to α7 nAChRs for long-chain neuro-
toxins (38) and to mAChRs for nonconventional 3FTxs (39, 40). Additional cysteine residues can
also interlink 3FTxs, creating covalently formed dimers (Figure 2d,e). In rear-fanged venomous
snakes, the 3FTx heterodimeric complexes irditoxin (41) and sulditoxin (17) have increased toxi-
city and selectivity to taxa-specific receptors (lizard nAChRs > mammalian nAChRs). Complexes
formed from noncovalent interactions are also present; examples include κ-bungarotoxins (42)
and haditoxin (43).

In 3FTxs, distinct residues contribute to their interactions with target proteins. For mam-
bin, isolated from Dendroaspis jamesoni ( Jameson’s mamba), the tripeptide sequence Arg43-Gly44-
Asp45 (RGD) interferes with the binding between fibrinogen and its receptor glycoprotein IIB-
IIIa (αIIbβ3) to inhibit platelet aggregation (37). This tripeptide sequence is located in loop III. A
different set of residues are responsible for α-neurotoxins’ binding to nAChRs. Site-directed mu-
tagenesis studies have identified distinct residues in erabutoxin, α-cobratoxin, and �-neurotoxin
responsible for nAChR interactions (44–46). Thus, 3FTx structure–function relationships will
help in engineering target-specific 3FTxs of pharmacological interest.

3.2. Domain Differences: Metalloproteinases

Snake venom metalloproteinases (SVMPs) have been found in all snake venoms, with viper ven-
oms containing at least 30% SVMPs (14, 47, 48). SVMPs are characterized by the presence of the
Zn2+-binding motif HEXXHXXGXXH at the catalytic site and are closely related to mammalian
ADAM (a disintegrin andmetalloproteinase) and ADAMTS (ADAMwith thrombospondin type-1
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Figure 3

Snake venom metalloproteinase domain structure. (a) Schematic representation of domain structures of P-I, P-II, and P-III classes of
metalloproteases. P-I metalloproteases contain only the catalytic metalloproteinase (M) domain, and P-II metalloproteinases have M
and disintegrin (D) domains. P-III metalloproteinases have a M, D, and cysteine-rich (C) domain. The black arrow represents
posttranslation processing of P-II metalloproteinases to yield venom disintegrins. (b) The 3D structure of AaHIV (PDB ID: 3HDB), a
P-III metalloproteinase from Deinagkistrodon acutus (five-pacer viper) venom, is shown with labeled domains.

motif ) but differ in domain organization and size, ranging from 20 to 100 kDa (48, 49).The effects
of SVMPs include hemorrhage, coagulopathy, fibrinolysis, apoptosis, and the activation of factor
X and prothrombin (47). SVMPs function by degrading endothelial cell membrane components
or target proteins involved in coagulation, such as fibrinogen or platelet receptors (48). These
enzymes are the primary factors responsible for local and systemic hemorrhage from snakebite
(48).

There is an observed difference in activity depending on the presence or absence of SVMP do-
mains. SVMPs of the P-III class are composed of a metalloproteinase domain, a disintegrin-like
domain, and a cysteine-rich domain; P-IIs have metalloproteinase and disintegrin domains; and
P-Is have only a metalloproteinase domain present (47) (Figure 3a). Domain loss has resulted in
the creation of the P-II and P-I classes (50). In comparison to P-Is, P-IIIs exhibit greater hem-
orrhagic activity and an overall greater diversity of biological activities (48, 49). Posttranslational
processing of SVMPs has also generated additional venom activities. The P-III class of SVMP
does not undergo posttranslation domain cleavage (Figure 3b), but snake venom disintegrins are
the products of P-II SVMP proteolytic domain processing (51) (Figure 3a).Disintegrins are small
proteins, 40–100 residues in length, that can inhibit platelet aggregation by binding to platelet fib-
rinogen integrin αIIbβ3 or inhibit cell migration by targeting αvβ3 and α5β1, among other integrin
targets (52). Disintegrins have also been found to aid in prey relocation for viperid snakes (53), ex-
emplifying how one venom superfamily, SVMPs, can diversify biological functionality via domain
loss and posttranslational processing (54).
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3.3. Glycosylations: Serine Proteases

Snake venom serine proteases (SVSPs) are common components of snake venoms. In the venoms
of some viperid snake species, they are the second most abundant venom protein superfamily (55).
These enzymes interfere with blood clotting and can function as either procoagulants, by acti-
vating coagulation factors or inducing platelet aggregation, or anticoagulants, by, e.g., activating
protein C (56, 57). SVSPs are 37–40 kDa in size, and all share the conserved catalytic triad of
residues His57, Asp102, and Ser195, with the structural loops surrounding the active site varying in
both amino acid composition and length, contributing to the substrate specificity of these enzymes
(58). Although SVSPs share a high degree of sequence identity (57–85%), they have been found to
be specific toward a given macromolecular substrate, targeting substrates of the coagulation, fib-
rinolytic, and kallikrein–kinin systems and platelet surfaces to cause hemostatic system imbalance
(59, 60).

A primary feature of SVSPs is that most are glycoproteins with a variable number ofN- andO-
glycosylation sites, resulting in differences in molecular masses and isoelectric points depending
on these PTMs.Most have 5–30% carbohydrates, but some have been reported to have more than
60% (58, 61). The locations of glycosylations attached to SVSPs are variable within this venom
protein superfamily (Figure 4). These glycosylations can inhibit or enhance activity (61). SVSP
glycosylations can also hinder the binding of common protease inhibitors (61). The resistance
of these proteins to inhibition has generated interest in their use for diagnostics, examples of
which, such as Reptilase time, are discussed in Section 5 below. Additionally, SVSPs are not the
only venom proteins with activity dependent on glycosylations; hemorrhagic properties of SVMPs
have been observed to be linked to glycosylation (62).

3.4. Toxin Complexes: Phospholipase A2 Enzymes

PLA2s are ubiquitous to Elapidae and Viperidae snake venoms. They have also been observed in a
few rear-fanged snake species (63) but rarely occur in abundance in these venoms. PLA2s catalyze
the Ca2+-dependent hydrolysis of glycerophospholipid sn-2 fatty acyl bonds, which liberates
lysophospholipids and fatty acids (64). However, PLA2s are also functionally diverse enzymes
in snake venoms, with additional activities including neurotoxicity, myotoxicity, cardiotoxicity,
hemolysis, and anticoagulation (65). These enzymes mostly exist as monomers of approximately
13–15 kDa, but several have been identified as complex forming with other PLA2s or other
proteins (66).

Presynaptic neurotoxin β-bungarotoxin from the venom of Bungarus multicinctus (many-
banded krait) (67) consists of a PLA2 subunit covalently crosslinked by a disulfide bond to a
Kunitz-type serine protease inhibitor (68) (Figure 5a). PLA2 complexes can also be noncova-
lently joined, such as heterodimeric PLA2 complexes vipoxin, from Vipera ammodytes meridionalis
(Bulgarian nose-horned viper) (69) (Figure 5b), and crotoxin, the major toxic component in the
venom of Crotalus durissus terrificus (South American rattlesnake) (70). Crotoxin is composed of
one nontoxic acidic subunit named crotapotin (subunit A), which lacks PLA2 activity, and a second
basic subunit (subunit B) that is weakly toxic (71) (Figure 5c). Together these subunits form a
potent neurotoxin that blocks transmission of nerve signals at neuromuscular junctions. Subunit
A acts as a chaperone, blocking subunit B from binding to nonspecific tissues and guiding the
complex to the target site to increase potency. After binding to the synaptic membrane, the toxin
complex dissociates (72). PLA2 complexes similar to crotoxin have been isolated from multiple
rattlesnake species, including Crotalus vegrandis (Uracoan rattlesnake) (73), Crotalus basiliscus
(Mexican west coast rattlesnake) (74), Crotalus viridis concolor (midget faded rattlesnake) (75),
Crotalus horridus (timber or canebrake rattlesnake) (74), Sistrurus catenatus tergeminus (Massasauga
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a b

c 4E7N    IIGGDECNINEHRFLVALYTSRSRTLFCGGTLINQEWVLTAAHCDRKNFRIKLGMHSKKV    60
1OP2    VIGGNECDINEHRFLVAFFNT--TGFFCGGTLINPEWVVTAAHCDSTNFQMQLGVHSKKV    58
        :***:**:*********::.:    :******** ***:****** .**:::**:*****

4E7N    RIMGWGRISPTEGTYPDVPHCVNINLLEYEMCRAPYPEFELPATSRTLCAGILEGGKDTC   180
1OP2    RIMGWGSITPVKETFPDVPYCANINLLDHAVCQAGYPEL--LAEYRTLCAGIVQGGKDTC   176
        ****** *:*.: *:****:*.*****:: :*:* ***:   *  *******::******

4E7N    KGDSGGPLICNGQFQGIASWGDDPCAQPHKPAAYTKVFDHLDWIENIIAGNTDASCPP     238
1OP2    GGDSGGPLICNGQFQGIVSYGAHPCGQGPKPGIYTNVFDYTDWIQRNIAGNTDATCPP     234
         ****************.*:* .**.*  **. **:***: ***:. *******:***

4E7N    PNEDEQTRVPKEKFFCLSSKNYTLWDKDIMLIRLDSPVKNSKHIAPFSLPSSPPSVGSVC   120
1OP2    LNEDEQTRNPKEKFICPNKNNNEVLDKDIMLIKLDKPISNSKHIAPLSLPSSPPSVGSVC   118
         ******* *****:* ..:*  : *******:**.*:.*******:*************

Figure 4

Snake venom glycosylated serine protease structures.N-acetyl-d-glucosamine posttranslational modifications are shown on the crystal
structures of (a) Ahv-TI-I (PDB ID: 4E7N) and (b) Aav-SP-II (PDB ID: 1OP2). (c) An alignment of the two protein sequences
highlights the different asparagine (N) glycosylation sites, shown in red.

rattlesnake) (74), Crotalus oreganus helleri (Southern Pacific rattlesnake) (76), and the well-known
Mojave toxin from Crotalus scutulatus (Mojave rattlesnake) (77), among others (74, 78, 79).
The number of PLA2 subunits that make up these toxin complexes can vary, with most (e.g.,
β-bungarotoxin, crotoxin, and Mojave toxin) having only two subunits and others having three
[taipoxin (80)] or five [textilotoxin (81, 82)].

PLA2s are examples of a large venom protein superfamily that has expanded biological activity
and increased toxicity by forming protein complexes, but many other venom protein superfamilies
have also employed this strategy; previously mentioned were covalent and noncovalent 3FTxs,
and other venom protein complexes include SVMPs, disintegrins, SVSPs, L-amino acid oxidase
(LAAO), and snaclecs (snake venom C-type lectins) (66).

3.5. Minor Toxin Complexity

Other protein families present in snake venom include snaclecs, cysteine-rich secretory
proteins (CRiSPs), LAAO, acetylcholinesterase, nucleases and nucleotidases, growth factors,

www.annualreviews.org • Omics Technologies and Snake Venom 97
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b    Vipoxin c    Crotoxina    β-Bungarotoxin

Figure 5

Structures of phospholipase A2 (PLA2) complexes. (a) In β-bungarotoxin (PDB ID: 1BUN), a PLA2 is linked to a Kunitz-type serine
protease inhibitor through a disulfide bond, whereas (b) vipoxin (PDB ID: 1JLT) is composed of two PLA2 subunits and (c) crotoxin
(PDB ID: 3R0L) is a complex of a PLA2 and crotapotin.

hyaluronidases, cobra venom factors, and Kunitz protease inhibitors (83); these are not covered
here, but see Reference 83 for a complete review in this area. The diversity of activities exhibited
by all toxins adds to the overall complexity observed in snake venoms, and the outcome is greater
venom functional versatility.

4. OMICS TOOLS TO IDENTIFY TOXIN DIVERSITY

4.1. Proteomics

Snake venoms are primarily composed of proteins; hence, proteomic methods have been funda-
mental in characterizing venom composition.More than 200 studies have been published on snake
venom proteomes, and researchers have used several different strategies for proteomic analyses of
venom. As complex mixtures, separation methods such as electrophoresis and high-performance
liquid chromatography (HPLC) are usually the first steps carried out to fractionate venom compo-
nents.Thesemethods are then followed bymass spectrometry (MS) for protein or peptide identifi-
cations or by Edman degradation (N-terminal sequencing) to obtain information regarding amino
acid sequence (3). Examples of electrophoretic techniques include 1D and 2D polyacrylamide gel
electrophoresis, isoelectric focusing (IEF), gel elution liquid fraction entrapment electrophore-
sis (GELFrEE), capillary zone electrophoresis, and capillary isoelectric focusing (84–86). Popular
HPLC fractionationmethods include reverse-phase liquid chromatography, hydrophobic interac-
tion chromatography, hydrophilic interaction, ion-exchange chromatography, size exclusion chro-
matography, and mixed-mode chromatography (87). Proteomic analyses of snake venom usually
use several of these strategies in combination, such as liquid chromatography tandem mass spec-
trometry (LC-MS/MS), to fractionate and then directly identify peptides. Collision-induced dis-
sociation is themost popularMS/MS technique, and it relies heavily on a complete public database
for identifications, but peptide sequences can also be predicted de novo,which can greatly increase
the number of identifiable peptides in a sample (88).

The two gold-standard strategies are (a) bottom-up proteomics (BUP) and (b) top-down pro-
teomics (TDP). Methods based on BUP are most commonly used for proteomic analysis and
identification of toxins and have been the classical venomics approach (2, 3, 89, 90). For BUP,
proteins are first digested with proteases such as trypsin (most commonly used), chymotrypsin, or
Glu-C, and then MS/MS-produced spectra are used for peptide mass fingerprinting or de novo
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sequence determination (2, 91).The development of sample preparationmethods (nano-UHPLC,
multidimensional HPLC, 2D electrophoresis) with soft-ionization MS has greatly aided in inves-
tigating the complexity and composition of several snake venoms using various BUP strategies
(92–94). TDP, in which protein cleavage is avoided to preserve accurate protein sizes, distinguish
proteoforms, and also inform about complexes and PTMs, has gained popularity in more recent
years (95). Native TDP can identify large proteins (>50 kDa) and even noncovalent complex
interactions (95). A TDP study by Melani and colleagues (96) identified 131 proteins and 184
proteoforms from 14 toxin families in Ophiophagus hannah (king cobra) venom using GELFrEE
and solution IEF fractionation followed by LC-MS/MS analysis. This study generated detailed
information about two of the largest venom glycoproteins: the homodimeric LAAO (∼130 kDa)
and the multichain toxin cobra venom factor (∼147 kDa) (96). TDP completed on Boiga irregu-
laris (brown tree snake) identified 25–30 full-length 3FTx isoforms (16), exemplifying how TDP
technology can be used to characterize multiple isoforms from one venom protein superfamily.
In addition, TDP can identify proteins that are produced from the natural processing of larger
proteins, as in the case of disintegrins, which is not possible with BUP.

However, these methods have limitations. For example, with BUP, tryptic fragments may be
too short or too long forMS detection, or trypsin cleavage may be blocked by glycosylated regions
of the protein (97). Other limitations lie in the mass discrepancy in proteoforms and the limited
number of toxins (only known and/or characterized) in the proteome databases. Even methods
such as Edman degradation for the N-terminal sequencing of proteins are limited in the number
of residues that can be determined. Therefore, proteomic analyses must be complemented with
comprehensive species-specific genome and/or venomgland transcriptomic database searches (98)
to obtain the validated, accurate proteoforms or toxicoforms in a venom (16).

4.2. Transcriptomics

Since the first attempt to characterize toxin genes by isolating polyadenylated messenger RNAs
(mRNAs) (99), transcriptomics analysis of snake venom glands has greatly advanced with the con-
tinuous development of new technologies. The first venom gland complementary DNA (cDNA)
library was compiled using cloning technology and revealed that toxin genes constitute a large
percentage of the expressed genes in the venom gland and that toxin diversity was higher than
previously known (100). In recent years, many transcriptomes have been produced using both
traditional cloning techniques and next-generation sequencing (NGS) platforms. There are re-
searchers that still favor a cloning-based technique, as it is relatively inexpensive and can be per-
formed in most molecular biology laboratories using readily available equipment and reagents
(5, 101). However, with the decrease in costs of the less labor-intensive, high-throughput NGS
technologies, the paradigm has shifted more toward the latter. One of the first uses of NGS for
cataloging toxin genes from venom glands was done with 454 technology to catalog toxins from
Crotalus adamanteus (eastern diamondback rattlesnake) (102). This study and others since have
shown how toxins can be detected in very low abundance in the mRNA pool using NGS tech-
nologies, which is difficult to achieve with cDNA cloning and low-throughput BigDye sequencing
(102, 103).

The use of high-throughput NGS approaches and computational methods to identify and
quantify transcripts present in an RNA preparation is generally termed RNA-seq. RNA-seq
methodology has perpetually advanced owing to the development of DNA sequencing technolo-
gies and, thus, the increase in throughput, accuracy, and read length of transcripts (104). NGS
technologies have aided in the construction of snake venom transcriptomes with greater coverage
in a shorter period of time (105). Illumina, one of the most commonly used methods currently,
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has become an affordable and rapid way to obtain the venom profile of animals (106). It is even
possible to sequence several venom gland transcriptomes together using multiplexed barcoded
libraries, for very little difference in cost. This technology has already been used to generate large
data sets through transcriptomic sequencing of several snake venom glands (Table 1). These more
extensive data sets enable us to explore many species and address research questions such as the
influence of lineage diversification on venom gene expression and venom phenotype (107–109).
More recently, Oxford Nanopore (MinION) longer-read technology has been used to generate
venom gland transcriptomes, and these longer–read length technologies are able to avoid issues
that arise from de novo transcriptome assemblies (110).

There are a few limitations to using transcriptomics to characterize snake toxins. In the absence
of reference genomes or transcriptomes, important transcripts involved in toxin production may
be missed during assembly and annotation-based metrics for nonmodel species because of a re-
liance on distant species, in which chances are high that orthologs have been duplicated, changed,
or lost (137). Therefore, transcriptomic data must be validated using proteomic databases or pro-
teomic analysis of the venomproteome and vice versa,where transcriptome assemblies can provide

Table 1 Venom gland transcriptomes (next-generation sequencing technologies only)

Family and species Platforma Reference
Elapidae
Acanthophis wellsi (Pilbara death adder) 1 111
Brachyurophis roperi (shovel-nosed snake) 1 111
Cacophis squamulosus (golden-crowed snake) 1 111
Dendroaspis angusticeps (eastern green mamba) 2 112
Dendroaspis jamesoni ( Jameson’s mamba) 2 112
Dendroaspis polylepis (black mamba) 2 112
Dendroaspis viridis (western green mamba) 2 112
Denisonia devisi (De Vis’s banded snake) 1 111
Echiopsis curta (bardick) 1 111
Furina ornata (orange-naped snake) 1 111
Hemiaspis signata (marsh snake) 1 111
Hoplocephalus bungaroides (broad-headed snake) 1 111
Hydrophis platurus (yellow-bellied sea snake) 2 113
Micrurus corallinus (painted coral snake) 2 108
Micrurus fulvius (eastern coral snake) 2 108, 114
Micrurus lemniscatus (South American coral snake) 2 108
Micrurus paraensis (Pará coral snake) 2 108
Micrurus spixii (Amazon coral snake) 2 108
Micrurus surinamensis (aquatic coral snake) 2 108
Naja kaouthia (monocled cobra) 2 115, 116
Ophiophagus hannah (king cobra) 2 117, 118
Pseudonaja aspidorhyncha (strap-snouted brown snake) 1 119
Pseudonaja modesta (ringed brown snake) 1 111
Pseudonaja nuchalis (western brown snake) 1 119
Pseudonaja textilis (eastern brown snake) 1 119
Suta fasciata (Rosen’s snake) 1 111
Vermicella annulata (bandy-bandy) 1 111

(Continued)
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Table 1 (Continued)

Family and species Platforma Reference
Viperidae
Atropoides mexicanus (Central American jumping pit viper) 1 120
Atropoides picadoi (Picado’s pit viper) 1 120
Bothriechis lateralis (side-striped palm pit viper) 1 120
Bothriechis schlegelii (eyelash pit viper) 1 120
Bothrops asper (terciopelo) 1 120
Bothrops atrox (common lancehead) 2 121
Bothrops jararaca (jararaca) 1 122
Bothrops moojeni (Brazilian lancehead) 2 115
Cerrophidion godmani (Godman’s montane pit viper) 1 120
Crotalus adamanteus (eastern diamondback rattlesnake) 1; 2 102, 123
Crotalus cerastes (sidewinder) 2 107
Crotalus culminatus (northwestern neotropical rattlesnake) 1 120
Crotalus durissus terrificus (South American rattlesnake) 2 124
Crotalus horridus (timber or canebrake rattlesnake) 2 125
Crotalus oreganus helleri (Southern Pacific rattlesnake) 2 126
Crotalus scutulatus (Mojave rattlesnake) 2 127
Crotalus simus (Middle American rattlesnake) 1; 2 120, 128
Crotalus tzabcan (Yucatán neotropical rattlesnake) 1; 2 120, 128
Daboia russelii (Russell’s viper) 2 129
Echis coloratus (painted saw-scaled viper) 3 130
Ovophis okinavensis (Okinawa pit viper) 2 131
Protobothrops flavoviridis (habu) 2 131
Rear-fanged (various families)
Ahaetulla prasina (Oriental whip snake) 2 138
Boiga cynodon (dog-toothed cat snake) 2 109
Boiga dendrophila (mangrove cat snake) 2 109
Boiga irregularis (brown tree snake) 2 15, 16
Boiga nigriceps (black-headed cat snake) 2 109
Borikenophis portoricensis (Puerto Rican racer) 2 138
Dispholidus typus (boomslang) 2 132
Erythrolamprus miliaris (military ground snake) 2 133
Hypsiglena spp. (night snakes) 2 15
Macropisthodon rudis (false viper) 2 134
Oxyhopus guibei (false coral snake) 2 133
Phalotris mertensi (false coral snake) 2 103
Psammophis mossambicus (olive grass snake) 1 135
Spilotes sulphureus (Amazon puffing snake) 2 17
Xenodon merremi (Wagler’s snake) 2 133
Lamprophiidae
Atractaspis aterrima (slender burrowing asp) 1 136

aPlatform 1, 454; Platform 2, Illumina; Platform 3, Oxford Nanopore.
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databases for protein identifications when current databases are insufficient or missing data (138).
However, a transcriptome cannot be used to obtain accurate quantitative data, and it is difficult to
predict PTMs, which include glycosylation, disulfide bond formation, and side chain or N- and
C-terminal modifications (54, 139, 140). Transcriptomics data should be supported by proteomics
data to validate toxin transcripts and also to fill knowledge gaps caused by the inability to identify
PTMs. Integration of multiple omics technologies has been shown to be ideal for proper toxin
diversity profiling (2).

4.3. Genomics

Advances in NGS technology and concomitant decreases in costs have allowed for complete
genome sequencing of many nonmodel organisms, including snakes.Newer sequencing technolo-
gies, such as PacBio and Oxford nanopore, have greatly improved genome assemblies by increas-
ing read lengths, and positional information to better assemble sequences into longer scaffolds
and chromosomes can now be obtained via Hi-C techniques. The first two snake genomes were
published in 2013 (118, 141), and 19 additional genomes have become publicly available since
(Table 2).

Snake genomes are interesting for studying extreme organism adaptations. These adaptations
include (but are by nomeans limited to) heteromorphic and homomorphic sex chromosomes (149,
151), absence of limbs (145), unique digestive processes (141), survival in extreme environmen-
tal conditions [i.e., snakes of the genus Thermophis (hot spring snakes) (150)], and of course the

Table 2 Currently completed snake genomes

Snake species Genome size Scaffold N50a GenBank accession Reference
Ophiophagus hannah (king cobra) 1.59 Gb 241 Kbp AZIM00000000 118
Python bivittatus (Burmese python) 1.43 Gb 213 Kbp AEQU00000000 141
Boa constrictor (red-tailed boa) 1.6 Gb - - 142
Pantherophis guttatus (corn snake) 1.40 Gb 4.3 Kbp JTLQ00000000 144
Vipera berus (common adder) 1.3 Gb 126 Kbp JTGP00000000 Unpublished
Crotalus mitchellii pyrrhus (speckled rattlesnake) 1.12 Gb 5.2 Kbp JPMF00000000 143
Deinagkistrodon acutus (hundred-pace viper) 1.47 Gb 2,120 Kbp - 145
Protobothrops mucrosquamatus (brown-spotted pit

viper)
1.67 Gb 424 Kbp BCNE00000000 146

Protobothrops flavoviridis (habu) 1.41 Gb 467 Kbp BFFQ00000000 147
Thamnophis sirtalis (common garter snake) 1.12 Gb 647 Kbp LFLD00000000 148
Thermophis baileyi (hot-spring snake) 1.74 Gb 2,414 Kbp QLTV00000000 150
Crotalus viridis (prairie rattlesnake) 1.34 Gb 179,897 Kbp PDHV00000000 149
Crotalus horridus (timber rattlesnake) 1.52 Gb 23 Kbp LVCR00000000 Unpublished
Notechis scutatus (tiger snake) 1.66 Gb 5,997 Kbp ULFQ00000000 Unpublished
Pseudonaja textilis (eastern brown snake) 1.59 Gb 14,685 Kbp ULFR00000000 Unpublished
Hydrophis melanocephalus (slender-necked sea

snake)
1.40 Gb 59.8 Kbp BHFS00000000 Unpublished

Hydrophis cyanocinctus (annulated sea snake) 1.38 Gb 7.4 Kbp RSAE00000000 Unpublished
Hydrophis hardwickii (spine-bellied sea snake) 1.29 Gb 5.3 Kbp RSAD00000000 Unpublished
Emydocephalus ijimae (Ijima’s sea snake) 1.62 Gb 18.5 Kbp BHEV00000000 Unpublished
Laticauda laticaudata (blue-banded sea krait) 1.55 Gb 39.3 Kbp BHFT00000000 Unpublished
Laticauda colubrine (yellow-lipped sea krait) 2.02 Gb 3,139 Kbp BHFR00000000 Unpublished

aN50 numbers are from the most recent genome assembly versions, which might vary from those reported in the publications.
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evolution of venom genes (118, 145, 146, 149). As one would expect, snake genomes experience
positive selection for metabolism, olfactory receptor, and venom genes and relaxed selection for
limb-patterningHox, vision, and auditory genes (118, 141, 145). Snake genomes contain high levels
of repetitive elements; in fact, they have the highest microsatellite content of any known eukaryote
(152). These genomes also have an abundance of transposable elements (141, 153); up to 47% of
theDeinagkistrodon acutus (hundred-pace viper) genomewas discovered to consist of such elements
(145). This high abundance of repetitive elements may contribute to venom gene duplications or
deletions, because nonhomologous recombination is more likely to occur in these regions (153).

Many toxin-encoding genes originate from gene duplications and are thought to then evolve
following duplication by positive Darwinian selection (154–159). Snake venom proteins undergo
rapid adaptive evolution owing to high mutation rates in toxin genes, known as “accelerated
evolution” (160). High-coverage sequencing of whole snake genomes can more confidently iden-
tify single-nucleotide polymorphisms (SNPs) within toxin genes. These mechanisms increase
genome complexity, as well as generate new gene functions (neofunctionalization) (118, 161).
The genome of Protobothrops flavoviridis (habu) has provided support for accelerated evolution
of venom genes (147), but the genome of Protobothrops mucrosquamatus (brown-spotted pit viper)
indicated that although some venom gene families exhibit positive selection, others are evolving
under neutral processes (146).

Documented toxin evolutionary phenomena include (a) more frequent mutation of exons than
introns (147, 154, 155, 160, 161); (b) alterations in intron–exon boundaries (162); (c) accelerated
segment switch in exons to alter targeting (ASSET) (163, 164); (d) point mutations in unstable
nucleotide triplets, which are more frequent in exons than in introns (165); (e) exon deletions
(166); ( f ) domain recombination or loss (50, 167); (g) rapid accumulation of variations in exposed
residues (RAVERs) (168); and (h) gene exonization and intronization (169). These evolutionary
mechanisms all contribute to generation of residue or domain differences between venom pro-
teins in the same superfamily. Further, genome sequencing has revealed that both toxin gene gain
and loss have generated venom phenotypic variation between species. The O. hannah (king cobra)
genome revealed expansion of venom protein gene families, especially 3FTxs (118). However, in
the case of several rattlesnakes, Crotalus atrox (western diamondback rattlesnake), C. adamanteus
(eastern diamondback rattlesnake), and C. scutulatus (Mojave rattlesnake), which have had select
genome regions sequenced, the loss of neurotoxic PLA2 genes has resulted in venom variation
between these different crotalid species (170).

In the absence of a complete gene record, it can even be difficult to determine putative
toxins owing to limited tissue sampling (171). Genome sequences provide a reference to map
transcriptome and proteome data, determining whether toxin variation originates from gene loss
or gain, SNPs, alternative splicing, or false positives from venom gland transcriptome assembly
inaccuracies. Soon, many high-quality snake genomes will be available for large-scale toxin gene
comparisons across species and families.

5. THERAPEUTIC AND DIAGNOSTIC APPLICATIONS

5.1. Antihypertensive Therapeutics

Toxins represent a rich source of inspiration for discovery and development of therapeutic and
diagnostic agents, especially related to cardiovascular diseases (172–175). One of the greatest suc-
cesses is the development of the angiotensin-converting enzyme (ACE) inhibitor captopril, used
mainly for hypertension treatments. ACE is a zinc metalloprotease that cleaves bradykinin, an en-
dogenous molecule that increases vascular permeability. In addition, ACE also cleaves angiotensin
I to angiotensin II, the latter being a potent vasoconstrictor (176). BPPs from the venom of the pit
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viper Bothrops jararaca ( jararaca) are inhibitors of ACE. Structural and functional studies into BPPs
eventually resulted in the design and development of captopril, the first-in-class ACE inhibitor
(177, 178).

Other classes of snake venom hypotensive toxins have also been developed as therapeutics. For
example, venom natriuretic peptide fromDendroaspis angusticeps (eastern green mamba),DNP,was
found to have diuretic and vasodilatory effects similar to human atrial natriuretic peptides (ANPs)
(179). However, DNP has a longer plasma half-life than endogenous NPs because it is resistant
to degradation by human neutral endopeptidases (180). Human C-type NP has strong antiprolif-
erative and low diuretic effects compared with other NPs. Cenderitide, a chimera between CNP
and DNP, combined the diuretic effect and plasma stability of DNP with the antiproliferative
effect of CNP (181). Cenderitide demonstrated safety and improved renal functions in heart fail-
ure patients in phase I and II trials (182, 183). Recently, studies into krait NP from Bungarus
flaviceps (red-headed krait) revealed molecular switches that enable the dissociation of diuretic
and vasodilatory effects of ANP. This would aid in the development of targeted and personalized
treatments for heart failure patients (184, 185).

5.2. Platelet-Targeting Therapeutics

Two antiplatelet drugs used to prevent and treat thrombosis originated from studies into snake
venom disintegrins. These drugs, tirofiban and eptifibatide, mediate their antiplatelet effect by in-
hibiting integrin αIIbβ3, thus preventing aggregation between platelets. Tirofiban and eptifibatide
were designed based on the disintegrins echistatin and barbourin, from Echis carinatus (saw-scaled
viper) and Sistrurus miliarius barbouri (pygmy rattlesnake), respectively (see 172 and references
therein). In addition, 99mTc-labeled recombinant bitistatin, a disintegrin initially isolated from
Bitis arietans (puff adder), was developed as an imaging agent for acute thrombi and emboli for its
affinity to integrin αIIbβ3 (186). Results of a phase I trial of 99mTc-bitistatin were reported (187),
but the phase II trial appeared to have been withdrawn owing to lack of funding (188).

Many snaclecs also target platelet surface receptors. Binding of snaclecs to platelet glycoprotein
receptors may result in induction or inhibition of aggregation (189). Many of these toxins may be
used as diagnostic agents and research tools for studying various blood disorders (190). For exam-
ple, botrocetin, isolated from B. jararaca ( jararaca), binds to blood glycoprotein von Willebrand
factor (VWF) and its platelet receptor GPIb. The stabilization of interaction between VWF and
GPIb promotes platelet aggregation (191, 192). Botrocetin is used to diagnose VWF disorders
such as Bernard–Soulier disease and type IIa von Willebrand disease (190).

5.3. Anticoagulants

Anticoagulant proteins from snake venomsmay be enzymatic or nonenzymatic. For enzymatic an-
ticoagulants, enzymatic function may or may not be responsible for their anticlotting effects (see
193 and references therein). Among all, two defibrinogenating agents, ancrod (from Calloselasma
rhodostoma,Malaysian pit viper) and batroxobin (from Bothrops moojeni, Brazilian lancehead), have
been most extensively investigated in clinical trials. These are SVSPs that degrade fibrinogen into
soluble fibrin clots, which in turn can be easily removed from the circulation by plasmin. There-
fore, they act as anticoagulants in vivo through fibrinogen depletion (194). Despite a favorable
outcome in an earlier trial (195), phase III trials of ancrod for acute ischemic stroke were termi-
nated for lack of efficacy and because it increased bleeding when given within 6 h of stroke onset
(196). Ancrod has also been tested in humans for sudden sensorineural hearing loss, although the
outcome has yet to be reported (197). Batroxobin has been reported to be effective in limb salvage
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of deep vein thrombosis patients (198). Batroxobin has shown good results for stroke prevention
in patients with hyperfibrinogenemia (199) and as a perioperative anticoagulant in spinal fusion
surgery (200). However, the clinical benefit of batroxobin has remained controversial, as most of
these studies have involved a small number of subjects and demonstrated limited improvement
over nontreatments (201). Because batroxobin and ancrod cleave fibrinogen and are not inhibited
by heparin, they are useful for clotting assays. This type of clotting blood test (Reptilase time) is
used to diagnose fibrinogen disorders, especially in heparinized samples (190).

5.4. Procoagulants

Ecarin from E. carinatus (saw-scaled viper) venom is a prothrombin activator that produces
meizothrombin and is insensitive to heparin, warfarin, or lupus anticoagulants (antibodies against
phospholipids).Thus,Ecarin time is used tomonitor the plasma level of direct thrombin inhibitors
such as lepirudin and dabigatran (190). Another prothrombin activating metalloprotease from
E. carinatus venom, carinactivase-1, specifically recognizes the Ca2+-bound conformation of the
Gla domain in prothrombin for activation. It is therefore used to assay normal prothrombin levels
in warfarin-treated patients (202).Daboia russelii (Russell’s viper) venom factor X activator directly
activates factor X (203). It is used for the Stypven time assay to help diagnose deficiencies in FX
and FVII and in lupus anticoagulant assay (190).

5.5. Natural Inhibitors for Snakebite

Some venomous snakes are resistant to their own venom. So far, two possible mechanisms for
this resistance have been reported. One mechanism involves the occurrence of limited mutations
on the receptor in the resistant snake that prevents binding of the toxin to its target (204). For
example, Takacs et al. (205) described that the resistance against conspecific α-neurotoxins, the
major lethal components of Elapidae venoms, was mediated by a unique N-glycosylation of the
nAChR ligand-binding domain in Elapidae snakes. The other mechanism involves serum proteins
that bind the toxins with high affinity and neutralize the toxin’s pathophysiological effects (206).
These proteins that provide natural resistance are called endogenous inhibitors.

Endogenous inhibitors circulate in blood and effectively bind and neutralize the venom toxins
from the host.However, they differ from antibodies. The three main endogenous inhibitor classes
are phospholipase inhibitors (PLIs) (207, 208), antihemorrhagic factors (209), and small serum
proteins (210–213) found in the blood of vipers. Numerous studies have described the highly
effective inhibition of PLA2 toxicity in vitro and in vivo by PLIs purified as a soluble protein from
snake serum (214–217). The molecular mechanism of toxin neutralization by these endogenous
inhibitors remains unclear owing to the lack of structural information on the binding of these
inhibitors to toxins.

To understand the molecular evolution of endogenous inhibitors, genes encoding small serum
proteins were investigated. Interestingly, as with toxin genes, the number of nonsynonymous sub-
stitutions was significantly greater in these inhibitor genes compared with synonymous substi-
tutions (218, 219). These mutation hotspots are found on the molecular surface, whereas the
protein scaffold structure is highly conserved. Endogenous inhibitor genes also appear to have
evolved via gene duplication and rapid diversification, facilitating the neutralization of various
toxins. Thus, these studies help in deciphering the evolution of endogenous natural resistance in
venomous snakes. The molecular interaction of endogenous inhibitors with respective toxins may
help elucidate the specificity and selectivity of these endogenous inhibitors and aid in the design of
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better therapeutic agents for the treatment of snakebite,where a rapidly evolving diversity of snake
venom toxins are present.

6. CONCLUSIONS

Each toxin superfamily can exhibit activity ranging from neurotoxic effects, with affinities for
distinct receptors and channels, to those that affect the cardiovascular system and blood coagula-
tion. The increasing affordability and sensitivity of technologies in this omics era, such as those
of the proteomic, transcriptomic, and genomic fields, have allowed us to characterize venoms and
their toxins on a level not possible a decade ago and, additionally, to now address advanced re-
search questions. Mechanisms responsible for toxin superfamily diversification through amino
acid residue substitutions or PTMs, as well as domain structures and complex formations, can be
evaluated through omics tools. Studies into snake venom toxins have provided many opportuni-
ties and inspirations for the development of therapeutics and diagnostic agents. New and highly
sensitive approaches in discovery, characterization, and drug development will continue to bring
more molecules into the pipeline.
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