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Abstract

Bluetongue virus (BTV) is an arthropod-borne, segmented double-stranded
RNA virus that can cause severe disease in both wild and domestic
ruminants. BTV evolves via several key mechanisms, including the accumu-
lation of mutations over time and the reassortment of genome segments.
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Additionally, BTVmust maintain fitness in two disparate hosts, the insect vector and the ruminant.
The specific features of viral adaptation in each host that permit host-switching are poorly char-
acterized. Limited field studies and experimental work have alluded to the presence of these phe-
nomena at work, but our understanding of the factors that drive or constrain BTV’s genetic diver-
sification remains incomplete. Current research leveraging novel approaches and whole genome
sequencing applications promises to improve our understanding of BTV’s evolution, ultimately
contributing to the development of better predictive models and management strategies to reduce
future impacts of bluetongue epizootics.

INTRODUCTION

First described in South Africa at the turn of the twentieth century, bluetongue virus (BTV) re-
mains an economically important, reemerging pathogen with substantial animal health impacts (1,
2). Its significance stems from its role as the etiologic agent behind recent devastating outbreaks of
bluetongue disease among ruminants, coupled with its ongoing expansion into new regions. BTV
belongs to genus Orbivirus, family Reoviridae, and is composed of 10 segments of double-stranded
RNA (dsRNA) surrounded by a bilayered viral capsid. Transmitted by hematophagous midges in
the Culicoides genus (Diptera: Ceratopogonidae), bluetongue disease is characterized by lameness
and mouth lesions in ruminant species (2, 3). The disease was initially termed simply fever or
epizootic catarrh but later was given the name bluetongue for its association with cyanosis of the
tongue and mucous membranes (4–6).

Although it was suspected early on that BTV was an insect-transmitted disease, Du Toit (7)
demonstrated that Culicoides imicola is a biological vector for the virus. Early attempts to control
BTV via vaccination with an attenuated virus led to the discovery that multiple virus strains, or
serotypes, exist (8, 9).Whereas animals exhibited lifelong protection against the specific strain used
in vaccine preparations, it was soon discovered that these vaccines did not protect against all field
isolates of BTV. Defined by the vertebrate host’s immune response to the BTV VP2 outer capsid
protein, viral serotype is still used today to classify strains of BTV. At least 29 serotypes of BTV
have been described to date, with various serotypes circulating regionally (10, 11). Importantly, as
early findings demonstrated, antibodies that develop in response to infection with one serotype of
BTV are generally not cross-protective against other serotypes. Hence, the introduction of novel
BTV serotypes even to enzootic areas poses a concern in terms of animal health risk.

Despite more than a century of research, significant knowledge gaps regarding BTV’s ecol-
ogy and evolution persist, particularly considering today’s accelerating climate crisis (12, 13). The
transformational advancement and widespread availability of whole genome sequencing and other
novel sequencing technologies offer essential tools to explore and better understand the evolution-
ary dynamics of this segmented dsRNA arbovirus. These molecular approaches can offer a higher
resolution of evolutionary patterns occurring within a multi-host transmission system, revealing
potential reassortment events, emerging mutations across all genes, and intra-host diversity of the
virus. In this review, we focus on what is currently known about BTV evolution in the context of
numerous selection pressures and exogenous factors linked to arboviral evolution.

BLUETONGUE VIRUS TODAY: EXPANSION AND EPIZOOTICS

As of today, BTV has been detected on all continents except Antarctica (14). Its range is defined by
the presence of competent vector species and is classically considered to exist between 35°S and
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40°N (15). However, numerous reports in recent years indicate that this canonical distribution no
longer captures the true range of BTV (1, 16, 17), likely reflecting viral evolution, vector range
expansion, and animal movement, among other factors.

Several high-profile, economically devastating epizootics have occurred in the past 15 years,
highlighting the ability of BTV to cause explosive outbreaks of disease with little warning. Perhaps
most notable among these recent events was the BTV-8 epizootic that occurred in 2006 and 2007
in northern Europe, representing remarkable expansion of BTV to 58°N (18). BTV infection was
associated with disease in sheep, as well as in other ruminant species that rarely demonstrate signs
of BTV infection, such as cattle and goats (19, 20). Transplacental infection and transmission of
BTV, usually a phenomenon confined to the use of live attenuated vaccine strains at certain points
of gestation, was a common occurrence during this epizootic (21, 22). Collectively, animal losses,
production declines, and trade restrictions resulted in a cost of more than €150 million in the
initial years of the outbreak (23, 24).

Even in enzootic regions such as theUnited States, outbreaks of orbiviral disease have occurred
frequently in the past two decades. In 2007, 2012, and 2015, BTV and epizootic hemorrhagic
disease virus, a closely related orbivirus, caused significant disease in domestic and wild rumi-
nants across the United States (25–28). Numerous reports worldwide indicate that nonenzootic
serotypes are increasingly being identified in otherwise BTV-enzootic regions, although whether
these strains become persistently established remains to be seen (29–31). In the United States,
incursive BTV serotype 3 appears to have become widespread across the country, with recurrent
detections in many states during the past decade (31).

VECTOR DISTRIBUTION AND ECOLOGY

Although BTV is occasionally transmitted horizontally and vertically in vertebrate hosts, the vast
majority of BTV transmission occurs via the bite of an infected female midge of the genus Culi-
coides (32). Of ∼1,400 species of Culicoides distributed worldwide (33, 34), only approximately 30
species have been implicated as BTV vectors (35), and even fewer have been confirmed as compe-
tent vector species by laboratory transmission studies (36). Culicoides sonorensis is the predominant
vector in western North America, with C. insignis playing a lesser role given its geographic con-
straint to the southeastern portions of the United States (15). C. insignis is a key BTV vector in
Central and South America and appears to be extending its range in the United States (37). In
Africa and western Asia, C. imicola has been implicated as the major biological vector of BTV,
whereas Culicoides brevitarsis and Culicoides wadai are known to transmit the virus in central and
east Asia, as well as Australia (15, 38). In Europe, the Culicoides obsoletus complex is composed of
several closely related species of Culicoides and is primarily responsible for BTV transmission (23).
Numerous other Culicoides species may also be competent for various strains of BTV, but robust
information on the distribution and competence of many of these species is lacking.

The majority of BTV vector species are closely associated with livestock production and are
more abundant in livestock habitats than less intensively managed ecosystems (39).Wildlife habi-
tats or captive wild game ranges are often managed adjacent to livestock or native ruminants (40,
41). Because many Culicoides species are opportunistic feeders (40, 42, 43), the proximity of multi-
ple host species may have implications for viral evolution through passage between multiple ver-
tebrate species. As a genus,Culicoides develop in an extremely wide range of moist and semiaquatic
habitats, though preferences for specific habitats vary by species. For example,C. sonorensis prefers
to oviposit on the mud edges of manure-enriched standing water, whereas C. obsoletus develops in
composted manure and C. brevitarsis develops in intact dung pats (36). In livestock habitats, the
presence of acceptable larval development sites is thought to be the limiting factor for Culicoides
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populations. Animal agriculture tends to keep localized populations of midges in close contact
with hosts, increasing vector–host contact and vectorial capacity. Emigration and immigration of
individuals from outside populations, even from distances >1 km, is likely common (44, 45) and
may introduce new BTV serotypes into habitats. Few data are available on midge movement be-
tween sylvatic and agricultural ecosystems, though there is some evidence thatCulicoideswill travel
between different habitats, and wild ruminant hosts may potentially also be involved in maintain-
ing certain serotypes in circulation (41, 46). Moreover, as climate change advances, the range of
these vectors is expected to expand, as has been seen in North America and the Mediterranean
(37, 47, 48).

Culicoides midges also serve as vectors for several other viruses with significant animal health
impacts, such as epizootic hemorrhagic disease virus and African horse sickness virus. In particular
geographic regions, circulation overlaps among these viruses (27). Different midge species may be
driving transmission of each of these pathogens respectively; however, the interactions that occur
when these viruses coinfect a single midge remain poorly characterized. Midges can be infected
with more than one strain of BTV and may subsequently transmit more than one virus during
blood feeding on a susceptible animal (49).Work frommosquito-borne disease systems, like Aedes
aegypti– and Aedes albopictus–transmitted flavi- and alphaviruses (50), suggests that competent vec-
tor species can develop disseminated and transmissible infections of multiple, even closely related
viruses (51). Our limited understanding of virogenesis in Culicoides comes entirely from work in
C. sonorensis, whereas A. aegypti and A. albopictus are very closely related species in the same sub-
genus (Stegomyia) (52). C. sonorensis (subgenusMonoculicoides) is not as closely related to other key
vector species in the Avaritia subgenus, like C. imicola or C. obsoletus (53). Importantly, our con-
clusions drawn from viral evolution studies using C. sonorensis as a model species may not apply to
other Culicoides vectors. These potential interactions between coinfecting viruses and the vector’s
response to each virus represent a gap in current understanding of Culicoides-borne viruses.

VIRAL STRUCTURE, FUNCTION, AND REPLICATION

When considering the evolution of BTV, it is informative to first understand its genetic composi-
tion. Of the viruses belonging to family Reoviridae, those in the genus Orbivirus are vector borne.
Bluetongue and other viruses in the family Reoviridae possess a relatively unique genome structure,
composed of 10–12 linear segments of dsRNA depending on the viral species. The BTV virion is
nonenveloped. Structural studies have demonstrated that BTV is composed of a bilayered capsid
that surrounds 10 segments of dsRNA, which range from 833 base pairs (segment 10) to 3,955
base pairs (segment 1) (54). The dsRNA segments in the viral core are associated with three key
structural proteins: the RNA-dependent RNA polymerase (VP1, encoded by segment 1), the viral
capping protein (VP4, encoded by segment 4), and the RNA helicase (VP6, encoded by segment
9) (55). Viral entry is mediated by VP2 (segment 2) and VP5 (segment 6), the two outer capsid
proteins. VP2 is the receptor-binding protein and enables clathrin-mediated endocytosis, whereas
the pH-sensitive VP5 protein is responsible for membrane fusion in the late endosome that allows
ejection of the BTV inner core particle into the cytoplasm (56, 57). The inner capsid, composed of
VP7 (segment 7) and VP3 (segment 3), forms an icosahedral structure that is sensitive to the pres-
ence of magnesium and nucleoside triphosphate (NTP), which promotes a shift in arrangement
that allows for the release of viral messenger RNAs into the cellular milieu, beginning the process
of viral protein synthesis and replication (54, 58). Single-stranded positive-sense RNAs function
as both the template for genome replication (i.e., the synthesis of the complementary, negative-
sense RNA strand), as well as the translation of viral proteins (59). Nonstructural proteins NS1
(segment 5) and NS2 (segment 8) play an important role during viral translation and assembly:
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NS1 forms microtubules and specifically enhances the translation of viral proteins, and NS2 is the
key component of viral inclusion bodies (VIBs) that recruit viral genomic RNAs and proteins to
facilitate viral particle assembly (60–63). NS3 (segment 10) and a truncated version of this same
protein, NS3a, are associated with viral egress from the cell. NS3a is translated from a slightly
downstream start site from that of the NS3 protein and is the major viral egress protein produced
in Culicoides cells (59, 64). Viral egress is nonlytic in Culicoides cells and lytic in mammalian cells,
but the exact mechanism by which this occurs is not fully understood. Some degree of nonlytic
viral budding likely occurs early in infection in mammalian cells, as recent studies have suggested
(59, 65).

Single-stranded viral RNAs (ssRNAs) are recruited to VIBs during the assembly process. BTV
uses a highly ordered process to ensure all 10 segments are properly incorporated into each virion
(59). Conserved untranslated regions (UTRs) at the 3′ and 5′ end of each segment are essential
for mediating sequential recruitment of ssRNAs (66–69). The 3′ UTR of segment 10 is especially
instrumental in this process and triggers the proper secondary conformational structures of sub-
sequent segments to allow proper interactions (66). The smallest segments (segments 7–9) are
recruited first, followed by segments 4–6, and finally by segments 1–3 (54). Once all 10 ssRNAs
are incorporated in nascent virions, capsid assembly and synthesis of the complementary RNA
strand for each segment may occur. BTV dsRNA replication, like that of other related viruses, is
conservative (55, 70). After viral cores are equipped with a complete set of genome segments, the
nascent BTV particle is released from VIBs following NS2 phosphorylation and acquires the VP2
and VP5 outer protein layer as it exits (54, 71).

BLUETONGUE VIRUS EVOLUTION

Although the field of viral evolution is a robust and ever-growing area of research, two main con-
siderations are essential to discuss when specifically considering BTV. First, BTV’s vector-borne
nature plays an important role in its overall evolution because the virus must maintain its ability
to replicate in both vector and vertebrate host species. Second, BTV’s segmented dsRNA genome
is a defining characteristic for its genetic diversification. Although many features of BTV are well-
characterized, deficiencies exist in our understanding of BTV evolution that are underscored by
the recent incursions of BTV into new regions and the introduction of novel serotypes into other-
wise enzootic areas. These developments require an understanding of many contributing factors:
environmental conditions, ruminant and vector ecology, host community structure, immunity in
the vertebrate and invertebrate host, anthropogenic factors, and viral evolution.

Evolution of RNA Viruses: Underlying Concepts

BTV is transcribed via an RNA-dependent RNA polymerase, which, in contrast to DNA poly-
merase, does not possess proofreading ability (72).Thus,many RNA viruses demonstrate an inher-
ently high mutation rate (73–75). The rapid generation of many progeny viruses with mutations
in their genomes is believed to be an important part of the RNA virus’ evolutionary repertoire
(73, 76, 77). Replicating at very high rates, RNA viruses such as poliovirus (78), vesicular stomatitis
virus (79, 80), and foot-and-mouth disease virus (81) generate massive populations of viral progeny
that possess numerous low-frequency mutations. RNA viruses are often described as approach-
ing the point of extinction or lethality because of their extreme mutation rate (82–85). However,
RNA viruses are believed to preserve fitness by maintaining an optimal balance between muta-
tion and viral population size, allowing for rapid adaptation to new fitness landscapes (73, 76, 86).
This concept is captured by the terms viral quasispecies and mutant swarm, which are used to
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characterize both the genetic diversity and the vast number of virions produced during infec-
tion (87).1 Quasispecies theory posits that high mutation rates and viral swarm generation are
evolutionarily beneficial for phenotypic plasticity. The ensemble of mutant viruses is considered
in many ways to be its own evolutionary unit; selection pressures are exerted on the entire viral
ensemble, with complementation, interference, recombination, and reassortment among viruses
ultimately shaping the swarm’s overall fitness (73).

Several theories have been proposed to describe underlying mechanisms that may drive this
phenomenon. Mutational robustness is one explanation for the presence of viral quasispecies.
Whereas redundancy and gene duplication serve to reduce the effect of deleterious mutations
in higher-complexity organisms, a single mutation in a viral genome may be lethal (88). Viral
swarms may serve this same function, providing a rescue mechanism for high mutation rates (89,
90). Others have proposed that quasispecies allow virus populations to occupy neutral or flat fit-
ness landscapes (91, 92). In this framework, populations with high, but narrow, fitness peaks (i.e.,
populations of virus that are highly fit but also highly similar) are less capable of withstanding
mutation compared to broad, low peaks (i.e., populations of viruses that may be individually less
fit but are also more diverse) (90).

Others have argued that high mutation rates in some RNA viruses, such as poliovirus, are the
evolutionary by-product or fitness trade-off for rapid viral replication speeds (93).Most mutations
are deleterious (85, 94, 95), so it stands to reason that an RNA polymerase capable of higher-
fidelity replication would eventually evolve; however, this has not been demonstrated. Using a
mutant poliovirus strain with an antimutator phenotype (conferred by a single mutation in its
RNA-dependent RNA polymerase), Fitzsimmons et al. (93) demonstrated that this virus’ reduced
replicative fitness was directly related to its slower replication speed. They concluded that speedy
replication, with lower rates of replication fidelity, may be a tolerable trade-off for poliovirus and
other RNA viruses, because it is difficult “to be both fast and accurate” (93, p. 2).

Arbovirus Evolution

Arboviruses face significant challenges and bottlenecks during viral replication owing to the in-
creased purifying selection exerted by the rigors of maintaining fitness in two disparate host sys-
tems, the vertebrate and invertebrate. The impact of bottlenecks on viral populations in insect
hosts has been characterized using several different arboviruses, in which it was demonstrated that
repeated bottlenecks shape viral populations during infection in the insect vector (96–99). Several
anatomical and physiological bottlenecks have been identified within the arthropod vector that
drive successive contractions and expansions in viral populations.

Within invertebrates, such as mosquitoes and midges, the mesenteron escape barrier (MEB)
and the mesenteron infection barrier (MIB) impede arboviral infection and dissemination (100–
102).Whereas the salivary gland infection barrier and salivary gland escape barrier are well char-
acterized in mosquitoes, evidence that these barriers are present in the Culicoides midge is lacking
(100, 103).Another physical constraint within the vector is the small volume of blood ingested dur-
ing blood feeding; Culicoides midges take a blood meal volume of approximately 0.1–1 µL (104).
As a result, insects are exposed to a relatively low number of viruses when taking an infectious

1According to Domingo et al. (73, p. 46), “Viral quasispecies are currently defined as collections of closely
related viral genomes subjected to a continuous process of genetic variation, competition among the variants
generated, and selection of the most fit distributions in a given environment,” and “viral quasispecies are the
mutant distributions (also termed mutant swarms or mutant clouds) that are generated upon replication of
RNA viruses, and some DNA viruses in infected cells and organisms.”

308 Kopanke et al.



Downloaded from www.AnnualReviews.org

 Guest (guest)

IP:  3.149.213.209

On: Fri, 26 Apr 2024 21:26:35

Müller’s ratchet: the
concept in evolution
that any asexual
population will
develop permanent
deleterious mutations
over time within the
population

blood meal. Additionally, the viral titer in the blood plays an important role, as higher titers are
associated with a greater likelihood of successful infection of the vector (99). Forrester et al. (99)
demonstrated that orally infecting mosquitoes with a high titer of Venezuelan equine encephalitis
virus did not result in a significant bottleneck during midgut infection. However, when a more
biologically relevant dose was used for oral infection, a very strong midgut infection bottleneck
occurred. It is expected that only high-frequency variants would be likely to cross the midgut
infection barrier in this circumstance unless a significant fitness advantage was conferred by an
otherwise low-frequency mutant.

Compounding the consequences of the physical barriers resulting in viral infection bottlenecks,
a component of the arthropod host immune response, known as RNA interference (RNAi), has
been documented in Culicoidesmidges (98, 105–108). RNAi mechanisms may further reduce viral
fitness and are likely to contribute to genetic drift within the invertebrate host. Further exploration
of this could be a fruitful topic for future research on vector–virus interactions of BTV and related
viruses.

Host-Switching and Genetic Diversity

Preliminary work with BTV has demonstrated that some of the arboviral evolutionary features de-
scribed above also apply to orbivirus evolution. Early on, various groups used electropherotype to
characterize the genetic heterogeneity of BTV (109), but unfortunately these works are difficult to
relate to our understanding of BTV evolution today owing to the relatively poor genomic resolu-
tion these early methods provided.With the advent of modern sequencing techniques, additional
approaches to better understand BTV genetic diversification have become readily available.How-
ever, only a few studies have investigated how BTV’s alternating host transmission cycle affects its
evolution.

Initial work studied the impacts of host-switching on BTV evolution using C. sonorensismidges
and domestic ruminants as a model system (110). This group found infrequent synonymous and
nonsynonymous mutations that arose at different rates in two segments (segment 2 and 10) and
concluded that founder effect and quasispecies generationwere important features in the evolution
of a single BTV strain. Importantly, however, this study used polymerase chain reaction (PCR),
and errors can be introduced during reverse transcription, PCR, or cloning; thus, it is difficult to
determine whether some of these putative BTV variants were artifactual (111, 112).Moreover, the
true extent of viral quasispecies present in these experiments may have been masked by replication
deficiencies of certain mutants, making them nondetectable by plaque assay.

Although other studies have suggested that propagation in cell culture or eggs results in viral
attenuation of BTV secondary to purifying selection and a reduction in viral quasispecies, little
work has been performed to understand how or whether purifying selection occurs during BTV
host-switching (113, 114). In fact, virus isolation in non-native cell types, such as vertebrate cells
or embryonated chicken eggs, likely enforces a dramatic bottleneck, possibly leading to a Müller’s
ratchet–like phenomenon, whereby severe bottlenecks are shown to increase the occurrence of
deleterious mutations (81, 115, 116). However, these findings are difficult to relate to the overall
evolution of BTV in its native hosts, because of the simplified nature of the culture experiments
in which they took place.

Host-switching’s impact on the evolutionary process across all 10 BTV segments, as well as
whether each segment behaves similarly, is poorly characterized. Although direct experimental
approaches have been applied to address the impact of alternate host transmission, various phy-
logenetic studies have indicated that BTV has a low overall mutation rate across its genome seg-
ments, consistent with other arboviruses (117, 118). This raises the possibility that some of the
same mechanisms that drive slower rates of mutation in ssRNA arboviruses could be at play in
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BTV’s evolution as well. Interestingly, analysis of 4 segments across 290 BTV isolates revealed
that BTV had lower substitution rates than many other arboviruses (mean rates of ∼0.5–7 × 10−4

nucleotide substitutions per site, per year) (119). Others have found similar substitution rates and
evidence of strong purifying selection among BTV isolates from Europe and Australia (117, 120,
121). This suggests that additional stringencies may affect BTV’s genome stability, such as in-
creased replication fidelity or stability, afforded by its double-stranded composition.

More recent efforts have focused on characterizing aspects of viral genetic diversity usingwhole
genome sequencing across all 10 segments. Using insect cells to isolate a strain of BTV-8 from an
experimentally infected sheep, Caporale et al. (122) found that virus sequenced from whole blood
had more high-frequency single-nucleotide variants (SNVs) than the virus isolated onto inver-
tebrate cells. Synonymous variants that were observed at high frequency in the virus sequenced
directly from whole blood went to fixation when isolated and then propagated on invertebrate and
vertebrate cells, respectively. When additional sheep were inoculated directly with either BTV-8
fromwhole blood or the cell-culture-isolated virus, those infected directly with BTV-8 from blood
developed more severe disease, despite the blood having ∼100× lower titer of BTV than propa-
gated virus (122). Although these researchers suggested that the difference in disease phenotypes
manifested in infected sheep may have been due to differences in the number of low-frequency
variants, factors beyond the number of SNVs present in the viral populations could contribute to
the difference in disease phenotypes observed in this case.

Expanding on this work, Kopanke et al. (118) investigated how BTV’s alternating-host trans-
mission cycle impacts the occurrence of genetic variation within a single virus strain across all 10
segments. Whole genome sequencing was used to detect the occurrence and frequency of SNVs
over successive passages in both insect and mammalian cells. The results showed that although
low-frequency SNVs were present across passages of all cell culture conditions, the BTV genome
remained highly genetically stable. This was true even when virus was passaged exclusively in
invertebrate cells, which had been predicted to permit widespread genetic diversification. Addi-
tionally, compared to the other 9 segments, segment 10 demonstrated higher population complex-
ity and divergence, regardless of cell culture condition. These findings suggest that evolutionary
pressures may vary across BTV’s 10 genome segments. Although the BTV genome remains re-
markably stable when passaged in an in vitro system permissive to genetic diversification, further
studies using in vivo models in native species are critical. Integrating these in vitro studies with
deep sequencing provides a readily available method to query the extent of BTV evolution across
all 10 segments.

Segmented Viruses and Reassortment

Building upon early electropherotypework,whole genome sequencing efforts over the past decade
have provided increasingly strong evidence that reassortment may be a primary driver of BTV ge-
netic diversification (121).Reassortment can occur when a cell is coinfected bymore than one virus
of the same species and is a characteristic feature of most segmented viruses (123). Viruses with
segmented genomes, including those in the families Orthomyxoviridae, Reoviridae, Picobirnaviri-
dae, and Birnaviridae, as well as the order Bunyavirales, have frequently been demonstrated to
reassort, both in nature and experimentally (124–128). Although reassortment is a key feature of
segmented virus evolution, our understanding of the mechanisms, constraints, and drivers of this
phenomenon remains limited (Figure 1).

It has been suggested that reassortment may be akin to sexual reproduction, engaging fun-
damental evolutionary concepts of combining genetic material and contributing to acceler-
ated adaptive fitness (129). In the context of Müller’s ratchet, reassortment may be remarkably
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Figure 1

Reassortment has natural requirements that enable this viral phenomenon to occur. These requirements fall
into three categories: location, host dynamics, and survival. Spatial aspects like sympatry and ecology
(location) influence viral infection of the host. Molecular processes (host dynamics) within the host cell
determine reassortment viability. Specifically, coinfection of the same cell with progeny virus having
segments from both parents must result in viable virus. Finally, reassorted virus survival depends on
competition with additional parental and nonparental viruses.

beneficial, particularly in small populations (129). The evolutionary origin of segmented viral
genomes is incompletely understood, but beyond the potential gains from reassortment as a mech-
anism to introduce genetic variability in a population, there are fitness benefits to segmentation
itself, such as improved viral stability and increased genome replication (130).

Reassortment among segmented viruses has been linked to significant consequences, including
the occurrence of highly pathogenic hemorrhagic fevers (e.g., Ngari orthobunyavirus) and the
origin of pandemic influenza viruses (131, 132). Moreover, analysis of influenza virus indicates
that reassortment increases the likelihood of viral expansion into a new host (133). Reassortment
is also a prominent feature among BTV field isolates, including those that seem to cause severe
disease (134–136).

Characterization of bluetongue virus reassortment.The occurrence of reassortment has long
been recognized among BTV isolates worldwide, and a suite of studies in the 1980s sought to
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characterize reassortment between two enzootic North American strains in a variety of systems
(in vitro, insect, and mammalian) (49, 137–141). Studies using electropherotype shifts in plaque-
isolated progeny viruses following experimental coinfections as an indicator of reassortment estab-
lished several important points. First, these studies demonstrated that BTV-10 and BTV-17, two
of the virus serotypes used in these experiments, could reassort extensively in vertebrate cells, and
that when viruses did not have equal multiplicities of infection (MOI), the virus with a higherMOI
contributedmore segments to reassortant progeny (139). Second,whenC. sonorensismidges, cattle,
and sheep were coinfected with different BTV serotypes to determine reassortment frequency in
vivo following coinfection, reassortant viruses arose in all cases (49, 137, 140, 141). Notably, Culi-
coides seemed to support more robust levels of reassortment. Third, El Hussein et al. (138) found
that when Culicoides coinfections were staggered by various lengths of time, reassortant viruses
could be isolated from midges that had been infected with the second virus up to five days after
the first virus was introduced. In the future, mathematical modeling could help integrate evo-
lutionary processes observed in laboratory experiments and contribute to the overall knowledge
of orbivirus epidemiology (see the sidebar titled Mathematical Modeling to Better Understand
Reassortment) (Figure 2).

Although these prior studies provide an important starting point for investigating BTV reas-
sortment, these experiments have several shortcomings. Polyacrylamide gel electrophoresis and
related methods provide limited resolution for detecting subtle differences in the genome se-
quences of each segment. Thus, early studies were unable to distinguish the parental origin of
several segments in reassortant progeny viruses, particularly for longer segments with indistin-
guishable migration, resulting in incomplete data. Variations in fitness and replication kinetics
mean that slow-growing reassortants that produce smaller plaques may be missed or overgrown
by plaques from relatively fast-replicating reassortants, potentially biasing detection of reassort-
ment based solely on plaques.
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Figure 2

Mathematical modeling to better understand reassortment. (a) Typical target-cell limited model. Clearance
of free virions, cell death, and cell replication are not shown here. (b) Typical viral load dynamics of a
target-cell limited model. The solid line indicates typical dynamics of an acute infection, such as Zika virus in
humans, and the dashed line illustrates typical dynamics of a chronic infection, such as bluetongue virus in
Culicoides. Abbreviations: I, infected cells; T, target cells; V, free virions.
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MATHEMATICAL MODELING TO BETTER UNDERSTAND REASSORTMENT

Certain within-host processes can be difficult to elucidate directly using in vivo models. In such cases, mathematical
models can be powerful tools to complement in vitro and in vivo experiments and tomake additional inferences from
the data they generate (145). Examples of such processes that mathematical models have been used to infer include
the in vivo replication and clearance rates of human immunodeficiency virus type 1 (HIV-1) (146), the relative
roles that cell-to-cell and cell-free transmission play in HIV-1 infections (147), and the effect of the innate immune
response and viral interference on Zika virus dynamics (148). Much of the effort in this field has been focused on
dynamics of human viruses (146, 149–153), though several studies have explored the dynamics of malaria parasites in
mosquitoes (154–157). For instance, by accounting for the processes that determine sporozoite density in mosquito
salivary glands, Stopard et al. (157) showed that the extrinsic incubation period of malaria had greater variability
than thought previously.

Adapting and extending these modeling approaches for bluetongue virus (BTV) in Culicoides could provide in-
sight into the evolutionary and transmission dynamics of this pathogen.For instance,modeling could aid in inferring
the rate at which reassortants emerge when Culicoides experience mixed BTV infections, or extrapolate from in vitro
studies to estimate the frequency of reassortants in infectious blood meals.

The classical within-hostmodel is known as a target-cell limitedmodel (158) (Figure 2).This is a compartmental
model, with compartments for target cells, infected cells, and free virions. Target cells are infected by free virions
(cell-free transmission) or by infected cells (cell-to-cell transmission). Infected cells then produce new virions, and
free virions are also cleared. Finally, cell death and replication are modeled if they are relevant on the timescale of
infection, and cell death may occur at a higher rate in infected cells.

More recent in vitro work by Shaw et al. (142) using BTV-1 and BTV-8 found that reassort-
ment between these two viruses was highly flexible, in that multiple combinations of genome
segments resulted in viable reassortants. Some segment combinations demonstrated fitness disad-
vantages compared to others, highlighting that segment–segment, segment–protein, and protein–
protein interactions affect the overall viability of reassortant BTV viruses. Although certain seg-
ments were detected more frequently than others in reassortant viruses, Shaw et al. (142) ul-
timately determined that reassortment could involve any combination of segments from the
parental BTV-1 and BTV-8 viruses.

Shaw et al.’s (142) approach of generating mono-reassortants via reverse genetics represents a
powerful way to study reassortment in a deliberate and well-controlled fashion. However, with 10
segments of genomic dsRNA and 1,024 possible reassortment combinations between two strains
of virus, BTV poses a logistical challenge for this type of work. Compared to influenza, with just
8 segments and 264 possible segment combinations between two viruses, the number of segments
present among viruses in family Reoviridae adds another level of difficulty to characterizing reas-
sortment in these viruses. The complexity of these biological mechanisms could have an impact
on each viral strain, potentially a reassortant strain, present in a viral swarm. Collectively, this
could alter replication, kinetics, or even cell tropism within the vertebrate and invertebrate host.
Therefore, novel techniques and holistic approaches for detection of reassortment are needed.

An alternative to using recombinant BTVs to study reassortment is to initiate experimental
coinfections and use whole genome sequencing to track patterns in resulting progeny. Whether
used for in vitro or in vivo studies, this tool can reveal global shifts in segment frequencies. Using
two common strains of influenza to infect vertebrate cells, Zeldovich et al. (143) applied whole
genome sequencing to track segment frequencies across several passages, ultimately revealing
trends that echoed naturally arising influenza reassortant viruses. A similar approach has been
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attempted for BTV, in which two enzootic strains of BTV were used to establish coinfections in
vertebrate cells. By using whole genome sequencing, consistent trends emerged with regard to the
distribution and frequency of certain segments across passages.These trends were largely in agree-
ment with results from plaque isolation, although there were some exceptions, alluding to factors
that may affect reassortment detection via plaque assay. In contrast to single-virus BTV studies,
where viral population diversity remained relatively constant regardless of cell culture condition
or passage history, it was found that population diversity in coinfected cell cultures increased across
passages (144). These findings highlight the numerous complex factors that may limit or permit
reassortment in segmented viruses, and arboviruses in particular, given the additional stringencies
exerted by maintaining fitness in two divergent host systems.

Although this model has proved powerful for explaining overall within-host dynamics, ex-
tensions are usually necessary to explain specific processes. For instance, Best et al. (148) added
terms to describe the innate immune response to Zika virus infection and viral interference with
the response, finding that this fit experimental data better than models without these processes.
Other models have added spatial structure to understand how cell arrangement influences dy-
namics (159). Still other models allow for cellular coinfection, either by increasing the number
of compartments or by making assumptions about the distribution of cellular MOI (160–162).
Within-vector models of malaria parasites take a different approach given the parasite’s complex
life cycle, instead using the different stages through which the parasite passes as their compart-
ments (154–157).

Several refinements would be required to develop a model of BTV in Culicoides. For example,
it may be necessary to incorporate barriers to infection, especially the midgut infection and exit
barriers (MIB and MEB; see the section titled Arbovirus Evolution). There is evidence that in
some cases just a few virus particles cross the MEB (99), and one study found that only ∼30% of
midges infected orally result in disseminated infections (100). One way to model this would be to
include separate stages for the midgut and the secondary tissues. If the aim were to understand
the role of a founder effect in which virus genomes cross the MEB, then it may also be beneficial
to include a stochastic element in the model. Because Culicoides are ectothermic, viral replication
rates can be sensitive to ambient temperature, so it may be necessary to include temperature-
dependent parameters (163). With these and other refinements, and combined with appropriate
in vivo experimental work, models of this type could help further our understanding of BTV
evolution in Culicoides.

Factors restricting reassortment. For successful reassortment to occur, several key featuresmust
be in place. First, coinfection of a single cell must occur. Second, this coinfectionmust occur within
a time frame that permits superinfection or productive coinfection. For example, reassortment be-
tween influenza viruses can occur within the first three hours of a cellular infection, but thereafter
cells become refractory to infection with a second virus (164). This may be due to several reasons,
including viral-mediated destruction of receptors on the cell surface or host cell antiviral responses
(123). Some studies indicate that viruses in family Reoviridae are relatively permissible to super-
infection, with a prolonged window in which cells may be productively infected with more than
one virus (165). El Hussein and colleagues’ (138, 139) work indicates that this may be a feature of
BTV coinfection.

Physical barriers within the cell may prevent productive reassortment. If the sites of viral repli-
cation are highly isolated within the cell, only limited interactions between different viruses may
occur. The mechanism by which reassortment may occur during BTV coinfection is not well
understood, particularly because BTV and related viruses have highly sequestered replication fac-
tories within the cell. Whether a trafficking mechanism exists to shuttle viral segments between
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bluetongue VIBs is not known. A recent study with mammalian orthoreovirus demonstrated dy-
namicmovement of viral factories within the host cell,which wasmediated in part bymicrotubules
(166). It is not known whether a similar mechanism might facilitate segment movement and reas-
sortment among BTV strains.

Incompatibility between certain genome segments or their downstream proteins may preclude
the generation of reassortant viruses. For instance, in rotaviruses, mismatches between the viral
polymerase and capsid proteins appear to limit the spectrum of viable reassortant viruses (167).
Our own work with in vitro BTV coinfections found that certain viral segments could disap-
pear from the viral population over time, possibly owing to mismatches in segment–segment or
segment–protein interactions (144). When BTV-2 and BTV-10 coinfections were established in
vitro, BTV-10’s segment 7 became essentially undetectable by whole genome sequencing after
seven passages, despite being identical at the protein level to BTV-2’s segment 7 (144).

Packaging signals, too, play an instrumental role in the likelihood of reassortment. Marshall
et al. (168; see also 169) demonstrated that reassortment between engineered, near-identical in-
fluenza A viruses (differing by rare silent mutations in each segment) was highly efficient in an
in vitro system, but when heterologous packaging signals (3′ and 5′ UTRs) were introduced on
certain segments, reassortment was limited dramatically. Similar restrictions in reassortment me-
diated by incompatible packaging signals have been described for viruses in Bunyavirales (170,
171). Whereas 3′ and 5′ UTRs are quite conserved across BTV strains, additional packaging sig-
nals in the coding sequences may similarly restrict interstrain reassortment.

SUMMARY

Improvements in sequencing methods and bioinformatics analysis provide an extraordinary op-
portunity to investigate long-standing questions in BTV evolution and ecology. In this review, we
have discussed known evolutionary traits and some of the underlying mechanisms driving BTV
evolution. Clearly, many questions regarding the factors that drive or constrain BTV genetic di-
versification remain unanswered. Related work with other vector-borne and segmented viruses
provides a compelling backdrop for further investigation of BTV. The increased application of
whole genome sequencing and other novel sequencing platforms promises to build upon earlier
work, setting the stage for improved understanding of bluetongue and related viruses. By apply-
ing recent advancements in technology in a variety of experimental approaches (applied fieldwork,
in vitro systems, and in vivo models), investigators may better characterize the relative impact of
host-switching, reassortment, and environmental conditions on the overall genetic diversification
of BTV.

Although progress has been made in using molecular tools to study BTV, many critical and
basic evolutionary gaps exist, especially within the context of virus–host interactions and evolu-
tionary processes during coinfection.Despite the widespread and frequent occurrence of reassort-
ment in BTV, the ecological context in which these within-host events translate into significant
between-host transmission is poorly understood. Vector species with heterogeneous host feeding
preferences add complexity to an already complicated system. Within this context, a possibility
exists for exchange of genetic material between pathogens and increased adaptive fitness through
reassortment. This sharing of genetic material can facilitate the emergence of strains with epi-
zootic potential.

Multifaceted systems are difficult to study owing to the logistics, animal models, and vector
colonies required (Figure 3). To fully investigate viral evolution, future work should explore the
multitude of factors that affect virus–vector–host interactions.Themechanistic unknowns of BTV
evolution and reassortment following coinfection and the RNA- or protein-based interactions that
permit or limit generation of successful reassortant progeny also warrant further investigation.
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Figure 3

Knowledge gaps in bluetongue virus (BTV) virus–host interactions and evolutionary dynamics. Invertebrate and vertebrate hosts have
unique BTV infection dynamics that have implications for virus evolution and transmission. Elements of invertebrate host BTV
infection and vertebrate host BTV countermeasures remain undefined and may be contributing factors to viral evolution. Comparably,
the role of vertebrate host immunity in maintaining BTV fitness and diversity has yet to be characterized, and investigations of
virus–host interactions in the context of alternating host systems could bridge further understanding of BTV viral evolution. BTV
coinfection and reassortment are other facets of BTV evolution that necessitate further examination. Specific stringencies that BTV’s
alternating host transmission cycle impose on reassortment remain relatively unexplored. In vitro coinfection studies in a relaxed
system can result in population diversity through reassortment; however, in vitro studies are the initial step in guiding future
investigations and in vivo studies. Portions of this figure were created with BioRender.com.

More broadly, the roles that host immunity, RNAi, host community structure, coinfection with
other viral species, and microbiome composition play in shaping BTV’s evolution are open to
exploration. A refined understanding of the factors that drive or constrain BTV evolution will
facilitate improved predictive models and preventive strategies with the intent of mitigating the
risk of future bluetongue disease outbreaks.
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