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Abstract

Plant diseases reduce crop yields and threaten global food security, mak-
ing the selection of disease-resistant cultivars a major goal of crop breeding.
Broad-spectrum resistance (BSR) is a desirable trait because it confers re-
sistance against more than one pathogen species or against the majority of
races or strains of the same pathogen. Many BSR genes have been cloned
in plants and have been found to encode pattern recognition receptors,
nucleotide-binding and leucine-rich repeat receptors, and defense-signaling
and pathogenesis-related proteins. In addition, the BSR genes that underlie
quantitative trait loci, loss of susceptibility and nonhost resistance have been
characterized. Here, we comprehensively review the advances made in the
identification and characterization of BSR genes in various species and ex-
amine their application in crop breeding.We also discuss the challenges and
their solutions for the use of BSR genes in the breeding of disease-resistant
crops.
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Broad-spectrum
resistance (BSR):
plant disease resistance
against at least two
pathogen species or to
multiple strains or
races of one pathogen
species

Resistance (R) genes:
genes that confer
disease resistance
against pathogens and
encode surface
receptors (such as
receptor-like kinases)
or intracellular
receptors (such as
NLRs) that can detect
cognate pathogen
effectors directly or
indirectly

Quantitative trait
locus (QTL):
a specific
chromosomal region
or genetic locus
responsible for the
variation of a
quantitative trait in the
phenotype of a
population of
organisms

Species-nonspecific
broad-spectrum
resistance (SNS
BSR): plant disease
resistance against two
or more pathogen
species

Race-nonspecific
broad-spectrum
resistance (RNS
BSR): plant disease
resistance against two
or more races or
strains of the same
pathogen species

1. INTRODUCTION

1.1. Plant Diseases in Crop Production

Plant diseases caused by pathogenic fungi, oomycetes, bacteria, viruses, and nematodes cause huge
yield losses annually. A recent survey showed that crop losses caused by pathogens and pests world-
wide range from 10.1% to 28.1% in wheat (Triticum aestivum), 24.6% to 40.9% in rice (Oryza
sativa), 19.5% to 41.1% in maize (Zea mays), 8.1% to 21.0% in potato (Solanum tuberosum), and
11.0% to 32.4% in soybean (Glycine max) (157). In addition to reducing yields, plant diseases re-
duce crop quality and economic value and can cause food poisoning in humans and animals. The
development of highly resistant cultivars is an economical and eco-friendly alternative to expen-
sive and environmentally harmful chemical controls.

1.2. Use of BSR in Crop Production

Broad-spectrum resistance (BSR) refers to resistance against more than one pathogen species or
against most races or strains of the same species (80). Plant breeders have relied on the use of sin-
gle dominant or recessive resistance (R) genes because of their strong effects and ease of selection.
Most R genes confer race-specific resistance against a single or few pathogen strains; however,mu-
tations and virulence shifts in pathogen populations make the effectiveness of these race-specific R
genes short-lived. In contrast to the high level of race-specific resistance conferred by R genes, the
partial resistance controlled by quantitative trait loci (QTLs) is usually race nonspecific. This par-
tial resistance is generally insufficient to defend against pathogen attack, especially in epidemic
years. Although combining R genes and QTLs in the same genetic background is effective for
disease control, integrating both types of resistance in an elite cultivar is technically challenging
and time consuming. For these reasons, the selection of new cultivars with BSR, which is usually
durable (195), has become an important crop breeding goal. In this review, we classify BSR into
species-nonspecific (SNS) BSR, which confers resistance against two or more pathogen species,
and race-nonspecific (RNS) BSR, which confers resistance against two or more races or strains of
the same pathogen (195). Supplemental Tables 1 and 2 list the SNS- and RNS-BSR plant genes
that have been cloned to date.

1.3. Plant Immune System

Plants use a two-tiered innate immune system to defend against pathogen infection.The first layer
of defense is triggered by the recognition of pathogen-associated molecular patterns (PAMPs)
by membrane-associated pattern recognition receptors (PRRs), leading to PAMP-triggered im-
munity (PTI) (13). The second layer results from the recognition of pathogen avirulence (Avr)
effectors by the nucleotide-binding and leucine-rich repeat receptors (NLRs) and other types
of cytoplasmic proteins and often leads to the robust, race-specific effector-triggered immunity
(ETI) (71). Although PTI is generally weaker than ETI, the opposite situation has been observed
in some cases, while in others, it is not easy to clearly distinguish PTI from ETI (182).

R genes encode surface receptors [such as receptor-like kinases (RLKs)] or intracellular re-
ceptors (such as NLRs) that can detect cognate pathogen effectors directly or indirectly. Sev-
eral genes encoding cell wall–associated kinases (WAKs) are also involved in pathogen detection.
The PTI and ETI pathways involve numerous defense-signaling genes, such as those encoding
receptor-like cytoplasmic kinases (RLCKs),mitogen-activated protein kinases (MAPKs), enzymes
for epigenetic regulation and protein degradation, transcription factors (TFs), and other signaling
molecules. In addition, pathogen infection induces the expression of many pathogenesis-related
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Pathogen-associated
molecular patterns
(PAMPs): small
molecular motifs
conserved within a
class of microbes and
recognized by cell
surface pattern
recognition receptors
in both plants and
animals

Pattern recognition
receptors (PRRs):
receptor proteins
capable of recognizing
PAMPs or the
damage-associated
molecular patterns

Pathogen-associated
molecular
pattern-triggered
immunity (PTI):
a cascade of defense
response via the
recognition of the
conserved PAMPs or
microbe-associated
molecular patterns by
PRRs

Nucleotide-binding
and leucine-rich
repeat receptor
(NLR) proteins:
a class of cytoplasmic
immune receptors in
both plants and
animals that contain
the nucleotide-binding
and leucine-rich repeat
motifs

Effector-triggered
immunity (ETI):
a protective immune
response in host
initiated by the
recognition of
pathogenic effectors

(PR) genes, resulting in the production of antimicrobial proteins such as defensins, proteases, pro-
tease inhibitors, or enzymes involved in the generation of reactive oxygen species (ROS) and the
accumulation of secondary metabolites for cell wall cross-linking and the deposition of lignin and
callose as well as phytoalexins (6). Furthermore,many genes underlying QTLs, loss of susceptibil-
ity (S), and nonhost resistance (NHR) have recently been cloned and used in crop breeding (131).
This review focuses on our current understanding of the structure and function of the BSR genes
that have been cloned in plants, in addition to the strategies used to introduce these genes into
crops.

2. STRUCTURE AND FUNCTION OF THE SPECIES-NONSPECIFIC
BSR PROTEINS

2.1. Membrane-Associated Pattern Recognition Receptors

PAMPs are generally important for microbial survival or fitness and are therefore evolutionar-
ily conserved. Plants perceive the PAMPs via cell surface PRRs that quickly activate immune
responses. Plant PRRs are plasma membrane–localized RLKs or receptor-like proteins (RLPs)
(71). Five PRRs from Arabidopsis thaliana, rice, and potato have been reported to confer SNS BSR
(Supplemental Table 1). The first RLK-PRR to be characterized, FLAGELLIN SENSING
2 (FLS2) in Arabidopsis, confers SNS BSR against several genera of flagellated bacteria, including
Pseudomonas (39a, 152a), and heterologous expression of FLS2 in other plant species enhances their
resistance against many bacterial species (152).The bacterial PAMP elf18, a conservedN-terminal
epitope of the elongation factor (EF) Tu, is recognized by the RLK-PRR EF-TU RECEPTOR
(EFR), which functions as an SNS-BSR protein to regulate Arabidopsis resistance against differ-
ent bacterial pathogens (84, 86). The transgenic expression of Arabidopsis EFR in Nicotiana ben-
thamiana, tomato (Solanum lycopersicum), potato, rice and Medicago truncatula activates SNS BSR
against several pathogenic bacteria (12, 86, 141, 161). Xa21 was the first RLK-PRR R gene to be
cloned in crops and confers resistance against multiple strains of the rice bacterial blight pathogen
Xanthomonas oryzae pv. oryzae (Xoo) (168a, 188b). Moreover, heterologous expression of Xa21 in
citrus (Citrus sp.), Arabidopsis, and banana (Musa sp.) conferred resistance against several bacte-
rial pathogens (56, 137, 183). The Lysin motif-containing proteins LYP4 and LYP6 in rice are
dual-role PRRs that sense bacterial peptidoglycan and fungal chitin, activating immunity against
bacteria and fungi (100). In potato, the RLP-PRR elicitin response (ELR) recognizes extracellu-
lar elicitin, a conserved molecular pattern produced by Phytophthora species, and mediates SNS
BSR against multiple species of this oomycete (34). In addition to ELR, the RLP-PRR RLP23 in
Arabidopsis was reported to form a tripartite complex with the LRR receptor kinases Suppressor
Of BIR1-1 (SOBIR1) and BRI-associated kinase (BAK1) to regulate microbial protein Necro-
sis and ethylene-inducing peptide 1-like protein (NLP)-triggered immunity (4). The ectopic-
expressed RLP23 in potato can recognize NLP and induce SNS BSR to oomycete Phytophthora
infestans and fungus Sclerotinia sclerotiorum. These results demonstrate that PRRs that recognize
widespread microbial patterns might be particularly suited for engineering immunity in crop
plants (4).

2.2. Nucleotide-Binding and Leucine-Rich Repeat Receptor Proteins

The first identified SNS-BSR NLR proteins are the linked Arabidopsis RESISTANCE TO
RALSTONIA SOLANACEARUM1 (RRS1) and RESISTANCE TO PSEUDOMONAS SY-
RINGAE4 (RPS4) that function cooperatively as a dual R-gene system against bacterial and
fungal pathogens (129). RPS4 works with RRS1 as a pair to trigger a hypersensitive reaction (HR)
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Wall–associated
kinases (WAKs): a
class of plant receptor–
like kinases which
contain extracellular
galacturonan-binding
domain, transmem-
brane domain, and
cytoplasmic serine
threonine kinase
domain

Defense-signaling
genes: genes that
function in signal
transduction pathways
that link pathogens
recognition to defense
activation

Pathogenesis-related
(PR) genes: genes that
are downstream
components of defense
response and
responsible for
production of
antimicrobial agents

Nonhost resistance
(NHR): plant disease
resistance against
all nonadapted
pathogens; the most
common form of
disease resistance
exhibited by plants
against the majority of
potentially pathogenic
microorganisms

against Pseudomonas syringae containing AvrRps4. Apart from AvrRps4, RRS1/RPS4 also recog-
nize the effector PopP2 from Ralstonia solanacearum (129). Moreover, both RRS1 and RPS4 are
required for resistance against the fungal pathogen Colletotrichum higginsianum, probably through
recognizing an unknown effector (10, 129). Recently, the NLR protein RECOGNITION OF
XOPQ 1 (Roq1) in N. benthamiana was shown to recognize the effectors of two bacterial species.
It physically interacts with HopQ1 from Pseudomonas as well as XopQ alleles from various
Xanthomonas species in the presence of the resistance regulator Enhanced Disease Susceptibility
1 (EDS1) (160). N REQUIREMENT GENE 1 (NRG1) was recently found to be a key protein
acting downstream of EDS1 to mediate various Toll/IL-1 receptor-NLR signaling pathways,
including those contributing to the Roq1-mediated resistance to Xanthomonas and Pseudomonas
and to XopQ-regulated transcriptional changes in N. benthamiana (146). The mechanism of SNS
BSR mediated by RRS1/RPS4 and Roq1 warrants further investigation.

2.3. Defense-Signaling Proteins

Following the perception of PAMPs or effectors, the PRRs or NLRs (or other R proteins) activate
complex, interconnected signaling pathways that are involved in many biological processes, in-
cluding protein–protein interactions, posttranslational modifications, epigenetic regulation, tran-
scriptional regulation, and calcium ion signaling. The defense-signaling genes play positive or
negative roles in these signaling processes. A total of 42 defense-signaling genes are known to be
involved in SNS BSR (listed in Supplemental Table 1).

MAPKs are well-known defense-signaling proteins that transduce defense signals from the
immune receptors to the downstream proteins; for example, OsMAPK5 negatively regulates rice
resistance against both the bacterial pathogen Burkholderia glumae and the fungus Magnaporthe
oryzae (198). Similarly,OsMPK15 negatively regulates PR gene expression andROS accumulation,
with the osmpk15 knockout mutant having enhanced SNS BSR against Xoo and multipleM. oryzae
strains (57). In addition, twoMAPK cascade components in soybean,GmMPK4 andGmMEKK1,
negatively regulate plant cell death,PR gene expression, the accumulation of salicylic acid (SA) and
ROS, and resistance against multiple species of pathogens (105, 200).

In addition to the MAPKs, other types of kinases, such as the RLKs and RLCKs, also function
as SNS-BSR proteins (Supplemental Table 1); for example, overexpression of the RLCK-like
BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene confers BSR against at least two major bacte-
rial species and twomajor fungal species in rice (115).Two riceWAKs,OsWAK25 andOsWAK91,
are important for SNS BSR against two different pathogens (3, 30, 49).

Protein ubiquitination-mediated degradation also plays an important role in SNS BSR (24).
The rice U-box E3 gene SPOTTED LEAF 11 (Spl11) encodes a negative regulator of cell death,
and the spl11 mutant has increased SNS BSR against M. oryzae and Xoo (212). The knockout of
the gene encoding the SPL11-interacting Protein 6 (SPIN6) also increases plant resistance against
these two pathogens (104). Another multisubunit E3 ubiquitin ligase, Cullin3a (OsCUL3a), nega-
tively regulates rice cell death and SNR BSR againstM. oryzae and Xoo by targeting and degrading
NONEXPRESSER OF PATHOGENESIS-RELATED 1 (OsNPR1) (107). OsBAG4, the rice
homolog of human BAG (Bcl2-associated athanogene), forms a module with the RING domain
E3 ubiquitin ligase Enhanced Blight and blast Resistance 1 (EBR1) to control programmed cell
death and SNS BSR againstM. oryzae and Xoo (207).

Proteins functioning in epigenetic modification appear to be key regulators of SNS BSR; for
example, silencing HISTONE H4 DEACETYLASE GENE 701 (HDT701) in rice enhanced resis-
tance against M. oryzae and Xoo (33). These results demonstrate that genes involved in protein
degradation or epigenetic modification make important contributions to SNS BSR.
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TFs are critical components of plant immune signaling and key regulators of defense-related
gene expression. Several WRKY TFs are involved in SNS BSR in rice; for example, the over-
expression of OsWRKY45-1 or OsWRKY45-2 activated the defense response against M. oryzae
but suppressed the response against Rhizoctonia solani (163, 181). Furthermore, these two genes
play opposite roles in rice–bacterium interactions: OsWRKY45-1 negatively regulates rice resis-
tance against Xoo and X. oryzae pv. oryzicola (Xoc), but OsWRKY45-2 positively regulates rice re-
sistance against Xoo and Xoc (163, 181). In addition, OsWRKY67, OsWRKY30, OsWRKY62, and
OsWRKY76 function as SNS BSR genes in rice (102, 140, 186). In cucumber (Cucumis sativus),
the ethylene response factor TF gene CsERF004 positively regulates the expression of several PR
genes, the levels of the defense hormones, and the levels of SA and ethylene, and the overex-
pression of this gene confers SNS BSR against Corynespora cassiicola and Pseudoperonospora cubensis
(101).

As a central defense-signaling protein,NPR1 and its homologsNPR3 andNPR4 are SA recep-
tors that activate SA-mediated systemic acquired resistance by transcriptionally activating defense
genes in Arabidopsis (18, 41, 215). NPR1 overexpression confers SNS BSR against the bacterial
pathogen P. syringae and the oomycete pathogen Phytophthora parasitica in a dosage-dependent
manner. The heterologous expression of Arabidopsis NPR1 or its orthologs induces SNS BSR in
many other plant species (165); for example, the expression of NPR1 in rice increases resistance
against Xoo,M. oryzae, Fusarium verticillioides, and Erwinia chrysanthemi (25, 150). However, it is
worth noting that NPR1 overexpression often leads to autoimmunity and pleiotropic phenotypes
in transgenic plants.

2.4. Pathogenesis-Related Proteins

The dynamic and robust transduction of defense signaling during the early stages of infection by
many different pathogens leads to the rapid production of defense enzymes, defensins, thaumatin-
like proteins, and secondary metabolites including phytoalexins. It also leads to the generation
of ROS, callose deposition and cell wall modifications, and/or the activation of programmed cell
death in plants in an attempt to inhibit pathogen infection. The production of these antimicrobial
agents is regulated by the PR genes, which are ubiquitous in plants and effective against a variety
of pathogens. Three types of PR genes that contribute to SNS BSR are listed in Supplemental
Table 1. SNS BSR of these PR genes is usually achieved by overexpressing them in transgenic
plants. For example, the overexpression of the pepper gene Capsicum annuum ANTIMICRO-
BIAL PROTEIN1 (CaAMP1) in Arabidopsis increased resistance against various pathogens (89).
Moreover, the overexpression of the motherwort (Leonurus japonicus) gene LjAMP2, encoding an
antimicrobial protein, in white poplar (Populus tomentosa) conferred SNS BSR against multiple
fungal pathogens (64, 204a).

Phytohormone synthesis–related proteins such as the rice ethylene biosynthesis enzyme 1-
aminocyclopropane-1-carboxylic acid synthase 2 (OsACS2) also function in BSR. The overex-
pression of OsACS2 enhances ethylene production, defense gene expression, and resistance to
a field isolate of R. solani and multiple strains of M. oryzae (53). Interestingly, there is little or
no difference between OsACS2 overexpression plants and the wild-type plants in agronomic
traits, which is ideal for rice resistance breeding. In addition, a rice homologue of mammalian
selenium-binding proteins, OsSBP, also functions as a BSR PR gene (158). OsSBP positively
regulates rice defense gene transcription and phytoalexin accumulation after M. oryzae infec-
tion and H2O2 accumulation after treatment by the protein phosphatase inhibitor calyculin A.
As a result, overexpression of OsSBP activates rice disease resistance against Xoo and M. oryzae
(158).
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Susceptibility (S)
gene: any plant gene
that facilitates the
infection process or
supports compatibility
with a pathogen

2.5. Susceptibility Proteins

Plant genes that facilitate pathogen infection and contribute to susceptibility are termed Suscepti-
bility (S) genes (210). Loss-of-functionmutations in S genes (recessive alleles) substantially reduce
the compatibility between hosts and pathogens and thus result in resistance against a diverse array
of pathogens. The S genes are usually targeted and induced by pathogens to negatively regulate
host resistance. Over the past two decades, 11 S genes affecting SNS BSR have been identified
in crops (Supplemental Table 1). For example, Xa5, encoding a γ-subunit of the TF IIA, was
the first S gene to be identified in rice and was found to negatively regulate SNS BSR against
multiple isolates of Xoo (66) and Xoc (209). Xa13/OsSWEET11 encodes a sugar transporter that
facilitates bacterial and fungal infections, and the loss of its function confers SNS BSR against Xoo
and R. solani. A recent study reported that CRISPR/Cas9-mediated mutations in the promoters of
OsSWEET11 and its homologs OsSWEET13 and OsSWEET14 provide BSR to all tested Xoo
strains collected in Asia and Africa (136). In addition, the team reported the development of a diag-
nostic kit, SWEETR kit 1.0, to detect induction of OsSWEET11,OsSWEET13 and OsSWEET14
in the engineered reporter rice lines to visualize SWEET protein accumulation and identify suit-
able resistant lines for farmers (26, 36, 44).

Recently,BROAD-SPECTRUMRESISTANCE KITAAKE-1 (Bsr-k1) was cloned in rice and was
found to encode a tetratricopeptide repeat domain RNA-binding protein that negatively regulates
SNS BSR. Bsr-k1 knockout resulted in the upregulated expression of the rice phenylalanine am-
monia lyase genes (OsPALs) and enhanced resistance againstM. oryzae andXoo (220). Similarly, the
tomato eukaryotic translation initiation factor genes elF4E1 and elF4E2 function as S genes that nega-
tively regulate SNS BSR (120). The knockdown of both genes activates tomato resistance against
many potyviruses, including Potato virus Y, Tobacco etch potyvirus, Pepper mottle virus, Ecuadorian
rocoto virus, and Pepper severe mosaic virus (120).

The Arabidopsis protein Downy Mildew Resistant 6 (DMR6) belongs to a superfamily of 2-
oxoglutarate Fe(II)-dependent oxygenases, and its production is enhanced in response to pathogen
infection (185). The knockout ofDMR6 enhances the expression of defense-related genes and in-
creases SA levels, resulting in SNS BSR against many bacterial, fungal, and oomycete pathogens
(135, 185, 211). Similarly, the knockout of the genes SPOTTED LEAF 28 (SPL28, encod-
ing a clathrin-associated adaptor protein), ABSCISIC ACID2 (OsABA2, alcohol dehydrogenase),
OsPLDβ1 (phospholipase D), Suppressor of Salicylate Insensitivity of npr1–5 (OsSSI2, stearoyl acyl
carrier protein fatty acid desaturase), and OsDRP1E (dynamin-related protein) in rice resulted in
SNS BSR against M. oryzae and Xoo, although all the mutants underwent cell death (65, 96, 97,
148, 201).

2.6. Quantitative Trait Loci

Compared with the major gene-mediated resistance, quantitative resistance controlled by QTLs
is usually thought to be race nonspecific and more durable. To date, four QTLs contributing to
SNS BSR have been cloned in wheat, maize, and cucumber (Supplemental Table 1). The genes
Lr67/Yr46 and Lr34/Yr18/Pm38, cloned in wheat, confer SNS BSR against important diseases.
Lr67/Yr46 encodes a hexose transporter that confers partial resistance against multiple pathogens,
including pathogens that cause leaf rust, stripe rust, stem rust, and powdery mildew in wheat (54,
123a, 169). The transporter encoded by Lr67/Yr46 is believed to modulate hexose transport in the
infected leaves, thereby reducing the growth of multiple species of biotrophic pathogens. Simi-
larly,Lr34/Yr18/Pm38 encodes an ATP-binding cassette transporter that confers partial resistance
against leaf rust, stripe rust, and powdery mildew in wheat (82, 87, 169).
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The maize QTL qMdr9.02 confers resistance against important diseases, including south-
ern leaf blight, gray leaf spot, and northern leaf blight. Molecular cloning revealed that
ZmCCoAOMT2, which encodes a caffeoyl-CoA O-methyltransferase, contributes to the
qMdr9.02-mediated quantitative resistance against southern leaf blight and gray leaf spot
(204), indicating that ZmCCoAOMT2 may control metabolite levels in the phenylpropanoid
and lipoxygenase pathways associated with SNS BSR in maize.

The cucumber resistance QTL STAYGREEN (CsSGR), used for over 50 years to confer
SNS BSR against oomycete downy mildew, bacterial angular leaf spot, and fungal anthracnose
pathogens, was recently cloned (192). A single-nucleotide polymorphism was found to cause an
amino acid substitution in CsSGR, resulting in the inhibition of chlorophyll degradation (and
thus a stay-green phenotype) upon pathogen infection, which may inhibit the overaccumulation
of ROS and phytotoxic catabolites in the plants. SGR is highly conserved in plants; however, its
resistance function has not previously been reported in other species.

2.7. Nonhost-Resistance Proteins

NHR is the most common form of disease resistance exhibited by plants against the majority
of potentially pathogenic microorganisms (128). It is believed to confer long-lasting BSR and
helps ensure plant survival (52). The first NHR gene to be isolated was NONHOST 1 (NHO1)
in Arabidopsis, which positively regulates SNS BSR against several nonhost pathogens, such as
the bacteria P. syringae pv. tabaci, P. syringae pv. phaseolicola, and Pseudomonas fluorescens and the
fungus Botrytis cinerea (72, 113). Three NHR genes related to pathogen penetration were isolated
in genetic screens of Arabidopsis. PENETRATION1 (PEN1) encodes a syntaxin that localizes to the
plasma membrane, and its role in vesicle trafficking and exocytosis appears to confer NHR to the
powdery mildew pathogens Blumeria graminis f. sp. hordei (Bgh) and Erysiphe pisi (8, 27, 99). PEN2,
which encodes a glycosyl hydrolase that localizes to peroxisomes, positively regulates BSR against
the host-specific pathogen Erysiphe cichoracearum and the host-nonspecific pathogens Bgh and E.
pisi (99, 171). PEN3 is a plasma membrane–localized putative ATP-binding cassette transporter
that not only positively regulates plant resistance againstmany host-nonspecific pathogens but also
negatively regulates host resistance againstE. cichoracearum in an SA-dependentmanner (111, 171).

3. STRUCTURE AND FUNCTION OF RACE-NONSPECIFIC
BSR PROTEINS

3.1. Cytoplasmic Nucleotide-Binding and Leucine-Rich Repeat Receptors
and Other Types of Resistance Genes

Nearly all cloned NLR R genes in plants confer resistance against a single pathogen; however, as
indicated in Supplemental Table 2, 36 NLR R genes confer RNS BSR in rice, wheat, potato,
tomato, pepper, and roses (Rosa spp., multiple cultivars). Among the cloned rice blast R genes, 12
were reported to confer RNS BSR, and all these except Ptr encode NLR proteins (Supplemental
Table 2). The Pi2/Pi9 locus on rice chromosome 6 contains several RNS-BSR genes, including
Pi2, Pi9, Pi50, Piz-t, and Pigm (109). The Pigm locus is unique in that it encodes a pair of antag-
onistic NLRs, Pigm Resistant (PigmR) and Pigm Susceptible (PigmS) (31); PigmR confers BSR,
while PigmS competitively forms heterodimers with PigmR to inhibit its function in immunity.
However, PigmS expression is tightly controlled by epigenetic regulation, resulting in strong and
durable blast resistance without a yield penalty. Pi2, Pi9, Pi50, Piz-t, and Pigm have been widely
used in the breeding of blast-resistant rice. In wheat, three leaf rust R genes (Lr1, Lr10, and Lr21),
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five stem rust R genes (Sr33, Sr35, Sr22, Sr45, and Sr50), one yellow rust R gene (Yr5/Yr7), and
one powdery mildew R gene (Pm21) confer RNS BSR, and all these genes encode NLR proteins
(Supplemental Table 2).

Nine RNS-BSR R genes encode non-NLR proteins (Supplemental Table 2); for example,
the rice gene Xa4 encodes a WAK protein and confers durable RNS BSR against Xoo without
compromising grain yield (58). In noninoculated plants, XA4 activates the transcription of the
cellulose synthase gene CesA to facilitate cellulose biosynthesis and inhibits expansin expression,
increasing the mechanical strength of the plant cell wall and suppressing Xoo infection (58). The
rice genes Xa10,Xa23, and Xa27 encode executor R proteins and confer durable RNS BSR at the
seedling and adult stages (48a, 188a, 213). In addition, the yellow rust R genes Yr15 and Yr36 in
wheat encode a tandem kinase and a START kinase, respectively (40, 77).

3.2. Defense-Signaling Proteins

The ubiquitination-mediated pathway plays important roles in RNS BSR by activating the NLRs
and downstream immune signaling (24). Three defense-signaling genes encode E3 ligases in rice
and potato (Supplemental Table 2). The rice RING finger E3 ubiquitin ligase BLAST AND
BTH-INDUCED 1 (OsBBI1) was reported to regulate RNS BSR againstM. oryzae by modifying
the host cell wall (93). The overexpression of OsBBI1 increased rice resistance against multiple
strains ofM. oryzae and enhanced accumulation of defense-associated H2O2 and other ROS. The
rice U-box/ARM E3 ubiquitin ligase OsPUB15 interacts with the rice blast R protein Pid2 to
positively regulate plant cell death and the basal defense response, thereby conferring RNS BSR
againstM. oryzae (189). The RING-H2 Finger Protein 1 (StRFP1) is a potato E3 ubiquitin ligase
that positively regulates RNS BSR against multiple strains of Phytophthora infestans in potato and
in transgenic N. benthamiana via an E3 ligase activity-dependent pathway (133, 218).

Protein kinase genes are also involved in RNS BSR in crops (Supplemental Table 2). The
rice RLK Blast Resistance-Related 1 (OsBRR1) positively regulates resistance against M. oryzae,
with OsBRR1-overexpressing plants exhibiting enhanced resistance against virulent M. oryzae
isolates without showing obvious developmental changes (139). The L-type lectin receptor
kinase V (LecRK-V) was cloned from the diploid wheat relative Haynaldia villosa, and its trans-
genic expression in wheat enhances powdery mildew resistance at the seedling and adult stages
(194). Stpk-V, a serine/threonine protein kinase gene also from H. villosa, confers BSR against
wheat powdery mildew (147). Most recently, we discovered a novel plant RNA recognition motif
domain–containing TF family that physically interacts with rice NLRs to trigger RNS-BSR blast
resistance, which directly activates rice defense genes including OsWAK14 and OsPAL1, estab-
lishing a direct link between transcriptional activation of immune responses with NLR-mediated
pathogen perception (214).

3.3. Susceptibility Proteins

To date, five S genes have been reported to confer RNS BSR (Supplemental Table 2).Mildew
Resistance Locus O (Mlo) was the first S gene to be identified in barley (Hordeum vulgare), but it
has also been found in almost all higher plants (17). Recessive mlo loss-of-function alleles of bar-
ley induced by ethyl methanesulfonate (EMS), X-rays, or γ rays confer durable RNS BSR to all
known isolates of Bgh (17).MLO localizes to the plasma membrane and contains seven conserved
transmembrane domains and a calmodulin-binding domain in its C terminus (75). In wild-type
barley,MLO suppresses the hydrogen peroxide burst in the epidermal cell wall at the Bgh penetra-
tion site, thus inhibiting disease resistance by suppressing plant cell death and a second oxidative
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burst (142). The effectiveness and durability of the barley mlo gene to powdery mildew led to the
identification and functional characterization of manyMLO orthologs in other plant species, such
as Arabidopsis AtMLO2, AtMLO6, and AtMLO12; tomato SlMLO1; pea Er1/PsMLO1; grapevine
VvMLO3 andVvMLO4; tobaccoNtMLO1; pepper CaMLO2; cucumber CsaMLO8; Lotus japonicus
LjMLO1; barrel cloverMtMLO1; riceOsMLO3; and wheat TaMLO-A1,TaMLO-B1, and TaMLO-
D1 (217). The functions of these orthologous genes in disease resistance remain to be elucidated.

The rice S gene Pi21 (also referred to as a QTL) encodes a proline-rich protein with a putative
heavy metal–binding domain and a protein–protein interaction domain (42). The pi21 recessive
allele containing mutations in its proline-rich motif confers durable RNS BSR against many M.
oryzae strains and has been used in rice breeding in Japan for many years (42). Another rice blast
RNS-BSR S gene, Broad-spectrum resistance Digu 1 (Bsr-d1), was recently cloned and reported to
encode a C2H2-type TF (94). A single-nucleotide change in the promoter of Bsr-d1 enhances
the binding of the MYB TFMYBS1, which suppresses Bsr-d1 expression and enhances resistance
against multiple strains of M. oryzae (94). Several S genes also function in the rice-Xoo pathosys-
tem, including Xa25/OsSWEET13 and Xa41(t)/OsSWEET14, which encode sugar transporters
that facilitate bacterial infection, reducing RNS BSR against Xoo (62, 219).

3.4. Quantitative Trait Loci

Three RNS-BSR QTLs have been cloned in wheat, maize, and potato (Supplemental Table 2).
Recently, the long-sought wheat QTL Fhb1, which confers durable RNS BSR against Fusarium
head blight, was cloned and characterized by three independent research groups and was found
to likely encode a putative histidine-rich calcium-binding protein (5, 91, 174) or a chimeric lectin
with agglutinin domains and a pore-forming toxin-like domain (151). Because Fhb1 is highly con-
served in the genomes of grass species, the identification of Fhb1 is significant for the breeding of
cereal crops resistant to Fusarium species. The maize RNS-BSR gene Helminthosporium turcicum
resistance N1 (Htn1) protects against northern corn leaf blight and was found to encode a WAK
(ZmWAK-RLK) with a highly diverse extracellular domain in different maize genotypes (60).
The potato QTL R8 encodes an NLR, which contributes to providing durable BSR against late
blight (70). The further characterization of these genes will elucidate the molecular mechanisms
underlying QTL-mediated resistance.

4. PLANT BREEDING STRATEGIES FOR ACHIEVING BSR IN CROPS

4.1. Pyramiding Multiple Resistance Genes

Breeding resistant cultivars using R genes is currently the most effective and economical strategy
for controlling crop diseases (126); however, the frequent loss of R gene–mediated resistance in
the field limits the widespread and long-lasting use of single R genes in breeding programs. Pyra-
miding multiple R genes, especially BSR genes, with different resistance spectra against a single
pathogen or multiple pathogens in the same genetic background has proved to be an effective
strategy for achieving BSR. With the use of marker-assisted selection (MAS), multiple R genes
have been successfully pyramided into recipient cultivars of various crops to generate new vari-
eties with resistance against several major diseases, including rice blast, rice bacterial blight, wheat
rust, wheat powdery mildew, and soybean cyst nematodes.

Rice blast and bacterial blight are the two most important diseases of rice (109). Rice lines
containing multiple pyramided R genes usually have broader resistance than lines containing sin-
gle R genes; for example, the resistance spectra and levels in lines containing Pi2/Pi1, Pigm/Pi54,

584 Li et al.

https://www.annualreviews.org/doi/suppl/10.1146/annurev-arplant-010720-022215


PP71CH21_Wang ARjats.cls May 12, 2020 13:46

Durable resistance:
resistance that remains
effective for long
periods when widely
exposed to the
pathogen under the
prevailing growing
conditions

Pi2/Pi54, and Piz-t/Pi54 pairs were significantly better than the monogenic lines containing indi-
vidual R genes (67, 196, 197). Similarly, elite rice varieties with pyramided Xa4, Xa21, Xa7, Xa23,
and Xa27 genes obtained using MAS have broader resistance spectra and higher resistance levels
than lines containing only a single gene (114, 176, 202). Efforts to integrate multiple R genes that
confer BSR against different pathogens in elite rice cultivars have recently been increased, as ex-
emplified by the development of lines containing Pi9 and Xa23, Pi2 and Xa23, or Xa21 and Pi54
(68, 132, 178).

Wheat fungal diseases cause annual yield losses of 15–20% (39). Over 187 R genes in wheat
have been found to confer resistance against various rust diseases, and many have been used in
breeding for rust resistance (2). The R genes Sr22, Sr25, Sr26, Sr33, Sr35, Sr45, and Sr50 are
considered to be the most valuable for pyramiding to protect against the newly evolved races of
stem rust, including the aggressive race Ug99 (35, 166). Pyramiding of two single dominant yellow
rust genes, Yr5 and Yr15 or Yr64 and Yr15, in common wheat resulted in complete resistance
against all tested stripe rust races (77, 149). In addition, different combinations of the powdery
mildew R genes Pm2, Pm4a, and Pm21 were successfully integrated into the elite wheat cultivar
Yang 158, resulting in broad-spectrum powdery mildew resistance (103).

The soybean cyst nematode (Heterodera glycines) has a major effect on soybean production
(108). Resistance to Heterodera glycines 1 (Rhg1) is located in a cluster with genes encoding an amino
acid transporter, an α-soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein, and
a wound-inducible domain protein 12 (WI12), each of which contributes to providing resistance
against the cyst nematode (28). The major resistance QTL Rhg4 that encodes a serine hydroxy-
methyltransferase was also cloned (108). A strong epistatic interaction occurs between Rhg1 and
Rhg4 in the Peking background, which provides the only known instance of full resistance against
the pathogenic nematode (122); therefore, lines containing these two genes have a broader spec-
trum of resistance against the cyst nematode (208). Similarly, potato plants containing stacks of
two or three of the R genes Rpi-vnt1, Rpi-sto1, Rpi-vnt1.1, and Rpi-blb3 exhibit BSR against the
late blight P. infestans in the field (51, 221).

As mentioned above, the pyramiding of R genes with complementary resistance spectra or
modes of action can produce additive and synergistic effects on resistance levels and spectrum. In
a few cases, however, the pyramiding of R genes can reduce resistance to levels lower than what
could be obtained with individual R genes. In the case of blast disease in rice, for example, the
resistance level of plants containing Piz-5 and Pita is lower than the level observed in the mono-
genic lines expressing Piz-5 alone (55). Similar phenotypes were also observed in the pyramiding
lines containing Piz and Pi54 (196); therefore, different R gene combinations should be tested for
their compatibility in different genetic backgrounds before they are used in breeding programs.

4.2. Combining Resistance Genes with Quantitative Trait Loci

It has been well documented that a combination of R genes and QTLs or partial resistance
genes confers durable resistance (127, 131). Plant breeders have pyramided R genes with multiple
QTLs to achieve broad-spectrum and durable resistance and to reduce the selection of resistance-
breaking pathogen genotypes (88, 170). In wheat, the best-knownQTL genes are Sr2,Lr34,Lr46,
and Lr67; these genes have provided partial resistance in mature plants for many years over large
areas, despite high and prolonged disease pressure in the field (35). Combining Lr34 and Lr67
with various dominant race-specific Lr genes enhanced the resistance of wheat plants against leaf
rust in multiyear, multilocation field trials (29, 46, 184). The pyramiding of R genes with QTLs,
such as the combination of Sr2, Lr34/Yr18/Pm38, and Lr46/Yr29/Pm39, has proved effective for
the control of stripe rust and powdery mildew in the CIMMYT spring wheat breeding programs
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(98, 167). The QTL Fhb1 has been widely deployed to improve Fusarium head blight resistance
in different cultivated wheat varieties (91, 151, 174, 205), and the pyramiding of Fhb1 with the leaf
rust R gene Lr21 in elite spring wheat greatly improved its BSR against various pathogens (168).

Several maize disease QTLs have been cloned, including qHSR1,Htn1, qMdr9.02, and ZmTrxh
(203, 204). Resistance alleles frommultiple QTLs have been stacked into a single line using MAS,
resulting in BSR against multiple pathogens (7, 216). The pyramiding of the R genes Ht1 and
Ht2 with a head smut QTL provided a higher level of disease resistance against northern leaf
blight and head smut than was observed in the parental lines (69). In addition, two studies showed
that rice lines with multiple blast-resistance QTLs, including pi21, qBR4-2, Pi34, qBR12-1, and
Pi35, had a strong, race-nonspecific, environmentally stable resistance againstM. oryzae (43, 206).
Integration of these resistance QTL alleles into elite cultivars with major R genes will likely lead
to the development of durable BSR rice lines.

4.3. Modifying Immune Receptor Expression and Structure

Plant R gene expression is typically strictly controlled to avoid autoimmunity when plants are not
under pathogen attack (95); however, the overexpression of a few R genes can activate immune re-
sponses and generate BSR against multiple pathogens without inducing high levels of cell death.
For example, increasing expression of the rice R gene Xa3/Xa26 using different promoters, in-
cluding the native, WRKY13, and maize Ubiquitin promoters, can increase the spectrum of Xoo
resistance (19). In addition, overexpression of the rice PRRs OsLYP4 and OsLYP6 conferred BSR
against Xoo and M. oryzae (100). Similarly, overexpression of the Pto gene in tomato conferred
resistance against P. syringae pv. tomato, Xanthomonas campestris pv. vesicatoria, and Cladosporium
fulvum (180).

Modification of the transcription activator-like effector (TALE)-binding sites in R genes can
generate broad, durable resistance against important Xanthomonas diseases (59, 153). The intro-
duction of multiple TALE-binding elements into the promoter of the R gene Xa27 activates
its expression and expands resistance against Xoo and Xoc (59). The designer TALEs strategy
uses the scaffold of the TALE AvrBs3 and modified repeat-variable diresidues that match the
tomato Bacterial spot resistance 4 (Bs4),Arabidopsis ENHANCER OF GLABRA3 (EGL3), or the Ara-
bidopsis KNOTTED-LIKE 1 (KNAT1) promoters to transcriptionally activate them in a sequence-
specific manner (124). Engineering synthetic TALEs to induce the transcription of these immune
receptor–encoding R genes can therefore trigger BSR against various pathogens.

Recently, significant progress has been made in engineering sensitized NLR variants with a
lower activation threshold, which recognize a wider spectrum of effectors. Mutations in the con-
served coiled-coil and nucleotide-binding domains of the NLR receptors expanded their response
spectra to include more effector variants (21, 50, 162, 173). Another study (47) reported that the
engineered tomato immune receptor I2 (I141N) confers partial resistance against P. infestans and
has an expanded response spectrum to the fungus Fusarium oxysporum f. sp. lycopersici, suggesting
that synthetic immune receptors can be engineered to confer resistance against phylogenetically
divergent pathogens.Mutations in the LRR domain and near the nucleotide-binding pocket struc-
ture of the NLR receptors Rx and R3a may increase the resistance spectrum (37, 50, 162). These
studies illustrate that immune receptors can be modified to improve the NLR resistance spec-
tra. It remains to be determined how base-editing technologies could be used to generate point
mutations at conserved NLR nucleotides to obtain new BSR genes (45).

Another significant breakthrough was made in modifying a decoy to engineer novel pathogen
recognition specificities (81). The Arabidopsis NLR receptor RESISTANCE TO PSEU-
DOMONAS SYRINGAE5 (RPS5) guards the host kinase AVRPPHB SUSCEPTIBLE1 (PBS1)
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against cleavage by the bacterial effector AvrPphB, a protease that cleaves PBS1 at a defined
region to produce a conformational change. The engineered modification of the AvrPphB
cleavage site within PBS1 to resemble that of a bacterial or viral protease enabled RPS5 to
recognize these proteases upon infection (76). This study indicates that decoys can be used to
expand the recognition specificity of a plant NLR, an approach with potential use in the rational
engineering of disease resistance in crop plants.

4.4. Inducible Expression of Pathogen Elicitor and Avirulence Genes in Plants

Some pathogen elicitor or Avr genes trigger a strong HR when expressed in transgenic plants;
therefore, researchers investigated the possibility of using a pathogen-inducible promoter to drive
an elicitor/Avr gene to activate BSR.Keller et al. (74) generated transgenic tobacco plants harbor-
ing a fusion between the pathogen-inducible tobacco hsr203J gene promoter and a Phytophthora
cryptogea gene encoding the elicitor cryptogein. After P. cryptogea inoculation, the induced pro-
duction of cryptogein resulted in a localized HR that restricted further growth of the oomycete
Phytophthora and unrelated fungal pathogens (74).BSRwas also obtained through the expression of
both R and Avr genes in transgenic rice plants (61). These plants expressed the Avr1-CO39 effec-
tor gene fromM. oryzae, under the control of an inducible promoter, and were challenged withXoo
and Xoc strains carrying a TALE designed to transactivate the inducible promoter. The recogni-
tion of the corresponding NLR receptor Pi-CO39 by the induced Avr1-CO39 triggered resistance
against the bacterial diseases (61). Such an approach, which is based on synthetic promoter traps,
expands the panel of genes that can be exploited to engineer resistance in plants against infections
by TALE-injecting pathogens.This strategy has not yet been tested in the control of crop diseases
caused by pathogens that lack TALEs.

4.5. Altered Expression of Defense-Signaling and Pathogenesis-Related Genes

Engineering BSR is possible using both defense-signaling and PR genes because they usually func-
tion downstream of the immune receptors. For example, silencing soybean GmMPK4s caused
spontaneous cell death in the leaves and stems and enhanced resistance against downy mildew
and the soybean mosaic virus (105). Defense-signaling and PR genes are conserved in different
plant species, allowing BSR to be achieved in many crops by expressing the Arabidopsis defense
master regulator NPR1 (116, 119, 164, 165, 188). The NPR1 orthologs cloned from other plants
also function as BSR regulators in their native species and when expressed in other species; for
example,NPR1 cloned fromMalus pumila (MpNPR1) orMalus hupehensis (MhNPR1) can activate
BSR in apple (Malus × domestica), protecting against fire blight, apple scab, and cedar apple rust
(23, 117, 118). Similarly, the transgenic expression of StoNPR1 from Solanum torvum (a wild egg-
plant highly resistant to Verticillium dahliae) in potato enhances its resistance against V. dahliae
(32).

Some PR genes are involved in strengthening cell walls, generating an oxidative burst, and
producing antimicrobial compounds in the host plants. The overexpression of PR genes, such as
those encoding defensins, enhanced plant resistance to multiple pathogens (138, 156). In another
example, the expression of CaAMP1, which encodes an antimicrobial protein, led to BSR against
biotrophic, hemibiotrophic, and necrotrophic pathogens in pepper (89).

Transgenic plants with alterations in their expression of a single defense signaling or PR gene
usually have relatively low levels of resistance against pathogens; however, stacking these trans-
genes may increase their resistance. If a strong HR occurs in the transgenic plants, an inducible
expression system should be used to alleviate the cell death phenotypes. Another approach is to
screen germplasm for new alleles with high expression levels but a minimal yield penalty.
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4.6. Genome Editing of Susceptibility Genes

Recent advances in genome editing technologies have enabled the targetedmutagenesis of S genes
in several important crops, with the goal of generating BSR against multiple pathogens. TALEN
and CRISPR/Cas9 technologies were used to target the Mlo loci in wheat and thereby obtain
plants resistant to powdery mildew (193). In tomato, knocking out theMlo ortholog SlMlo1 using
CRISPR/Cas9 resulted in plants fully resistant to the powdery mildew fungus Oidium neolycoper-
sici (130). Moreover, in rice, CRISPR/Cas9-induced mutations in the proline-rich motif of Pi21
provided RNS BSR againstM. oryzae (42, 92), and promoter editing of three SWEET genes led to
the development of BSR transgenic lines in all tested Xoo strains in two mega rice varieties (136).
Another example involves eIF4E, which is essential for the cellular infection cycle of potyviruses
(155).Two independent studies recently showed that disruption of eIF4Es using CRISPR/Cas9 led
to resistance against ipomoviruses and potyviruses in Arabidopsis and cucumber (20, 145). These
results clearly show that manipulation of S genes is a powerful approach for generating resistance
in economically important crops.

4.7. Using the Multiline Strategy to Confer BSR

A multiline cultivar is a mixture of pure lines that are agronomically similar but differ in a single
trait, such as an R gene (125). Relative to single-component cultivars, multiline barley cultivars
have up to 80% less disease, while wheat multilines show a 60% disease reduction (143). In rice,
mixed plantings of disease-resistant and susceptible varieties grown in multiple locations for two
years can greatly reduce the severity of rice blast infections in both varieties (222). Blast-resistant
multilines composed of near-isogenic lines with different R genes had lower levels of blast disease
than their corresponding single-component cultivars (63, 78, 85).Generating uniform sets of near-
isogenic lines in the same genetic background is time consuming; therefore, multilines composed
of transgenic wheat lines overexpressing Pm3a, Pm3c, Pm3d, Pm3f, or Pm3g in the Bobwhite cul-
tivar background were developed. Field tests showed that all transgenic lines were more resistant
to powdery mildew than the respective control lines, with substantially greater resistance in the
multilines containing all four pyramided alleles (15, 79). This demonstrated that a difference in a
single R gene is sufficient to cause host-diversity effects, and that the development of multilines
represents a promising strategy for the effective and sustainable use of R alleles.Gene editing tech-
niques are rapidly being improved,meaning breeders will soon be able to engineer crop multilines
containing both SNS- and RNS-BSR genes.

5. POTENTIAL CHALLENGES AND POSSIBLE SOLUTIONS

As discussed above and shown in Figure 1, significant progress has beenmade in the identification
of BSR genes and in our understanding of the molecular basis of BSR. In addition, several breed-
ing strategies have been employed to select BSR cultivars (Figure 2). However, many challenges
remain regarding the application of BSR in crop breeding. These challenges and their possible
solutions are discussed in the following sections.

5.1. Identifying Novel Genes that Balance BSR and Yield

The molecular mechanisms underlying the trade-off between resistance and crop yield are largely
unknown (134); however, several recent studies have described new approaches for minimizing the
fitness cost of disease tolerance in rice. The Pigm locus in rice encodes a pair of antagonistic NLR
receptors, PigmR and PigmS (31), which decrease and enhance yields, respectively. The transfer
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Mechanism of BSR in plants. PAMPs from bacteria, fungi, oomycetes, and other pathogens are perceived by
membrane-associated PRRs and coreceptors. WAKs can also recognize pathogen effectors or plant signals,
such as damage-associated molecular patterns, and can be activated by PRRs (16). Meanwhile, intracellular
resistance proteins such as NLRs or non-NLRs can recognize pathogen-secreted Es or viral proteins such as
CP, Rep, and MP. These specific recognitions activate various immune signaling cascades mediated by
defense-signaling proteins that lead to the synthesis of numerous pathogenesis-related proteins to confer
RNS BSR, SNS BSR, or both. By contrast, loss of function of susceptibility genes targeted by pathogen
effectors or viral proteins, expression of QTLs, and NHR genes can initiate RNS BSR and SNS BSR to
pathogens in plants. Abbreviations: BSR, broad-spectrum resistance; CP, capsid protein; E, effector; MP,
movement protein; NHR, nonhost resistance; NLR, nucleotide-binding and leucine-rich repeat receptor;
PAMP, pathogen-associated molecular pattern; PRR, pattern recognition receptor; QTL, quantitative trait
locus; Rep, replicase; RNS, race-nonspecific; SNS, species-nonspecific; WAK, cell wall–associated kinase.

of both receptors into a susceptible line ensures a good balance between yield and immunity, and
the entire Pigm locus has been introduced into elite cultivars using traditional breeding. Another
study demonstrates that the substitution of a single nucleotide in the promoter of the Bsr-d1 gene
enhances disease resistance without reducing yields (94). Two recent studies showed that the TF-
encoding gene Ideal Plant Architecture1 (IPA1) promotes high yields while contributing to rice
immunity against M. oryzae and Xoo (106, 190). The use of genetic and genomic approaches to
identify additional Pigm-, Bsr-d1-, and IPA1-like alleles in rice and other crops will provide new
germplasm materials for the breeding of new cultivars with both high pathogen resistance and
high yields.
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Multiple strategies for breeding BSR in crops. The proposed strategies can be used separately or in
combinations dependent on the availability of BSR genes and technologies for the crop. Abbreviations: Avr,
avirulence; BSR, broad-spectrum resistance; DS, defense-signaling; PR, pathogenesis-related; R, resistance;
QTL, quantitative trait locus.

5.2. Eliminating the Negative Effects of Defense Proteins on Plant Growth
Using Upstream Open Reading Frames

The overexpression of immune receptor–encoding, defense signaling, PR, and NHR genes often
leads to cell death and dwarf phenotypes (134).Upstream open reading frames (uORFs), located in
the 5′ untranslated regions, are potent cis-acting regulators of translation and mRNA turnover and
are abundant in angiosperm genomes (187). In Arabidopsis, the TF TL1-binding factor 1 (TBF1)
is involved in the switch from growth to defense that occurs upon induction of the immune re-
sponse. The TBF1 cassette consists of the TBF1 promoter and the 5′ untranslated region, which
contains two pathogen-inducible uORFs. A recent study used uORFsTBF1-mediated translational
control to minimize the fitness cost of BSR in Arabidopsis and rice (199). The authors found that
the TBF1p:uORFs-NPR1 and TBF1p:uORFs-SNC1 transgenic plants displayed BSR against three
rice pathogens without suffering any fitness cost. This strategy provides a way of minimizing the
negative effects of the overexpression of BSR genes in crops. The search for additional TBF1-
like TFs in plant genomes may lead to the development of crop plants with BSR but without the
associated reductions in growth and yield.

5.3. Reducing the Selection Pressure on Pathogens When Growing
BSR Cultivars

The widespread and long-term planting of BSR cultivars will likely increase the selection pressure
on pathogens and increase the appearance of resistance-breaking populations (121). In theory,
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BSR cultivars should provide durable resistance because overcoming their resistance mechanisms
would require the accumulation of mutations in multiple pathogen effectors. The durability of
BSR cultivars mainly depends on the evolutionary potential of the pathogens, however, which can
be considerable for species with complex populations,mixed reproductive systems, and substantial
gene flow (121). Researchers have proposed that multivirulent pathogen populations develop in
a step-by-step manner (14); therefore, a complete survey of the frequency of virulent strains in
the field is essential for the correct deployment of BSR genes or combinations of R genes and
QTLs in crop production. In addition, the establishment of natural disease nurseries used for the
evaluation of the resistance capabilities of different BSR cultivars will also be helpful for testing
the effectiveness of the BSR genes.

5.4. Identifying and Using Nonhost-Resistance Genes in Crop Breeding

Although the molecular mechanism underlying NHR in plant defense is still not clear, the use
of NHR in crops is a promising approach for breeding BRS cultivars. The wheat Lr34 gene is
a good example because the transfer of this gene to other cereal species, such as barley, rice,
and maize, confers resistance against multiple species-specific pathogens of these crops (11, 83,
175). Another promising NHR gene is the Cajanus cajan Resistance against Phakopsora pachyrhizi 1
(CcRpp1), an NLR-encoding gene from pigeonpea (C. cajan) that confers resistance against the
fungal pathogen P. pachyrhizi in soybean (73). Nevertheless, the number of Lr34- and CcRpp1-like
genes in crops is limited, and new methods for rapidly isolating such genes are required. Although
the expression of NHR genes across phylogenetically distant species may lead to the development
of BSR in economically important crops, some crop plants currently remain untransformable,
which limits the application of the NHR genes. The development of new transformation tech-
niques in these crops will facilitate the use of NHR genes for the engineering of additional BSR
crops.

5.5. Optimizing Strategies for Intra- and Interspecies Transfer
of Immune Receptors

Crop breeders have introgressed R genes from wild relatives into elite cultivars (9, 60). The maize
R geneHtn1, encoding a putativeWAK that confers quantitative resistance against most isolates of
northern corn leaf blight, was introduced from a Mexican landrace into modern maize breeding
lines in the 1970s (60). In apple, the susceptible cultivar Gala showed enhanced scab resistance
against multiple strains of Venturia inaequalis after being transformed with the R gene HcrVf2
from the wild speciesMalus floribunda (9). One challenge for transferring new R genes from wild
relatives into cultivated lines is how to rapidly identify and clone the R alleles that confer BSR.
Recently,multiple strategies have been used to clone new R genes from the wild relatives of wheat,
barley, and potato, including MutRenSeq, MutChromSeq, dRenSeq, and RenSeq (22, 154, 172).
These low-cost mapping strategies can be adapted for use with other crop plants.

The interspecies transfer of PRR genes was recently reported; for example, the Arabidopsis
EFR gene was introduced into tomato (86), rice (112, 161), potato (12),Medicago (141) and wheat
(159), and the resulting transgenic plants displayed resistance to the pathogens adapted to each of
these crops. Similarly, the transformation ofXa21 into tomato (1), sweet orange (Citrus aurantium)
(123), and banana (Musa acuminata) (183) increased resistance toXanthomonas axonopodis pv. citri,R.
solanacearum, andX. campestris pv.musacearum, respectively.Although PRRs have been transferred
between species, the resistance levels of the transgenic lines, such as the Arabidopsis EFR gene in
rice, to their species-specific pathogens have usually been relatively low (161); however, combining
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PRR genes with NLRs or QTLs in the recipient species could enhance the resistance levels and
spectra of the transgenic plants.

5.6. Choosing the Right BSR Gene Combinations and Pyramids

Previous research suggests that, in a pyramid, one R gene may mask the effects of the others, such
that some R gene combinations provide less disease resistance than other combinations (127). For
example, rice plants containing both Piz-5 and Pita had lower blast resistance than plants con-
taining Piz-5 alone (55). Similar results were reported in the pyramided lines containing Piz and
Pi54 (196). In addition, the genetic background of the recipient cultivars may affect the resistance
phenotype; the resistance conferred by a combination of Xa5, Xa13, and Xa21 differed substan-
tially among five rice cultivars, indicating the possible presence of resistance suppressors in some
of the host plants (144). The effects of specific combinations of different BSR genes or pyramids
of R genes and QTLs are therefore not predictable and should be tested in different genetic back-
grounds before being used in crop breeding programs. Further investigation of the mechanisms
underlying the synergistic or antagonistic effects of different BSR gene combinations or genetic
backgrounds will provide essential new information for BSR breeding.

5.7. Screening for Genes That Provide BSR Against Both Necrotrophic
and Biotrophic Pathogens in Crops

Biotrophic and necrotrophic pathogens use different strategies: Necrotrophic pathogens kill host
tissues because they colonize and thrive on the contents of dead or dying cells, whereas biotrophs
depend on living host cells to complete their life cycle (48). In many cases, plants with resistance
against biotrophic pathogens are susceptible to necrotrophic pathogens, and vice versa (179); how-
ever, transgenic carrots (Daucus carota) expressing NPR1 had BSR against both necrotrophic and
biotrophic pathogens (188). The two transgenic carrot lines in that study exhibited a 35–50%
reduction in disease symptoms on their foliage and roots when exposed to three necrotrophic
pathogens and an 80–90% reduction in disease development in response to two biotrophic
pathogens. It is therefore critical for breeders to identify new BSR genes that confer resistance
against both necrotrophic and biotrophic pathogens in crops.

SUMMARY POINTS

1. Selection of new cultivars with broad-spectrum resistance (BSR) is an important goal in
crop breeding programs.

2. BSR genes encode pattern recognition receptors (PRRs), nucleotide-binding and
leucine-rich repeat receptors (NLRs), and other defense-related proteins.

3. Genes underlying quantitative trait loci (QTLs), loss of susceptibility and nonhost re-
sistance (NHR) are also involved in BSR.

4. Durable BSR can be achieved with different breeding strategies in crops.

5. Low-cost mapping strategies such as RenSeq can be adapted for rapid isolation of BSR
genes in wild species.

6. Genome-editing technologies such as CRISPR/Cas9 will play a vital role in engineering
BSR crops.
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