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Abstract

Ruminant production systems face significant challenges currently, driven
by heightened awareness of their negative environmental impact and the
rapidly rising global population. Recent findings have underscored how the
composition and function of the rumenmicrobiome are associated with eco-
nomically valuable traits, including feed efficiency and methane emission.
Although omics-based technological advances in the last decade have revolu-
tionized our understanding of host-associated microbial communities, there
remains incongruence over the correct approach for analysis of large omic
data sets. A global approach that examines host/microbiome interactions in
both the rumen and the lower digestive tract is required to harness the full
potential of the gastrointestinal microbiome for sustainable ruminant pro-
duction. This review highlights how the ruminant animal production com-
munity may identify and exploit the causal relationships between the gut
microbiome and host traits of interest for a practical application of omic
data to animal health and production.
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1. INTRODUCTION

The 3.9 billion ruminants estimated to exist today are important in sustainable agricultural
practices, as they can render nonarable land useful via grazing, use industrial by-products
(e.g., distillers grains) as a food source (1), and synthesize energy from low-quality forages
for milk and meat production. Central to ruminant production and health is the gut micro-
biome, the complex microbial community that resides in the ruminant gastrointestinal tract
(GIT), which is now well-recognized as a crucial contributor to the maintenance of intesti-
nal homeostasis, mucosal and lymphoid structure development, and activation of the host im-
mune cell repertoire (2). Moreover, microbial fermentation of ingested plant biomass in the ru-
men, a specialized foregut fermentation chamber, allows the animal to harness the nutritional
value of host-indigestible plant biomass and so is a critical facet of both beef and dairy systems
(3).

Livestock production systems face a myriad of challenges at present. Providing adequate nu-
trition to the growing global population—estimated to reach 9.15 billion by 2050—will require a
70% increase in food production from 2007 levels in developed countries, and perhaps a doubling
of output from developing nations (4). Compounding this, concerns about the environmental
footprint of livestock production are also increasing. Recent estimates based on total life cycle
assessment indicate that approximately 14.5% of global anthropogenic greenhouse gas (GHG)
emissions are derived from agriculture, but less than 5% of the total is attributable to direct emis-
sions from livestock (6). A range of GHG are produced throughout beef and dairy production
chains, with the livestock themselves generating methane (CH4) enterically and nitrous oxide
(N2O) from manure (5). Methane is a particularly prominent GHG associated with ruminant
production, synthesized in the rumen and lower gut by methanogenic archaea, and has a global
warming potential approximately 28 times greater than that of carbon dioxide (6). In addition
to its negative environmental impact, the loss of gross dietary energy to the animal via enteric
methanogenesis is estimated at 2–12% and is therefore a major contributor to reduced host feed
efficiency (FE) (7).

In light of the intricate relationships between the host animal and its resident gut mi-
crobiomes, studies of these microbial communities as a means to improve cattle production
efficiency while reducing/removing its environmental impact have been ongoing for many
decades (8). The advent of high-throughput sequencing technologies in recent years has gen-
erated a large amount of data on the composition and function of the rumen microbiota
across a range of hosts and environments (9–11). However, there is increasing evidence that
the lower GIT and its resident microbiota also make important contributions to cattle health
and production (2), which has not been extensively studied to date (12, 13). Understanding
the complex interactions between host and microbe throughout the GIT is key to inform-
ing strategies to maximize ruminant production efficiency and tackle the challenges outlined
above.

In this review, we highlight recent research concerning the ruminant gut microbiome, dis-
cussing the contributions of both the rumen and hindgut microbiota to animal performance. Ad-
ditionally, we assess recent findings concerning host–microbe relationships in the rumen and their
implications for host animal performance. Finally, complementing our recent review on the appli-
cation of omics technologies to study host-associated microbiomes (14), we discuss the challenges
associated with statistical analysis of data generated from such studies and provide guidelines for
robust analysis of microbial data sets, to better understand the roles of the gut microbiome in
cattle production.
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2. IMPORTANCE OF THE GUT MICROBIOME TO CATTLE
PRODUCTION AND HEALTH

2.1. The Rumen Microbiome: Composition and Function

The rumen microbiome is a phylogenetically diverse consortium of anaerobic bacteria, fungi,
methanogenic archaea, ciliate protozoa, and viruses. The major microbial constituents of this
community are detailed in Figure 1. This microbial cohort contains cellulolytic, hemicellulolytic,
amylolytic, proteolytic, and biohydrogenating (lipolytic) species, exhibiting a high level of func-
tional redundancy, and is capable of effectively degrading host-indigestible plant fiber (15).Volatile
fatty acids (VFAs), principally acetate, propionate, and butyrate, are the major products of rumen
microbial fermentation and are absorbed and used as energy sources by the host (16). Ruminally
derived VFAs can meet up to 70% of the host’s energy needs (16), and thus their production is
essential to animal performance. Metabolism of nitrogen-containing compounds (including pep-
tides, ammonia, and urea) by the rumen microbiota is also vital in the provision of microbial
proteins to the host for muscle and milk synthesis (17). Ingested fiber, carbohydrates, protein, and
lipids are first hydrolyzed to shorter chains (or oligomers) and monomers (e.g., glucose, amino
acids) by primary members of the microbiota and subsequently used as substrates by various mem-
bers of the microbial community (18). Investigation of the temporal colonization of ingested feed
by the rumen microbiota showed divergent taxonomic and functional profiles among the primary
and secondary colonizers, pointing to variation in their role(s) and/or substrate specificity (19,
20). Diet, genetics, age, gender, and geography (9, 21–23) are among the determinants of rumen
microbial composition and function; however, influence of diet is the best studied to date. The
composition of the rumen microbiota under various production systems and life stages has been
reviewed extensively in recent years (1, 24, 25) and is beyond the scope of this review.

The importance of microbial metabolism in the rumen to the well-being of the host has led to
interest in the contribution of the rumen microbiome to animal production. Microbial composi-
tion of the rumen is associated with variations in FE (26), intensity of CH4 emission (27), health
(28), and milk composition (29). More recently, evidence of the heritability of certain groups of
rumen bacteria in beef and dairy cattle has emerged (23, 30), but the extent of the contribution
of these microbial species to host traits is not yet clear. If clear relationships between (a) the host
genome and the rumen microbiome and (b) the heritable portion of the microbiome and de-
sirable host traits can be conclusively identified, they could facilitate selective breeding for an
optimum rumen microbiome. Finally, extensive efforts have been made to manipulate the ru-
men microbiome via dietary intervention to improve host performance, particularly in terms of
methane abatement (24, 31–34). Below, we discuss in detail the contributions made by the rumen
and lower-gut microbiomes to several key aspects of cattle production.

2.2. The Rumen Microbiome and Feed Efficiency

With global food demands projected to rise significantly in the coming decades, the efficiency of
food production, both animal and crop derived, must be improved (35). The term feed efficiency
(FE) describes the efficacy at which the conversion of feed to useable product occurs, and it is a
moderately heritable trait in cattle (35). Given that feed inputs account for up to 75% of variable
costs in beef operations, and 40–60% of those in dairy systems (36, 37), improving FE is a means
of increasing output while minimizing costs. Several measurements of FE have been used in
cattle [e.g., feed conversion ratio (38) and partial efficiency of growth (39)], but residual feed
intake (RFI) has emerged as the most common measure. First proposed in 1963, RFI is defined
as the difference between actual and predicted feed intake of an animal for maintenance of body
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(a) Schematic of the bovine gastrointestinal tract and (b) depiction of rumen wall structure and microbial
diversity and function. Bacteria: The most numerous microbial group in the rumen, bacteria are present at a
density of 1010–1011 cells/ml rumen fluid. The rumen bacteriome is dominated by members of the
Firmicutes, Bacteroidetes, and Proteobacteria phyla, containing numerous genera like Prevotella, Fibrobacter,
and Butyrivibrio, capable of metabolizing a range of dietary polysaccharides and peptides. Archaea: The
rumen methanogens (106–108 cells/ml rumen fluid) belong exclusively to the Euryarchaeota phylum and are
dominated by members of theMethanobrevibacter ruminantium andMethanobrevibacter gottschalkii clades.
Protozoa: The ciliates are found in the range of 104–106 cells/ml in the rumen fluid, and the most abundant
genera are Entodinium, Polyplastron, Epidinium, and Eudiplodinium. Anaerobic fungi: Discovered only in the
1970s and present at rates of 103–106 zoospores/ml, the cellulolytic anaerobic fungi in the rumen belong to
the phylum Neocallimastigomycota and are currently grouped into eight genera (Neocallimastix, Piromyces,
Ontomyces, Buwchfawromyces, Caecomyces,Orpinomyces, Anaeromyces, and Cyllamyces). Bacteriophage/
archaeaphage: The rumen virome is dominated by Caudovirales, and the phage are key regulators of
microbial populations and facilitators of horizontal gene transfer. Abbreviation: VFA, volatile fatty acid.
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weight and for weight gain (40). Genetically independent of growth, animals may be classified as
Low-RFI (efficient) or High-RFI (inefficient), with a view to selecting animals that will have the
same or greater output value (e.g., meat yield/quality) with lower input costs (i.e., feed).

Although a range of physiological processes contribute to divergence in FEwithin a population
(41), the fact that the conversion of ingested feedstuff to energy substrate (e.g., VFA) is dependent
on the rumen microorganisms suggests that the rumen microbiome may play an important role in
determining an animal’s FE status. In a landmark study, Guan and colleagues (42) demonstrated
that the rumen microbial ecology of efficient (Low-RFI) cattle differed from that of their ineffi-
cient (High-RFI) counterparts, and there was also a greater similarity in microbial profiles among
the efficient animals. More recently, the use of high-throughput sequencing demonstrated that
efficient cattle (both dairy and beef ) had lower rumen microbial diversity and richness, in terms
of both microbial species and gene content (26, 43) and metabolic profile (44). This suggests that
the rumen of efficient animals contains fewer non-essential microbes, though it is unclear if this is
a cause or a consequence of the efficiency phenotype. Variation in VFA concentration according
to RFI classification has also been reported, but these differences appear to be diet dependent (42,
43, 45).

A range of microbial groups, from phylum to species level, have been associated with FE in the
literature, including associations between improved FE and the abundances of the Lachnospiraceae
and Veillonellaceae families (26, 46), and several archaeal taxa, such as Methanomassiliicoccale,
Methanobrevibacter. sp. AbM4, and Methanosphaera stadtmanae (26, 47, 48). However, there are
some inconsistencies in these reports; for instance, while the ruminal abundance of Dialister was
associated with improved FE in steers (46), species belonging to this genus were associated with
reduced efficiency in lambs (49). Because the rumen microbiome is influenced by dietary compo-
sition (9), and FE classification is not always consistent in individuals across diets (50), associations
between the rumen microbiota and FE may be driven, at least partially, by diet. However, several
studies have demonstrated diet-independent effects of FE on the rumen microbiota (45, 49,
51), indicating that a core group of microbes associated with variation in FE could be used to
identify efficient animals irrespective of diet (1). Furthermore, selection for improved FE may
also contribute to reduction in ruminal methanogenesis (43, 52), as discussed in a later section.

2.3. The Lower-Gut Microbiome: Unexplored Potential to Improve
Animal Health and Performance

In contrast to that of the rumen, the fundamental role(s) of the lower-gut microbiota and its
contribution to ruminant health and production are poorly understood. For the purposes of this
review, the lower gut is defined as the post-gastric intestinal tract and thus consists of both the
small intestine and the hindgut regions.

2.3.1. Feed efficiency and the lower gut. Bacteria are present at levels of 1012–1014 cells/ml in
the hindgut digesta (cecum, colon, rectum; Figure 1a) of cattle (53, 54). Microbial fermentation
in the hindgut may be responsible for up to 30% of cellulose and hemicellulose degradation in
ruminants (55), though smaller figures have also been proposed (56). Lower dietary energy pro-
duction in the hindgut compartments is likely due to a combination of factors, including reduced
retention time of digesta in the hindgut compartments versus in the rumen, as well as the fact that
substrates entering the cecum and colon already have been partially digested by enzymes in the
rumen (microbial) and small intestine (host and microbial). However, dietary energy derived from
the hindgut is likely an important contributor to energy availability in cattle throughout all stages
of production, and hindgut fermentation could be of elevated importance to the calf during the
first days and weeks of life, before the rumen becomes fully developed (57).
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The lower-gut microbiota diverge in composition according to intestinal segment (58, 59),
likely reflecting differences in physical, chemical, and biological conditions in each compartment.
The jejunum is a major site of post-ruminal protein and carbohydrate digestion and absorp-
tion, with Firmicutes (up to 90%) being the predominant phyla detected here (60). The hindgut
regions, the cecum and colon, have similar functions, with Firmicutes and Bacteroidetes dominating
theirmicrobial communities.Augmenting the hypothesized importance of the lower-gutmicrobes
to animal performance, several taxa in both the small and large intestine have been related to
feed efficiency status, with abundances of Butyrivibrio, Pseudobutyrivibrio, Prevotella, Anaeroplasma,
Paludibacter, Faecalibacterium, and Succinivibrio in the hindgut, and that of Butyrivibrio in the je-
junum, reported as being divergent across FE phenotypes (12, 61). These findings indicate that
the microbial communities of the small intestine and hindgut may indeed be closely related to
cattle production efficiency. Future studies examining such relationships should be reticent of this
and include analysis of the lower gut microbiomes in their work.

2.3.2. Contribution of the lower-gut microbiome to host gut health. Unlike in the rumen,
where there remains incongruence over the presence of any robust host immune mechanisms
that propagate gut health, the lower-gut regions are highly active in terms of immune function,
with the mucosal immune system comprising physical (mucosal/epithelial layers) and chemical
(antimicrobial peptides, secretory IgA) barriers, as well as pattern-recognition receptors (for ex-
ample toll-like receptors, TLRs) and containing a wide array of immune cells that contribute to
host defense (2, 62). As such, with the lower-gut regions known to be vital to immune system
development in monogastric animals (63), there is also increasing evidence that the microbial
communities of the lower gut contribute to immune system establishment and homeostasis in
beef cattle (2) that directly impact animal gut health in addition to their role(s) in feed digestion
and energy production. In this regard, starter feeding as part of normal early-life calf management
influenced both bacterial diversity and the expression of genes (TLR10 and TLR2) related to the
effectiveness of the host mucosal immune response in the lower gut (64). In a follow-up study, total
counts of mucosa-associated and luminal bacteria in the small intestine of pre-weaned dairy calves
were closely correlated with the expression of genes encoding host immune response (65), while
the same authors also showed that interaction between the commensal gut microbes and expres-
sion of specific host microRNAs may contribute to immune system development in the neona-
tal calf gut (66). A recent study of functional metagenomic profiles derived from the ileal tissue
of Lactobacillus-dominant calves showed elevated expression of genes involved in “leukocyte and
lymphocyte chemotaxis” and the “cytokine/chemokine-mediated signaling pathway” (67). Taken
together, these observations suggest the importance of lower-gut microbiota in immune system
development in dairy calves, which may lay the foundation for improving the health of neonatal
calves through nutritional manipulation strategies. This is supported by the close relationship be-
tweenmicrobial perturbation or dysbiosis in the gut and ruminant health.One example is the onset
of hindgut acidosis, which occurs when rapidly digestible carbohydrates overflow to the hindgut
for fermentation. The accumulation of acidic fermentation products, such as short-chain fatty
acids, is suspected to decrease the luminal pH, leading to changes in microbial composition and
damage to the gut epithelium, with detrimental effects on animal productivity and health. While
clear relationships between the ruminal microorganisms and acidosis have been demonstrated (68,
69), relationships between hindgut acidosis and the changes of lower-gut microbiota in the rumi-
nant remain poorly understood. Evaluating this relationship in future studies may pave the way
for manipulation of lower-gut communities as an avenue to improve intestinal health in cattle.

Overall, research on the lower gut and its role in adult cattle (especially beef cattle) remains
scarce. Maintenance of host immune function and gut health requires energy expenditure (70),
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and therefore stress and disease can reduce the growth and production efficiency of the animal.
Further research is needed to fully understand the lower-gut microbiome and its contribution to
animal health and production.

3. THE ENVIRONMENTAL IMPACT OF THE GUT MICROBIOME
IN CATTLE PRODUCTION

3.1. Rumen Methanogenesis

Livestock industries are a significant source of environmentally harmful GHG, with carbon diox-
ide (CO2), CH4, and N2O being the major greenhouse gases emitted from food and agricultural
production chains. The potent global warming potential of CH4 means it is the most extensively
studied GHG in terms of ruminant emissions, and reducing rates of enteric methanogenesis is
desirable in terms of both improved animal productivity and environmental stability. As stated
previously, CH4 is produced in the rumen by methanogenic archaea, which are estimated to ac-
count for 0.3–3.3% of the rumen microbial population, based on 16S ribosomal RNA (rRNA)
gene analysis (71).

There are threemajor pathways of ruminalmethanogenesis: (a) hydrogenotrophic, in whichH2

is used as an electron donor to reduce CO2 to CH4 [formate can also be used as an electron donor
and may contribute to the production of up to 18% of ruminal CH4 (72)]; (b) methylotrophic, in-
volving the use of methylamines or methanol; and (c) acetoclastic, involving the use of acetate and
H2 to produce CH4 (73). Hydrogenotrophic methanogenesis is the predominant pathway in the
rumen and is carried out mainly byMethanobrevibacter species (Figure 1), which typically account
for more than 90% of archaeal 16S rRNA gene reads (74), though several other less abundant
methanogen species are also found in the rumen (75) (Figure 1). The rumen archaea have been
closely studied for their role in methanogenesis, and interestingly, it does not appear that their
total abundance is directly related to the intensity of CH4 emission (76, 77). Rather, it seems that
the expression of certain archaeal genes may be a more measurable predictor of rumen methano-
genesis (44), as the transcription of methanogenesis pathway genes within the rumen microbiome
is greater in high-CH4-emitting sheep compared with their low-emitting counterparts (78).

There are many factors underlying the rate and intensity of rumen methanogenesis. Dietary
composition can have a major effect on the volume of measurable ruminal CH4; high-forage
diets favor microbial acetate synthesis in the rumen, leading to increased H2 and consequentially
more CH4 production than under concentrate-rich diets, where starch is mainly metabolized to
propionate (79). Although it may seem profitable to simply move away from feeding forages to
cattle, reduced rumen pH under high-starch diets may contribute to imbalance of the microbial
community and fermentation and lead to subacute ruminal acidosis (80). Furthermore, given that
the majority of global livestock rely on forage sources for growth, different strategies for reducing
CH4 formation across a range of diets are needed. A variety of methods for reducing ruminal
CH4 emissions have been investigated and work by either directly targeting the methanogen
community or attempting to reduce/redirect H2 flow in the rumen, thus providing less substrate
for methane production. These mitigation strategies have been comprehensively described
elsewhere and include dietary manipulation (for example, using seaweed extract), plant lipid
feeding, synthetic methanogen inhibitor supplementation, and genetic selection for low-emitting
animals (4, 25, 81, 82). Methanogens may also acquire H2 via interspecies hydrogen transfer,
particularly from protozoan populations, as some methanogens are symbiotically associated with
protozoan cells (71). Consequentially, some studies have examined the significance of defaunation
on CH4 production (83), finding that defaunation reduces enteric methanogenesis by 11% on
average (84). However, the absence of a reliable farm-level method of defaunation has precluded

www.annualreviews.org • Gut Microbiome in Cattle Production and Health 205



Downloaded from www.AnnualReviews.org

 Guest (guest)

IP:  3.15.156.140

On: Thu, 18 Apr 2024 22:33:23

AV08CH09_Guan ARjats.cls January 29, 2020 12:1

its widespread adoption to date. Arguably the most effective mitigation strategy demonstrated to
date is basal dietary supplementation with 3-nitroproxypropanol (3-NOP). Developed in 2012,
3-NOP acts by inhibiting the methyl coenzyme-M reductase (MCR) enzyme in the terminal
step of methanogenesis (85). Supplementation of 3-NOP has been shown to dramatically reduce
ruminal CH4 production in lactating dairy cows and crucially does not have any adverse effect
on milk yield (32), though an increase in milk fat has been reported (86). It has also proven
to be an effective CH4 inhibitor in sheep (33) and beef cattle (34). Furthermore, there is no
current evidence of microbial adaptation to this additive, as has been observed when other MCR
inhibitors, such as bromoethanesulfonate, were added to the basal diet (87). Yet, with a large
proportion of the world’s domesticated ruminants existing in open pasture, the practicalities
and economics of continued supplementation with 3-NOP (or any dietary additive) are unclear.
Furthermore, the compound is yet to be approved for commercial use, and critically the effect of
3-NOP on the composition and function of the rumen microbiome has not been studied in depth.

A critical aspect of an effective CH4 abatement strategy or indeed any intervention that aims to
elicit a change in rumen microbial composition or function (for example, to improve animal FE or
reduce CH4 production) is the persistence of such changes in the long term. However, in mature
animals it has proven difficult to permanently modify the established microbiota, which generally
reverts to the original composition following the cessation of treatment/supplementation (88).
This phenomenon is less evident, however, in the first weeks of life, when the rumen commu-
nity is highly dynamic and variable across individuals (24). These observations have given rise to
the principle of microbial programming of the rumen microbiota—dietary or management inter-
ventions in early life that will imprint a desirable and persistent microbial pattern on the rumen,
before the microbiota becomes fully established—as a means of improving ruminant production
(24). Accordingly, recent years have seen renewed interest in the patterns of microbial coloniza-
tion of the rumen during the first days and weeks of life (22, 89, 90). There is evidence that dietary
interventions during early life may have long-lasting effects on rumenmicrobial composition (91–
93), but few long-term studies have been conducted to date.To effectively discern the optimal time
for manipulation/intervention, the temporal sequence of rumen microbial colonization, and the
factors that influence it, must be fully defined. Recent data suggest that the first three weeks of life
may be a crucial window to manipulate a colonizing rumen microbiome (93a). However, studies
encompassing the entire life cycle of the animal will be necessary to establish what, if any, is the
ideal time frame for manipulation to most robustly improve host performance.

3.2. Negative Environmental Impacts of the Lower-Gut Microbiome

Augmenting the production of CH4 and other greenhouse gases in the rumen, the lower-gut
microbiota also plays important roles in CH4 and waste nitrate production. Previous work
has shown the presence of methanogens in the GIT of dairy calves at birth, with their abun-
dance differing among 0- and 3-day-old calves (94). Zhou and colleagues (95) also showed that
Methanobrevibacter was the main methanogenic taxon in the ileum of 3- to 4-week-old dairy
calves. The presence of methanogens in the neonatal gut suggests that these archaea, and their
metabolites, might play an important role in the early stages of intestinal development, and
possibly methane emissions in the hindgut.

Although less formidable than the rumen, up to 10% of enteric methanogenesis in cattle occurs
in the cecum, resulting in a loss of dietary energy that can reach 12% (96). Therefore, reducing
methane synthesis in the hindgut regions may also reduce overall enteric GHG production and
improve production efficiency. Accordingly, there is increasing interest in the composition and
functional dynamics of the methanogenic community in the hindgut. From a compositional

206 O’Hara et al.



Downloaded from www.AnnualReviews.org

 Guest (guest)

IP:  3.15.156.140

On: Thu, 18 Apr 2024 22:33:23

AV08CH09_Guan ARjats.cls January 29, 2020 12:1

perspective, the hindgut archaea differ from those in the rumen, withMethanobacteriales reported
to be the dominant group in the cecum (96).While the relationship between nutritional manage-
ment strategies and total methane output from the rumen has been studied in depth, knowledge
of the relationship between methanogenesis in the lower gut and host production remains limited.
Thus, future studies on the relationship between nutritional manipulation, intestinal methanogen
colonization, and methane release will be of significant benefit to ruminant animal production.

In addition to CH4, other waste components of feces and urine [including urea, nitrate (NO3
−),

nitrite (NO2
−), ammonia, and hydrogen sulfide] are also of concern to producers and consumers.

In human studies, a large proportion of dietary NO3
− is typically absorbed in the upper intesti-

nal tract, with approximately one-third of daily nitrate absorption occurring in the lower intestine
(97).The gut microbiota is postulated to play important roles in nitrate utilization and conversion,
as it has been previously suggested that Escherichia coli possesses genes encoding NO3

− and nitrite
reductase enzymes (98).Moreover,whereas E. coliwas thought to convert NO3

− to nitrite and sub-
sequently to ammonia, Lactobacillus acidophilus, Lactobacillus plantarum species, and Bifidobacterium
longum subsp. infantis were shown to generate large amounts of lactic acid, providing conditions
appropriate for nitrite disproportionation to NO in vitro (99). Although most work to date is de-
rived from in vitro studies, there is no doubt of the significant role of the gut microbiome inNO3

−

conversion. However, studies of the lower-gut microbiome and the composition of N compounds
in fecal waste are limited in cattle, and such studies should be carried out to fully determine the
contribution of the hindgut microbiome to the environmental impacts of ruminant production.

4. REVEALING THE TRUE BOVINE GUT MICROBIOME:
ARTIFACTS AND CHALLENGES

As we have recently described (14), development of next-generation sequencing and other omics
technologies in the last decade has allowed the study of host-associated microbial communities
in ruminants at a depth never before possible. Today, researchers can use a variety of approaches
to discern metataxonomic, metagenomic, metatranscriptomic, metabolomic, and metaproteomic
profiles of a microbial community and identify patterns or changes related to a biological state of
interest. However, high-throughput sequencing efforts are subject to a range of biases, including
method of sample collection (100), method and duration of sample preservation prior to analy-
sis (101), choice of nucleic acid extraction protocol (102, 103), and sequencing technology (104).
Furthermore, a large variety of bioinformatic tools have been developed for the analysis of high-
throughput sequencing data in recent years but have not been widely compared for their con-
sistency. Finally, although these technologies represent powerful approaches to generate large,
high-quality data sets, the best strategy for analysis of these data to draw meaningful and biolog-
ically sound conclusions remains a point of debate. In this section, commonly used approaches
for analyzing omic data are summarized, and we draw on the literature to propose more robust
methods for best-practice statistical analysis of large omics data sets for studies of the ruminant
gut microbiome.

Data sets generated using omics technologies are inherently compositional and are constrained
in a mathematical space known as simplex space, where the features [e.g., operational taxonomic
units (OTUs) or amplicon sequence variants (ASVs), genes, proteins] in each sample are assigned
proportions of a unit of measurement, varying between 0 and 1 (105). Unlike the simplex space,
the Euclidean space does not exhibit constraints between 0 and 1 but can accept any real number
along its dimensions (106). Thus, the analysis of microbiome data requires statistical methods that
account for the simplex structure of compositional data sets, which excludes standard statistical
approaches (including Pearson correlations, principal component analysis, and linear regression)
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that use the assumptions of the Euclidian space (105, 106–109). However, these traditional
statistical methods are still commonly used by the scientific community to analyze microbiome
data sets.

Pearson (107) first identified the original problem in analyzing compositional data in 1897,
when he realized that the count values per feature in compositional data are not independent, with
the value of one feature necessarily restricting the value of at least one other feature (106). Later,
it was discovered that this property can lead to negative correlation biases and false univariate
inferences observed in compositional data, rendering invalid any correlation- or covariance-based
methods (105, 110). An easy analogy to explain this distortion is the see-saw effect, in which a
change in the abundance of one feature results in a biased correlation between the other features
(one goes up, another goes down). This bias is caused by the spurious relationship between ab-
solute abundance in the environment and the relative abundance after sequencing, which is not
equivalent in compositional data sets because the number of reads obtained from a sample is de-
termined by the capacity of the instrument and not by the actual number of molecules of DNA in
the environment (109, 111). Therefore, compositional data sets are very different from data sets
composed of ordinary numbers that can take any value, and treating high-throughput sequencing
data as compositional is rather intuitive if the researcher considers that the number of counts in
such data sets reflects the proportion of counts per feature per samplemultiplied by the sequencing
depth (106, 112).

Variation in sequencing depth (the total number of counts observed) among biological samples/
replicates is another significant confounder of the analysis that should be carefully addressed, as
abundance issues arise around the variation in the number of sequences obtained for each sample.
A technique commonly used to account for sequencing depth variation in amplicon sequencing
studies is rarefying or subsampling the read counts of each sample to a defined level across sam-
ples, but this approach excludes less abundant features, leading to a loss of precision in the results
(113). If the researcher instead chooses to use the entire data set (without rarefying), theymust em-
ploy a transformation or scaling method (e.g., trimmed mean of M values, TMM) to account for
the magnitude of sequence depth between samples (114, 115). The identification of differentially
abundant taxa associated with a given phenotype or treatment should not involve the use of mod-
els that apply Poisson distribution because it is too restrictive to deal with overdispersion (116).
To address the overdispersion problem, researchers have proposed the use of negative binomial
distributions, although it tends to increase the false-discovery rate arising from the compositional
nature of microbiome data sets (108, 112, 116). Thus, the data analyst should be careful while
analyzing microbiome data, as it exhibits a compositional structure that must be taken into con-
sideration in the statistical analysis. Some alternative techniques to investigate this type of data
have been developed in recent years and are discussed in the next section.

4.1. Alternative Techniques to Study Microbiome Data

To circumvent the issues outlined above, alternative statistical methods have been developed to
replace the standard statistical approaches in the analysis of compositional omics data. In this
context, it is advised to carry out the identification of differentially abundant features andmicrobial
signatures using Analysis of Composition of Microbiomes (ANCOM) (111) and MixMC (117),
which are detailed below, or other similar approaches. This section is not comprehensive, and we
direct the reader to a recent article by Gloor and colleagues (112), which covers these approaches
in a level of detail beyond the scope of the present review.

4.1.1. Analysis of Composition of Microbiomes. ANCOM is a statistical procedure that
compares the Aitchison’s log-ratio of the abundance of each taxon with the abundance of all
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remaining taxa individually (111). In this method, differential tests (e.g., Mann–Whitney U,
ANOVA, ANOVA with Linear Mixed Effect Models, Friedman, Kruskal–Wallis, and Wilcoxon
tests) are calculated on each log-ratio to reveal differences in the relative abundance of a taxon
between two ecosystems (Supplemental Figure 1). These differential tests are used to accept or
reject the null hypothesis of equality for the abundance of taxa across groups for the condition
of interest (e.g., diet). For each taxon, ANCOM computes the number of tests performed and
obtains a count random variableW that represents the number of null hypotheses that need to be
rejected. The final significance of each test for a taxon is determined using Benjamini–Hochberg
(118) algorithms to control the false discovery rate. To deal with the sparsity of the data,
ANCOM uses an arbitrary pseudo count value of 0.001 to replace the zero counts and calculate
the log-ratios. For drawing inferences regarding taxon abundance in the ecosystem, ANCOM has
been suggested as a reliable method to control the identification of false positives and has been
incorporated recently into the QIIME 2 pipeline (119). A recent study evaluating seven statistical
methods for differential abundance testing (edgeR, DESeq, DESeq2, Wilcoxon rank-sum test,
Voom,metagenomeSeq, and ANCOM) (114) suggested that the novel methodology implemented
in ANCOM based on log-ratio transformations of count data, as defined by Aitchison (105), was
the most effective approach to control false discovery rates. ANCOM was recently implemented
in a bioinformatic pipeline developed by our research group (104) and showed reliable results
while detecting differentially abundant taxa identified by Kraken (120) and Mothur (121) from a
rumen metatranscriptome data set, thus allowing the robust assessment of active microbial taxa
and their contributions to cattle FE.

4.1.2. MixMC. MixMC (117) is a multivariate statistical framework that takes into account the
inherent characteristics of microbiome data (sparsity and compositionality) to identify microbial
signatures associated with the phenotype or condition being studied, and it is currently imple-
mented as the R package mixOmics (122). Before data are centered log-ratio (CLR) transformed
and analyzed via sparse partial-least-squares discriminant analysis (sPLS-DAmodels), preprocess-
ing and normalization (e.g., total sum scaling) steps are performed to account for uneven sequenc-
ing depths across samples and the sparsity of the data set (Supplemental Figure 2). Using this
approach,MixMC, sPLS-DA is employed in conjunction with CLR transformations to project the
data from a simplex space to a Euclidian space and includes a multilevel decomposition approach
for repeated measure designs that are commonly encountered in microbiome studies (117). This
is an appropriate analytical step toward detecting subtle differences when high inter-subject vari-
ability is present due to sampling being repeatedly performed on the same subjects and in multiple
habitats (117, 123, 124). To account for subject variability, the data variance is decomposed into
within-subject variation (owing to habitat) and between-subject variation while handling the com-
positional structure of microbiome data appropriately (117). The scientific community has used
this method extensively to investigate differences in gut microbial signatures in Crohn’s disease
patients versus in healthy controls (125), as well as bacterial signature variations in the fecal micro-
biota of HIV-infected individuals (126). Although the analytical approaches discussed here have
been useful in dealing with the inherent characteristics of microbiome data sets (e.g., composition
and sparsity), improvements in data interpretation while comparing across studies are still needed,
especially for ruminant-related research.

4.2. Current Challenges When Comparing Results Across Studies

Although next-generation sequencing resulted in an explosion of publications exploring the mi-
crobial diversity in various ecosystems in the last decades, interpretation of the data generated
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across multiple studies is still hampered by the lack of standardization in the bioinformatic and
statistical procedures employed by the different research groups. One instance of this problem
appeared when the rumen microbiome of efficient cattle was compared across studies to find con-
sensus microbial taxa and/or genes that could serve as global biomarkers for predicting ruminant
FE and methane emissions. Huws et al. (25) reported that microbial gene correlations with RFI
described by Shabat et al. (43) overlapped with those of Li & Guan (26) only in relation to a lower
abundance of genes involved in amino acid metabolism in the rumen of feed-efficient animals.
These results support the hypothesis that feed-efficient cattle excrete less urinary ammonia and
exhibit improved rumen nitrogen use compared with inefficient cattle (17, 127). Notably, how-
ever, there were inconsistencies in the findings of Shabat et al. (43) and Li & Guan (26). Although
this could be attributable to differences in experimental design [different cattle, method of sam-
ple collection, nucleic acid choice (DNA versus RNA)], the lack of a standardized approach to
data analysis may also play a role, indicating that reliable comparisons across studies are currently
impractical.

Some aspects of data analysis that are important to standardize include methods for OTU
picking [which remains the most common approach to microbiome assessment using amplicon
sequencing, though its use is declining with the emergence of amplicon sequence variant ap-
proaches (119)], the algorithms for taxonomy classification, cutoffs for taxa inclusion/exclusion,
and especially the statistical methods used to analyze microbiome data (128). The statistical meth-
ods discussed above are robust and could serve as a generic model of data analysis that, if practiced
correctly, could further standardize the interpretation of microbiome data and facilitate compar-
isons across studies. However, data analysis standardization is still a complicated process owing to
the complexity and heterogeneity of the available data sets generated by a wide variety of omics
platforms (129). One elegant approach that could overcome the hurdles posed by the different
data sources and offer opportunities to harness the full potential of microbiome data is to inte-
grate information generated by large-scale molecular omics platforms into multivariate models
(25). The data integration using multivariate models could be applied to extract information gen-
erated across different omic platforms to gain a better understanding of the complex interplay
between the microbiome and phenotypes measured at different layers of molecular assays (130).
Although challenging, there are instances of success in the literature showing the benefits of in-
tegrating a varied array of data types generated from omics technologies in microbiome studies.

In terms of statistical methods, the first approaches that allowed data integration and en-
abled the identification of multi-omics molecular signatures were concatenation-based inte-
gration methods (131) and model-based integration methods (e.g., ensemble classifiers) (132).
Concatenation-based integration combined multiple data sets into a single large data set with the
aim of predicting a phenotype of interest (e.g., human cancer) (131). In contrast, model-based in-
tegration approaches developed a predictive model on each individual data set before combining
the ensemble classifiers in the model predictions (e.g., using blood-based diagnosis of acute renal
allograft rejection) (132). Despite this advance, there is still a need for more sophisticated inte-
grative modeling methods that can identify multi-omics molecular signatures by differentiating
features from information generated across multiple functional levels, aiming to discover multi-
omic biomarker panels associated with biological phenotypes of interest. These methods are still
in their infancy, and the continued technical and analytical advances in the field of molecular bi-
ology and statistics will likely offer opportunities to develop integrative methods that allow the
standardization of the analytical workflow and consequently more reliable comparisons of results
across studies.

The range of biases and variation in studies of the ruminant gut microbiome suggests an urgent
need for comprehensive discussion between research groups internationally to standardize all
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protocols, from sample collection and storage through to laboratory processing, sequencing,
and data analyses. Steps have been taken in this regard in recent years, with the formation of
international research consortiums like RuminOmics (http://www.ruminomics.eu/) and the
Rumen Microbial Genomics Network (http://www.rmgnetwork.org/). Further expansion of
these forums will allow for reliable comparisons of published literature, but in the meantime,
scientists should remain reticent of these potential biases when comparing results obtained across
different studies.

5. FUTURE PERSPECTIVES FOR STUDYING THE BOVINE GUT
MICROBIOME: DRIVER OR PASSENGER?

In the course of this review, we endeavored to provide the reader with the current state of the
art in terms of microbiome–host relationships in cattle, as well as their contribution to animal
production. As a result of the technological advances seen in the last decade, the role of the gut
microbiome as a critical facet of efficient and regenerative livestock production systems is above
reproach. We know the rumen microorganisms are, in terms of both composition and function,
associated with economically and environmentally pertinent traits like FE (42) and intensity of
methane emission (75), and there is increasing evidence that the rumen microbiome may be sub-
ject to a degree of host genetic control (44). The intestinal microbiota are also closely associated
with host metabolism (133), health (134), and immune system development (63). However, we
must recognize that these associations are exactly that: only an indicator of a relationship. For
all the advances in our knowledge of the mammalian gut organisms over the last 10–20 years,
there remains scant evidence of any robust causal relationship between the gut microbes and host
production traits, and research concerning the lower-gut microbial functions in ruminants is at
an early stage. Moreover, the million-dollar question remains unanswered: What is the ideal gut
microbiome? Can it even be determined if one exists? And if so, can a gut microbial commu-
nity be modulated effectively enough to ensure the desired community becomes established? The
vast functional redundancy among gut microorganisms makes it unlikely that the removal of a
small number of microbial groups would have any lasting impact on community function or host
metabolism (88). Conversely, to seed a more favorable microbiota, functional niches for these
microbial groups to occupy would need to be available, so measuring the effectiveness of ma-
nipulation via functional changes rather than taxonomic changes is preferable. Several aspects
must be considered if we are to first define the optimal gut microbiota and subsequently apply
this knowledge to improve host nutrition and immunity, thereby maximizing the productivity and
sustainability of agricultural systems.

Taking the next step forward in understanding the total extent to which the gut microbiome
contributes to cattle production will likely require a reevaluation of research hypotheses, experi-
mental approaches, and data analysis.Currently, an investigation to examine relationships between
a host phenotype/genotype (e.g., RFI) and the resident microbiome will typically begin by ask-
ing one or more of the following questions: (a) Who is there? (b) How many of them are there?
And (c) what are they doing? In short, such studies seek to identify the microbial taxa or genes
responsible for the phenotype (135). The output of such a study, be it one using metagenomic,
metaproteomic, or meta-metabolomic approaches, is usually a list of biomarker taxa, genes, or
metabolites, associated with the phenotype/genotype of interest, but often lacking any clear bio-
logical relevance.Moreover, it is impossible to conclusively state whether these changes in micro-
bial composition/function are a driver or a product of host divergence. A shift in thinking from
associative to causal relationships between the microbe and host traits will be required for ro-
bust contribution of microbiome research to enhanced animal production strategies. The time
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has come for microbiome research in ruminants to shift focus toward causal, mechanism-based
studies, to conclusively identify microbial pathways that actively contribute to a host phenotype,
which will in turn allow us to elucidate the optimum gut microbiome under any given condition.
Weight is added to such a strategy by evidence that host genetics may also influence some mem-
bers of the rumen microbiota (30, 44), though this has not yet been fully confirmed. If strongly
defined heritable relationships between the host and the microbiome can be elucidated, it might
be possible to target the host (e.g., via genetic selection) to optimize the microbiome, rather than
vice versa, as is the current practice.

5.1. Integrative Analysis of the Bovine Gut Microbiome to Identify Causal
Relationships Between Host and Microbe

Key to this will be a move from piecemeal evaluation of the microbiome—i.e., examining
composition/function/metabolism separately—to viewing each aspect as an equally important
cog in a complex machine. These approaches—microbiome-wide association studies (MWAS)—
although complex, allow the whole microbiome to be linked as one dynamic system with perti-
nent host traits like FE andmethane emission (i.e., by evaluating the metagenome,metaproteome,
meta-metabolome, etc., as part of a single study) (136). Although nontrivial, MWAS would allow
the whole microbiome to be linked as one dynamic system with pertinent host traits like FE and
methane emission, ultimately offering an opportunity to predict phenotypic traits and discover
new biological signatures (137). This will be particularly applicable in terms of early-life manip-
ulation, as discussed above. It is unknown if host genetics influence colonization patterns in the
rumen, but if this could, through multi-omic frameworks, be confirmed, it might be possible to
select for a more favorable colonization pattern that is amenable to persistent manipulation via
dietary or management interventions.

However, several hurdles remain to be overcome before such approaches can be widely
implemented, including the large number of variables generated by different omic platforms (e.g.,
sequencing versus mass spectrometry) and the relatively low number of biological samples typical
to such studies (138). The issue of low experimental power hampering the retrieval of statistically
sound results, although prevalent throughout the biosciences (139), is particularly problematic in
studies of large animals like cattle, as the costs involved in obtaining and caring for these animals
are often major constraints of experimental sample size. Despite these difficulties, multi-omic
methods have been developed and to date have been applied mainly in the field of cancer
research, where information collected from various molecular components (e.g., gene expression,
nucleotide sequences, protein abundances) of human tissue samples has revealed oncogenic
molecular signatures and novel biomarkers associated with the disease (130, 137, 138). Such ap-
proaches have also been adapted and applied as MWAS in studies of the human gut microbiome
(140). These methods can be broadly divided into unsupervised analyses (e.g., matrix factoriza-
tion, Bayesian methods), which draw an inference across multi-omic data sets when samples are
unlabeled, and supervised analyses (e.g., support vector machine, semidefinite programming),
which consider the phenotype labels of samples groups (137). Although multivariate approaches
(e.g.,MixMC) have been successful in identifying signatures in microbiome data sets, as discussed
previously, these techniques have limitations in distinguishing phenotypic groups of interest
based on biomarkers present in multiple functional layers of high-dimensional multi-omics data.
Owing to the massive amount of data available in public databases (e.g., the National Center
for Biotechnology Information), such multivariate methods still need to be developed to reveal
insights into the relationship between the microbial consortia and the different levels of omic data
(e.g., metagenomics, metatranscriptomics, meta-metabolomics). The emergence of these new
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statistical methods in the field of microbiology, in the coming years, will create unprecedented
opportunities to discover biologically relevant signatures and biomarkers that predict phenotypic
outcomes (e.g., high/low-methane-emitting cattle, early/late disease states) at multiple functional
levels of complex biological systems, allowing elucidation of definitive, causal, host–microbe rela-
tionships in ruminants. As discussed in the previous section, there remains extensive incongruence
among research groups globally in terms of experimental practices and downstream analyses, with
microbiome studies biased by methodology choice at almost every experimental stage. This can
manifest itself with divergent results in the literature from seemingly similar studies; for example,
in one study of young calves, Firmicutes was reported to be the most predominant phylum during
the first week of life (141); however, the phylum Bacteroidetes was the most abundant in another
study (142). This discrepancy may arise from differences in calf management or sample collection
method, as well as being due to technical differences discussed previously. This reinforces the
need for standardization of experimental procedures, which will be critical in facilitating equitable
comparisons of data across studies.

The field of meta-omic research remains in its infancy and has made great strides to date.How-
ever,microbiome researchmust begin tomove from associative studies to those that aim to provide
robust evidence of causal relationships between the animal and its resident microbiome. The ca-
pability to discern whether a shift in microbial composition/function is a driver or a product of
diverging host phenotype will also be vital to conclude to what extent the microbiome contributes
to host well-being and production. The first, and arguably the most critical, step in this direction,
as it will facilitate equitable cross-study comparisons and meta-analyses, is the establishment of
internationally standardized best-practice guidelines for studies of the bovine gut microbiome,
from sample collection through to bioinformatic and statistical analysis. Expansion of the col-
laborative forums discussed above would provide an excellent starting point for such steps to be
taken. Additionally, evaluating the whole spectrum of a microbiome in terms of its contribution
to economically valuable traits via MWAS may offer a viable approach to improve the efficiency
and sustainability of livestock systems via integration in breeding programs. For such efforts to be
successful, it is absolutely critical to fully understand the mechanistic interaction between host and
microbe throughout the life cycle of the animal, which calls for the implementation of large-scale,
longitudinal studies.While the rumen microorganisms have been the major focal point of bovine
gut microbiome research, the role of the hindgut microbiome in host health and production must
bemore closely evaluated, given its role in feed digestion and subsequent methane production, and
this is further necessitated by the role of the lower gut as a source of foodborne pathogens and ni-
trate wastes.We propose that consideration of the whole gut microbiome should be paramount in
research programs concerning animal productivity and health, which has huge potential to make
valuable contributions to efficient and regenerative livestock production globally.
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