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Abstract

Plant phenotyping enables noninvasive quantification of plant structure and
function and interactions with environments. High-capacity phenotyping
reaches hitherto inaccessible phenotypic characteristics. Diverse, challeng-
ing, and valuable applications of phenotyping have originated among scien-
tists, prebreeders, and breeders as they study the phenotypic diversity of ge-
netic resources and apply increasingly complex traits to crop improvement.
Noninvasive technologies are used to analyze experimental and breeding
populations. We cover the most recent research in controlled-environment
and field phenotyping for seed, shoot, and root traits. Select field phenotyp-
ing technologies have become state of the art and show promise for speeding
up the breeding process in early generations.We highlight the technologies
behind the rapid advances in proximal and remote sensing of plants in fields.
We conclude by discussing the new disciplines working with the phenotyp-
ing community: data science, to address the challenge of generating FAIR
(findable, accessible, interoperable, and reusable) data, and robotics, to apply
phenotyping directly on farms.
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Phenotyping: the
activity of using a suite
of methods to quantify
features of organisms
(e.g., plants) that are
expressed and
observable

Deep: describes data
with many layers from
multiple sensors and
time points and/or on
many individuals
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PLANT PHENOTYPING HAS COME A LONG WAY

A new era in plant phenotyping began with the increased development of noninvasive technolo-
gies. The capacity and throughput of sensor, automation, and computation-based tools grew,
along with their availability, affordability, robustness, and scalability (34). Automated, nondestruc-
tive, and precise plant phenotyping was first applied in the plant sciences to dissect the dynamics
of the spatial and temporal structure–function relations of plants in controlled environments
(growth chambers and glasshouses) (38, 143). Numerous infrastructure platforms were developed
globally, allowing for deep phenotyping. Highly skilled groups have developed and used special-
ized equipment for tomographic and high-throughput measurement of structure in three and four
dimensions (28, 52, 71, 75, 94, 137). Functional phenotyping quantifies photosynthesis processes,
growth, water and nutrient relations, and many more plant characteristics. Global infrastructure
platforms have been bundled and made accessible in recent years by initiatives such as the
International Plant Phenotyping Network (IPPN); the European Plant Phenotyping Network
(EPPN); and the EPPN’s successor, EPPN2020 (see the Related Resources). Ongoing large and
coordinated actions continue to provide continental-scale organization, as in the European In-
frastructure for Multi-Scale Plant Phenotyping and Simulation for Food Security in a Changing
Climate (EMPHASIS) (118). These initiatives also maintain active databases of available tech-
nologies and phenotyping experiment installations for users.Most of the phenotyping installations
available today are in controlled environments. Surveys of the plant phenotyping community
by IPPN (see https://www.plant-phenotyping.org/ippn-survey_2016) have identified nonin-
vasive field phenotyping, root phenotyping, data management, and extraction of information as
crucial bottlenecks—specifically when moving toward breeding applications. Noninvasive plant
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Prebreeding: refers to
activities to identify
desirable features and
genes from plants so
that information,
selection technologies,
and plants can be used
in breeding to produce
varieties for farmers

Trait: a characteristic
of an organism that
may be measured
when expressed at the
individual level using
phenotyping
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Figure 1

A process model of plant phenotyping to improve crop varieties. The process of improving crop varieties via
plant phenotyping includes ( 1©) characterization of genetic diversity, ( 2©) designing experiments for the
development of breeding populations, ( 3©) using efficient selection procedures, and ( 4©) assessing trait
heritability. Abbreviation: G×E×M, genotype × environment × management. Photos copyright
Forschungszentrum Jülich.

phenotyping today is used primarily for the processes depicted in Figure 1 and, as such, is used
mainly in prebreeding.

Introducing and maintaining beneficial genetic diversity are at the core of prebreeding, and
much of the plant phenotyping community is engaged in characterization of genetic diversity
(Figure 1, step 1©). Phenotyping provides information about experimental populations (Figure 1,
step 2©) (51, 136) that help include desired phenotypes that do not have molecular markers (e.g.,
109). Entirely new automated instruments have been engineered to increase the speed and preci-
sion of selection of complex and combined phenotypes (Figure 1, step 3©). Automated instru-
ments can measure multiple genetic aspects of seeds in seed banks (53) and the dynamics of
whole-plant allocation in large crop plants (44). The high throughput of automated phenotyp-
ing installations can assess large numbers of plants for heritability. Field validation is addressed
with well-designed, specialized trait-demonstration field facilities (108), where high-throughput
field phenotyping can be implemented (e.g., 25, 54). Phenotyping has come a long way within
prebreeding for numerous species and environments and agriculture, as well as for horticulture
systems globally. Its use directly in breeding is becoming better understood and applied.

We begin this review with a brief history of phenotyping, showing the evolution of needs
and technologies within breeding and prebreeding. We then cover contemporary and future
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Proxy: a variable used
to model data
correlated to another
variable that is more
difficult or laborious to
estimate

Genome-wide
association studies
(GWASs): studies to
predict genomic loci
that are associated
with a phenotype,
usually based on large
panels of genotypes

phenotyping in controlled environments and fields and explain how data science is rapidly grow-
ing to link the phenotyping community to genomics and breeding. We finish by describing the
emerging alliance among plant phenotyping, robotics, and farm interventions, which is moving
phenotyping into a new era in which breeding and agronomic management will work together.

PHENOTYPING FOR BREEDING AND PREBREEDING

The Historical Context

Phenotyping for breeding new cultivars has two challenges: what to measure and how to measure.
Breeders add and remove traits to their germplasm to increase yield and quality. Key early phe-
notypes selected in crop domestication included dietary and cooking properties (e.g., removal of
toxins, ease of milling, baking properties) and seed features (e.g., removal of shattering, control
of dormancy) (141). Disease incidence and flowering time are significant determinants of yield,
and they continue to be scored by breeders mainly by eye. The most famous functional pheno-
type directly applied in breeding is arguably plant height, selected by Norman Borlaug in the
1950s to support heavier wheat heads that arose from breeding and nitrogen fertilizer applica-
tion. Height was reduced by approximately 50 cm with the Reduced height (Rht) genes and would
be easily seen by eye (121). Therefore, breeders select traits directly or indirectly in breeding by
using a phenotype; even today, both molecular markers and genomic-based selection depend on
initial phenotypic information (21).

Prebreeding is the use of phenotyping to help speed up genetic improvement in breeding.
Donald (27) stimulated the process of prebreeding phenotyping when he introduced the idea of
ideotype breeding in the late 1960s. Donald’s ideotype included stature and architectural pheno-
types that could benefit yield (e.g., leaf erectness). In the 1980s, Richards & Passioura (113) intro-
duced yield identity (yield of water limited crops = water used × water-use efficiency × harvest
index) to divide yield into its primary, component traits, helping scientists and breeders priori-
tize phenotypes with a large impact on yield in dry environments. Similarly, Reynolds et al. (110)
outlined the primary traits underlying increasing yield in the absence of stressors. Primary traits
can be selected directly with their phenotype or indirectly with a proxy (e.g., leaf area selected
with leaf width, water-use efficiency selected with carbon isotope signature). Ideotype phenotypes
have been the focus of successful prebreeding efforts (see 114 for a review of their selection and
application in wheat).

We are not aware of the extent to which prebreeding contributes to the breeding of released
cultivars. The process of generating a new plant with a phenotype that increases yield using clas-
sical, nonautomated phenotyping within public institutions has been slow: up to 10 to 20 years
for challenging environments (48) and traits (133). A main impediment to breeder uptake of phe-
notyping has been total cost to the breeder (time, expertise) versus price for the farmer (114).
However, phenotyping technologies are rapidly gaining capabilities and speed, and it is likely that
some will be used by breeders when the cost is low enough per seed and the value of the trait, or
combinations of traits [e.g., for genome-wide association studies (GWASs)], is accepted by mar-
kets. Indeed, recent approaches have shown that phenomic selection can actually be faster and
cheaper than marker-based selection (116).

Novel Opportunities for Breeding from State-of-the-Art Phenotyping

Today’s phenotyping technologies can speed up genetic gain within the breeding cycle, in ad-
dition to continuing to provide entirely new traits through discovery. Three exciting opportu-
nities are emerging. First is the opportunity to coselect multiple phenotypes in one seed that
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is not destroyed (Figure 2; see the section titled Phenotyping in Controlled Environments for
Prebreeding). Installations that comeasure roots and shoots over time (82) and that track infor-
mation from parent seed to progeny seed (53) would significantly reduce the time associated
with advancing traits through breeding programs. The second opportunity is their integration
into speed breeding: methods to reduce generation cycles by manipulating light and temperature
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Figure 2 (Figure appears on preceding page)

Phenotyping roots, from identification of target traits to prebreeding with phenotyping to breeding. (a) The
classical pathway for root trait breeding. (●1 ) Conception of a trait of value for productivity (yield per input)
from the literature, indoor or outdoor plant physiology, and molecular biology experiments. Illustration by
Peter Ryan. (●2 ) Identification of germplasm expressing the trait using medium-throughput phenotyping.
Mapping populations can be used to identify the QTL associated with the trait; or germplasm such as
Tilling populations can be explored to link the trait to a candidate gene. If a QTL or gene is identified, a
molecular marker can be developed. Image of GROWSCREEN-Rhizo platform reproduced from Nagel
et al. (82), with permission from CSIRO Publishing. GROWSCREEN-Rhizo is a novel phenotyping robot
enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons.
(●3 ) Introgression of the trait into genetic backgrounds of elite, modern cultivars with simple, higher-
throughput selection tools such as phenotyping or molecular markers. Image of GROWSCREEN-PaGe
reproduced from Reference 43 with permission from CSIRO Publishing. GROWSCREEN-PaGe is a
non-invasive, high-throughput phenotyping system based on germination paper to quantify crop phenotypic
diversity and plasticity of root traits under varying nutrient supply. (b) Contemporary concepts of multitrait
improvement that are emerging from the combination of automated controlled-environment and field
phenotyping technologies. ( 1©) A climate and region (e.g., a global megaenvironment) are targeted, and yield
and agronomic trends are used to identify gaps in productivity gains. Image adapted from Reference 4 with
permission from Nature Publishing Group. ( 2©) Deep-field phenomics (multiple layers of information in
space and time) is then applied to exemplary field sites to identify a suite of traits, above- and belowground,
that can confer productivity gains within the target megaenvironment and agronomic context. The
figure depicts sensor cameras passing over a field crop to measure shoot canopy properties repeatedly during
a crop life, to quantify phenotypes expressed with environment and genotype. Adapted from Reference 3
with permission from Wiley-Blackwell. ( 3©) Medium-throughput, automated, and noninvasive platforms are
applied next to germplasm to coselect above- and belowground traits, including resource-use efficiency.
Adapted from Reference 133 with permission from Elsevier. Finally, germplasm developed via either of the
two routes in panels a and b is tested in the field for proof of concept that the introgressed traits led to
improved productivity in the target environment. Abbreviations: GWASs, genome-wide association studies;
QTL, quantitative trait locus.

conditions (147). Phenotyping has been implemented into speed breeding, but using classical,
manual methods (112). Today’s technologies could measure multiple phenotypes in each gen-
eration with modifications to indoor growing conditions. The third opportunity, highly attrac-
tive to ongoing breeding programs, is the integration of high-throughput, precision phenotyping
into early-generation selections of small plant numbers in the field (due to small seed amounts)
(35). The section titled Field Phenotyping, below, discusses the technologies available to measure
single-plant, short row, and plot phenotypes.

PHENOTYPING IN CONTROLLED ENVIRONMENTS
FOR PREBREEDING

Plant physiologists and molecular biologists usually use indoor, controlled environments to ana-
lyze variables that influence above- and belowground growth in detail. However, for most plant
breeding, plant populations are grown outdoors in fields—as many as practically possible to quan-
tify genotype× environment×management (G×E×M) interactions and to simulate yield in crop
models (46, 136, 140). In this section, we focus on the challenges of applying phenotyping indoors
to crops produced in fields. Phenotyping in glasshouses is expanding for breeding of horticulture
crops produced indoors (see 93 for a recent review).

Contrasts between indoor and outdoor environments that are important for plant research are
quantified by meta-analyses of variables used in controlled-environment experiments (98). These
studies demonstrate the need to systematically address the technical shortcomings of indoor exper-
iments so as to improve the quality and relevance of data for fields. Shortcomings include low light
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Quantitative trait
locus (QTL): a locus
associated with a
quantitative
(phenotypic) trait

intensities, temperature profiles mismatched to target environments, insufficient pot volumes, and
planting densities that are irrelevant for agronomic practices (56, 100). However, attempting to
simulate all outdoor environmental conditions is impossible due to their dynamics. Furthermore,
in controlled environments it is rarely possible and meaningful to span complete crop growth cy-
cles to seed and fruit yield for broadacre crops. For grain crops, the majority of data sets from in-
door experiments are gathered at the vegetative stage (99).Consequently, controlled-environment
phenotyping for direct comparison (correlation and ranking) of genotypic performance mea-
sured as yield between greenhouse versus field is often considered to have limited value for
breeding.

In contrast, for prebreeding, the use of controlled-environment phenotyping is ideal to dissect
physiological traits, analyze breeding progress, and generate genetic diversity with trait-based in-
trogressions (Figures 1 and 2). Yield has been dissected into several component, primary traits
(discussed above in the section titled The Historical Context). Furthermore, clusters of correlated
physiological traits (trait networks) have been described across species and environmental factors
using meta-analytics (91, 97, 101, 103). Components and networks of traits can be phenotyped
indoors at a certain throughput. Proxies, however, are designed to have greater repeatability than
the primary trait, reducing phenotypic variability for each genotype and increasing heritability
(62, 138, 139). Transferability from indoor to outdoor for the benefit of plant breeding should be
considered in the context of identifying a proxy trait for phenotyping. The proxy approach has
frequently been employed for root traits, which are strongly influenced by outdoor, varying soil
conditions (see the section titled Root Phenotyping for Prebreeding, below).

Image-based indoor phenotyping platforms provide valuable, complex traits. Crop establish-
ment is a clear example. Good establishment covers the soil, minimizing soil water evaporation
and reducing weed competition (115). Establishment traits, collectively referred to as early vigor,
include rapid emergence, rapid development of leaf area, early biomass accumulation, and robust
elongation of the root system (68). Platforms that specialize in measuring projected leaf area and
digital biomass over time at the vegetative stage are particularly well suited for crop establishment
analyses (34). Another exemplary application of indoor phenotyping installations is for tolerance
to systemic stress effectors such as temperature. Leaf growth indoors at cool temperature can cor-
respond to plant performance in cold conditions in the field, and one study used genotype-specific
data to predict the field performance of early vigor at low temperature in maize (14). In this study,
temperature and radiation-use efficiency responses were measured and modeled using the phe-
notyping platform data, increasing the data value for the target field (17, 91). In studies of salinity
tolerance and resource-use efficiency, high-throughput indoor phenotyping platforms were suc-
cessfully used with association mapping to provide candidate quantitative trait loci (QTLs) and
genetic markers that could be used in plant breeding (5, 31, 74, 80). A unique and crucial fea-
ture of contemporary phenotyping installations is that they are inherently automated to provide
time series at varying resolution. Genetic markers for time-dependent heritability and temporal
expression during a daylight cycle were first found in Arabidopsis (36) through the use of growth
profiles of digital biomass data and chlorophyll fluorescence. Such dynamic traits can be identi-
fied in crops in the future, either with association mapping studies that require throughputs of
hundreds of plants or with germplasm panels.

An emerging trend in controlled environments is the coupling of digital phenotyping with
classical physiological measurements to discover entirely new traits for crop improvement. An
automated rhizotron platform was used to estimate the loss of diversity during durum wheat do-
mestication for shoot and root traits and their response to nitrogen starvation (44). A platform
measuring biomass accumulation and water use was combined with classical methods to assess
stomatal functions in order to identify the combined physiological strategies of responses to low
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water availability in wheat (83). A detailed analysis of shoot and root growth of advanced and
commercially available breeding material in maize, combined with a retrospective analysis of tol-
erance to drought conditions in the field, confirmed field performance and added numerous layers
of phenotypic and physiological information at the cell, tissue, and whole-plant levels (7). So far,
detailed phenotyping has been applied to relatively few genotypes and well-defined conditions.
However, they can be extended to the analysis of genotype panels to complement the selection
of parents for crossing strategies by breeders. The breeders obtain information about the varia-
tion in population tails across a suite of traits that are much more difficult and time-consuming to
measure in the field. Thus, indoor controlled-environment phenotyping remains a valuable tool
for well-selected and well-reasoned cases that directly support prebreeding processes (Figure 1).

ROOT PHENOTYPING FOR PREBREEDING

Roots: Neglected in the Past Because of Their Limited Accessibility?

Root phenotypes are inherently more challenging to select for crop improvement than those
aboveground because they are not visible by eye. Nevertheless, since the 1970s, prebreeding pro-
grams around the world have used classical semimanual root and shoot phenotyping to introgress
new and beneficial root traits into germplasm for breeding (133). In some cases, phenotypic screens
were used to develop molecular markers to improve resistance in breeding lines (e.g., 88), but in
others, root traits were directly introgressed into germplasm using root phenotyping.For example,
water-use efficiency was selected using a proxy anatomical screen for narrow xylem vessels in sem-
inal roots with a dissecting microscope on seedlings in the laboratory (113); phosphorus use from
surface soil layers was selected among cabinet-grown seedling plants using root architecture im-
aged on paper pouches (64); and aluminum tolerance was selected using a malate exudation screen
in the laboratory, leading to the identification of markers for a malate transporter and the gen-
eration of new germplasm (122). These examples selected a proxy trait with a phenotypic screen
under controlled conditions. Selections were made on genetically diverse germplasm to provide
parents for breeding.

Past examples demonstrate that root traits can be phenotyped for prebreeding purposes by dis-
covering how root processes contribute to productivity in targeted field conditions and by applying
well-considered physiology to identify a proxy that can be screened across germplasm.Present-day
controlled-environment root phenotyping installations are automated and, thus, can greatly speed
up proxy selections for root trait improvement compared with the classical methods used in the
examples described above (34, 47, 90, 95). Further contemporary phenotyping installations can be
used to discover physiological processes that have not yet been exploited in trait-based breeding
(e.g., 8). The most exciting aspects of present and emerging controlled-environment phenotyping
platforms for root traits are that they can (a) image shoots simultaneously on the same plant to
identify whole-plant phenotypes (19) and (b) quantify dynamics in roots to discover new traits that
confer tolerance to stresses (3). A major challenge for root traits, however, remains the speed of
translation to field environments (146).

Root Phenotyping in Controlled and Field Conditions Within
the Phenotyping Chain Concept

To speed up the translation of root phenotypes to field conditions, it is useful to examine the
phases of root phenotyping along both the classical, single-trait and emerging, multitrait routes
(Figure 2).Root scientists today generally start in controlled conditions and work toward field
validation (62) for early, fast progress because doing so avoids complex soil conditions. However,
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a number of well-tested examples illustrate that simple controlled-environment conditions do not
always lead to better performance in fields (e.g., 42). To overcome the problem of poorly rep-
resentative laboratory selections, a few root prebreeding programs using classical forward trait
selections (Figure 2a) began phenotyping in the field. For example, steeper brace root angles,
measured using shovelomics in maize, were selected for low-nitrogen field environments (132),
and deeper root growth was selected using root–soil coring of mature plants in the field (111).
The disadvantages of selections within fields, however, are (a) high variability, which leads to low
repeatability and heritability of the phenotype for prebreeding or breeding (152), and (b) the in-
tense resources (in terms of both people and disturbed field sites) required to make direct root
measurements in the field. Better proxies are required for root traits where markers cannot be
designed directly from field phenotypes. Controlled-environment screens generally select from
young plants (43, 112). In some cases, these scale to mature plant traits (113), but in others (e.g.,
root system length), they scale poorly (149). However, modeling can be used to scale root length
from vegetative to mature plant stages (157). Wasson et al. (146) proposed that both field phe-
notyping and controlled-environment phenotyping can be carried out at the start of a selection
program to speed up translation to breeders. Such a laboratory–field program would be further
enhanced with (a) crop models at the start of the program to establish environments where traits
will be valuable (65) and (b) structure–function root models to link phenotypic data to predicted
function (104).

A More Systematic Approach to Root-Based Crop Improvement

Figure 2b depicts the emerging possibility of a more systematic approach to root-based improve-
ment. This reverse approach takes advantage of the state-of-the-art automated phenotyping plat-
forms. Deep-field phenotyping of canopies can lead to discoveries of trait combinations that are
then selected for in controlled condition platforms that quantify shoot and root phenotypes si-
multaneously (43, 82, 83). This process represents a whole-plant approach to root-based crop
improvement, in which root and shoot phenotypes are matched and coselected for resource ef-
ficiencies. Field phenotyping technologies for shoots are becoming established and widely used
(see the section titled Field Phenotyping). Direct measurement of root growth, architecture, and
function in the field is a critical bottleneck because the most widely used methods are destruc-
tive (131, 145; reviewed in 144), and nondestructive methods have been restricted to large root
structures, such as cassava tubers (26).

Can Shoot Proxies Be Used to Select for Improved Root Performance?

Shoot proxies for roots have been used in prebreeding programs. For example, shoot biomass
and phosphorus content in low-phosphorus fields were used to identify genomic regions in rice
roots. The regions regulate early nodal root emergence, and markers are being used to develop
breeding populations for low-input rice in Africa (39, 152). To increase the tolerance of durum
wheat to saline soils, Munns et al. (78) used the sodium content in young leaves to identify lines
that excluded sodium. These researchers generated markers for two transporters, one within the
leaf sheath and another in the roots, which they provided to breeders. These examples, which
overcome the challenges of nutrient and elemental stress, show the high value of shoot proxies for
selecting for improved root performance.

However, caution is required when using shoot proxies for root traits in general. Phenotyping
experiments that simultaneously measure roots and shoots demonstrate an unpredictable relation-
ship between shoots and roots, which is particularly notable for growth (biomass, leaf area, and
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Active light detection
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(LIDAR): a method of
measuring the outer
structure of an object

root elongation) phenotypes. Nagel et al. (81) found that, in controlled conditions, leaf area and
root architecture varied in relation to each other in response to light and soil moisture conditions,
depending on wheat genotype. Under declining soil nitrogen availability, durum wheat allocated
biomass to shoots and roots differently over time (44). Similarly, under field conditions in plowed
and unplowed soil cultivation systems, shoot and root vigor responded differently in a released
variety of wheat compared with a breeding line (148). On the basis of the few examples in the lit-
erature, the utility of shoot proxies for root performance should be approached systematically and
with validation in the target field conditions using present and emerging field root phenotyping
technologies (144).

FIELD PHENOTYPING

The process of phenotyping shoots in the field for prebreeding has advanced rapidly in recent
years, possibly because the technologies can be adapted and used locally (in comparison to build-
ing glasshouses and fixed installations) (18). Field phenotyping is used to discover novel traits (e.g.,
in dynamics), identify germplasm carrying traits beneficial to breeding but challenging for breed-
ers to select (e.g., canopy architecture), and validate traits (e.g., proof of concept). Well-designed
field phenotyping stations that have been set up around the world combine different measure-
ment approaches and sensor positioning systems (e.g., 1, 60, 125). Field phenotyping can address
dynamic shoot traits throughout the season, including traits not visible to the human eye (e.g.,
components of photosynthesis) (37), and can combine measurements of different phenotypes by
using mobile platforms of multiple sensors (54). A key challenge is that canopies close; as a result,
most phenotyping efforts have developed approaches with a top-of-canopy view, which enables
good measures of the exposed plant organs but has obvious limitations for lower leaves or fruits
hidden from the sensor’s field of vision.

Aboveground traits that are regarded as highly relevant by many breeding programs include
(a) seasonal development and growth of the crop, including seed establishment and closure of the
canopy; (b) photosynthetic use of solar energy during the main growth phase; (c) the timing and
dynamics of flower and fruit development; (d) resistance to biotic and abiotic stressors; and (e) the
quality and homogeneity of the harvested parts of the crop (Figure 3).

The phenotypes depicted in Figure 3 are discussed here with specific examples. Frequent
(daily) measurements during establishment are desirable for quantitative selection of vigor phe-
notypes because plants develop rapidly in early stages. Drone-based red, green, and blue imagery,
in combination with advanced image processing routines, can automatically detect single plants
and determine germination rates and timing in the field (55, 66). Automated field phenotyping
approaches can detect seed emergence under extreme climatic events such as frost or heavy rain,
offering opportunities to directly select for establishment traits suited to agronomic practices and
climates not achievable in glasshouse conditions.

Shoot biomass and stem elongation after germination are typically determined with nonde-
structive measures of the canopy structure and destructive biomass measures to extract growth
rates. Unfortunately, as yet there are no widely available and sufficiently precise methods to de-
termine total canopy biomass nondestructively. However, early results from terahertz and subter-
ahertz measurements are available (40). Outer canopy structure is measured with stereo imaging
to calculate a three-dimensional (3D) map of the outer visible canopy (15, 77), or with active
light detection and ranging (LIDAR) systems. LIDAR is used to estimate biomass (see 41 for a
recent review). Stereo imaging can provide color information for segment plant components, for
example, for the automatic detection of single leaves (77). LIDAR operates in a spectral window
within which the canopy is partly transmissive, and it can provide information about canopy layers
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Figure 3

The main components of field phenotyping, covering the dynamics of plant traits throughout the phenological/seasonal cycle.
Different phenotypes have specific time windows within the seasonal cycle when they are relevant for the breeder and farmer. Sensor
and measurement approaches (blue text) are useful within the specific seasonal windows. Plant illustrations copyright Ilya Kalinin
(stock.adobe.com).

below the surface (54). Growth rates can be derived from (a minimum of) two time points and by
subtracting background soil information (12, 13). Recently, canopy structural measurements were
obtained from flying platforms such as unmanned aerial vehicles (UAVs). Structure-from-motion
approaches facilitated canopy height and growth measurements, and fast and accurate measure-
ments were obtained from large plot designs (50).

Plant photosynthesis rates are associated with high yield and biomass gain (161), and photo-
synthetic traits, including optimized nonphotochemical energy dissipation to prevent loss during
futile energy conversion (67), remain key targets for breeding. At present, no fast and reliable
method to detect photosynthetic carbon-uptake rates is available for large-scale field pheno-
typing. In contrast, fluorescence-based methods that measure the efficiency of photosynthetic
light reactions have become popular (57). Active fluorescence can be used on single leaves with
clip-on devices (73), both at canopy level with saturating-light-pulse methods and distal to the
canopy with laser-based, single-turnover flashes (106). Recently, solar-induced fluorescence (SIF)
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was quantified in the field as a new method for phenotyping. SIF passively detects fluorescence
emission in atmospheric absorption bands; its advantage over active fluorescence methods is that
it is scalable to large fields, aircraft surveys, and satellites (30, 96, 107).

Detection of disease is relevant for many breeding programs but challenging for automated
field phenotyping. Disease symptoms are scored using expert knowledge, and the precision re-
quired of optical measurements remains a challenge. The most promising approaches combine
high-precision optical sensors (often multispectral and hyperspectral cameras) with advanced fea-
ture extraction methods, such as adaptive machine learning or linear and nonlinear regression
models. Most methods need to be optimized for the specific crop–pathogen interaction. Promis-
ing recent studies show that Cercospora infection in wheat can be detected by a combination of
hyperspectral imaging in the visible and near-infrared spectral range in combination with unsu-
pervised support vector machines (11, 128, 129).

Abiotic stresses, like biotic stresses, are diverse in type, space, and time in the crop cycle. No-
table successes in the identification of abiotic stress tolerance were achieved within prebreeding
programs using nondestructive canopy temperature and normalized difference vegetation index
(NDVI) sensors. Using handheld canopy sensors, physiologists at the International Maize and
Wheat Improvement Program identified wheat genotypes with cooler temperatures that were
then moved into breeding programs in Pakistan (92). The Australian Commonwealth Scientific
and Industrial Research Organisation prebreeding program used green leaf area maintenance
(NDVI) to identify germplasm with deeper roots for breeders (63). Challenges for optical, au-
tomated stress phenotyping arise from the fact that crops in fields express multiple stresses. For
example, a water stress response may be caused by biotic stress. Multispectral or hyperspectral
methods may provide solutions (37).

Field phenotyping approaches have recently focused on yield and features closely associated
with final yield and quality. For example, color information, 3D measurement techniques, ad-
vanced object recognition, and machine learning were used singularly or in combination to detect
reproductive organs (158, 159). UAV-based structure-from-motion measurements were used to
detect homogeneity of fruit ripening and lodging resistance (79, 155). Time of flowering (anthe-
sis) is an important parameter scored by breeders, requiring time-consuming observation of many
plants. Several efforts to automate flowering time scoring for breeders are under way (29).We
anticipate that field phenotyping will develop toward whole-season monitoring so as to identify
critical time windows for crop development and ultimately to unravel G×E×M interactions.

DATA CHALLENGES

Emerging Standards and Standardization

Evaluation of data from one well-defined experiment or from an experimental series is essential
for achieving the potential of phenotyping for discovery and breeding (32, 38, 100, 125). This
applies to the broad aims of phenotyping highlighted in the section titled Plant Phenotyping Has
Come a Long Way, above. Experiments may have few members of a genetic population with
repeated measures, or they may have multiple field sites with deep phenomic information from
ground and aerial sensors.Data setsmay comprise coupled phenotypic and omics data (e.g., 9, 153).
The rapid rise of disciplines associated with phenotyping recently led to an agreement concern-
ing the conditions and sharing processes required to make phenotyping data comparable across
experiments. Standardized data sharing enables metadata analysis (22) and discoveries of relation-
ships that could not be investigated in the original experimental setup (102). To make phenotyp-
ing data and associated metadata analysis feasible and automatable, three conditions need to be
met.
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First, the plant growth condition metadata must be standardized and recorded so that treat-
ments such as abiotic and biotic stress regimes can be understood and repeated. This holds
for standard conditions, which often are not as reproducible as one might think (72). To ad-
dress this condition in a systematic way, the Minimum Information About a Plant Phenotyp-
ing Experiment project (MIAPPE) developed recommendations (23, 61) that are being progres-
sively refined as more and diverse communities embrace and contribute to plant phenotyping.
A steering committee and an active community gather input from plant physiologists, breed-
ers, agronomists, and other users for relevant characterization of experimental environments
(https://github.com/MIAPPE). MIAPPE is supported by, for instance, the ISA-Tab (Investi-
gation/Study/Assay tab-delimited) format (117). Complex data relationships are described in a
human-readable format.

Second, a common language must be developed to relate terms in standardized vocabular-
ies. Such vocabularies are used to describe (a) what entity is being measured, (b) how it is being
measured, and (c) in which units it is measured. Vocabularies or ontologies can comprise sim-
ple examples, such as plant height, or more complex instructions, such as the use of a windless
environment for plant measurements (69). Several ontologies describing plant features and ex-
pert instructions about plant growth and experimental planning (84, 100) are available to help
set up phenotyping information systems that capture phenotypic data and metadata in databases
(85). Apart from making entities machine readable, ontologies clarify what is being talked about
by providing clear definitions and occasionally vernacular and non-English names. As an exam-
ple, the plant ontology in Planteome lists Japanese and Spanish translations of English terms
for plant parts to supplement the English definitions of, for instance, rosette and cauline leaves
(20).

Third, data must bemade accessible. A well-standardized and well-described data set that exists
only on a personal hard drive cannot be accessed by the community.While there is no single cen-
tralized data repository for plant phenotyping data, data should meet the FAIR criteria: findable,
accessible, interoperable, and reusable (Figure 4) (151). The data sets need to have standardized
global identifiers, such as well-known digital object identifiers, and they must be machine readable
and have permissive licenses. The FAIR criteria are supported by a general movement toward ac-
cessible data by funders including, for instance, the Open Data Initiative of the European Union
and the long-established public access policy of the US National Science Foundation. Implemen-
tations for FAIR plant data storage exist in open-source examples, such as e!DAL (Electronic Data
Archive Library), and can be deployed by a research organization or institute (2) to achieve the
FAIR aims.

Phenotyping Data Analysis: Are We There Yet?

A major trend in plant phenotyping is the use of (deep) machine learning (105, 126). Advances
in image analysis driven by deep learning improved predictions about plant parameters derived
from images ranging from roots (6) to aerial images of fields (58). Data sharing and the use of
common (standard) data sets to train models helped improve image analysis precision (135) in
these examples, demonstrating that making data sets and their annotations available profits the
whole community. The need for data sharing is especially pronounced in machine learning be-
cause most machine learning methods for image analysis are supervised (156); that is, they need a
ground truth to train the respective models. Ground truth often stems from expert human anno-
tations and measurements and hence is expensive to generate. To overcome the human annotation
bottleneck, crowdsourcing is emerging as a novel and cost-efficient way to annotate images (45,
160).
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Figure 4

The integration and understanding of phenotypic data require that they be findable, accessible, interoperable, and reusable (FAIR).
FAIR data use applies standards—for instance, from the Minimum Information About a Plant Phenotyping Experiment project
(MIAPPE)—to enable data integration across sources. These data may include the genomes and sequences centralized in the European
Nucleotide Archive (ENA) and Sequence Read Archive (SRA) and governed by Minimum Information about any (x) Sequence (MIxS),
information from the literature, and general-purpose data housed in the plant-specific Electronic Data Archive Library (e!DAL). Data
integration across these multiple sources may yield better crops and novel fundamental insights into plant processes.

Linking Phenotypes and Genotypes

Methods to bridge phenotyping data to genomics data are progressing rapidly (16) as advances
in plant phenotyping are paired with novel developments in plant genome analysis techniques,
such as low-cost long-read sequencing (120), long-range chromatin interaction analysis (89), and
improved gene annotation (123). In the simplest case, bridging is achieved using classical QTL
analysis (24), butmore recentlymultiple experiments have relied onGWASs (150) ormore sophis-
ticated genomic selection (76) and other modeling techniques.TheGWAS approach alone has led
to success stories especially in maize crops (reviewed in 154).Multi-QTL studies, which use statis-
tics to investigate multiple phenotypes, are becoming more popular (127). They require metic-
ulous experimental planning and significant resources. Presently, data integration occurs mostly
by association and correlation of multiple QTLs and/or phenotypes in the same population (86,
87, 124, 130), but future approaches may be able to associate and borrow data from different
populations. Even for a well-defined experiment, some data integration is essential for statistical
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ROBOTICS AND DATA SCIENCE FOR PHENOTYPING IN THE FUTURE

Robotics, data science/machine learning, and modern visualization methods will shape future advances in plant
phenotyping. Robotics has the potential to act autonomously to accelerate both data acquisition and data analy-
sis, and robotic systems for crop management are becoming increasingly robust and available (142). Autonomous
operation on a field might be one of their earliest applications (10). In the future, heavy phenomobiles (54, 119),
which are state of the art today, might be replaced by smart-controlled and lightweight fleets of driving and flying
sensor carriers (59).When combined with biological knowledge about traits and the sensors of choice, such sensor
carriers will allow breeders to overcome some of their biggest problems—namely improving throughput and per-
forming simultaneous, quantitative measurements at different locations. Modern data analysis tools have already
found application in the analysis of large imaging data sets in plant phenotyping (105); however, there are many
more applications, such as linking phenotypic analysis with environmental and time-series data. The combination
of these emerging technologies has the potential to generate closer interaction between breeding science and crop
management.

analysis. As phenotyping continues to cross-link with other disciplines, data management, sharing,
and challenges for wider use will continue.

MOMENTUM FROM CROSS-LINKING WITH OTHER
TECHNOLOGIES

Phenotyping is expanding to management using smart and precision farming, a key development
for prebreeding and breeding (142). Novel tools for robotics and automation of phenotyping are
being combined with models and computational tools to guide actions taken by farmers on farms
(see the sidebar titled Robotics and Data Science for Phenotyping in the Future).

Advances have been made in visualization of weeds in fields for automated and real-time ac-
tion to kill weeds (33) and in recognition of pathogens on leaves to help farmers apply sprays (70).
Phenotypic characterization is crucial in precision horticulture (134). Plant scientists are collab-
orating with engineers, computer scientists, and vision and robotics researchers in new initiatives
toward this aim [e.g., Robotics and Phenotyping for Sustainable Crop Production (PhenoRob)].
The cross-disciplinary momentum associated with applying phenotyping technologies to on-farm
managementmay strongly promote associations between agronomy and breeding. It has long been
known that proactively creating agronomy × breeding synergies on farms is the fastest route to
stable and sustainable production security (49).

OUTLOOK AND FUTURE DEVELOPMENTS

Despite significant advances in recent years, plant phenotyping remains a bottleneck for progress
in plant sciences and breeding. We still do not have sufficient throughput and capacity to handle
large-scale populations with the required accuracy and low cost for targeting traits or their prox-
ies. However, recent developments—ranging from the formation of large-scale networks provid-
ing improved technology and access to state-of-the-art methods, to dissemination of technologies
through wide industry participation, to phenotyping for root traits in the field, to community-
driven integrated data management concepts—indicate how future demands could be met. Effi-
cient scientific and technological progress will require dialogue among users, technology devel-
opers, and infrastructure providers. Implementation of practical solutions will require integration
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of contemporary phenotyping techniques into the workflow of the breeding-related sciences and
breeding itself, and, in the future, agronomy and on-farm management.

SUMMARY POINTS

1. Contemporary plant phenotyping is central to prebreeding in efforts to discover new
complex traits, identify diversity that is heritable using high-capacity selection, and gen-
erate reusable data. While technologies are rapidly developing, access is being given to
users from academia and industry to robust methodologies, technology development,
protocols, and data integration.

2. Emerging and future phenotypingmethods can be integrated within breeding, especially
in the areas of field and early-generation germplasm development.

3. Phenotyping in controlled environments should not aim tomimic the complexity of field
conditions; rather, it will contribute to our understanding of specific and dynamic plant–
environment interactions, analyses of genetic diversity, and analyses of ex post routes of
successful breeding.

4. Noninvasive field phenotyping—although still focused predominantly on aboveground
traits—is developing into a robust and accessible tool that supports scientists and breed-
ers in the analysis of crop features and the development of improved properties across
heterogeneous and dynamic field situations.

5. Root phenotyping is developing rapidly to improve our understanding of key perfor-
mance features in controlled environments. Recent developments show some advance-
ment toward field phenotyping, especially in combination with root structure–function
models. However, noninvasive root phenotyping in the field is still not possible, and
significant advancements are needed to achieve this important target.

6. Data integration is paramount for the integration of plant phenotyping into present-day
science and breeding domains. Ongoing community efforts toward this end include a
wide range of standardization goals, from the level of generating quality data to their
integration in large, diverse multiomics data landscapes.

7. Novel technical opportunities will emerge from the integration of robotics and data sci-
ence to enhance accuracy and throughput in all aspects of noninvasive plant phenotyping,
including integration with agronomy and on-farm management.

FUTURE ISSUES

1. Improving knowledge about genetic resources and their phenotypic potential will con-
tinue to be crucial to advance the use of natural genetic diversity.

2. Cooperation and open science are crucial for advancing plant phenotyping as a valuable
discipline for plant breeding.

3. Novel technologies and data science will continue to drive progress in achieving the
potential of quantitative and noninvasive plant phenotyping.

4. The increasing availability of affordable and robust methods connected to smartphones,
mobile computing devices, and open computer architectures opens new routes beyond
highly elaborate and expensive phenotyping methods.
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5. The integration of robust plant phenotyping technologies into the workflow of breeders,
seedbanks, and scientists will continue to gain attention as costs fall and demands for
food, feed, and resource efficiency increase globally.

6. The diversity of phenotypic data, the many different forms of the data, and the variabil-
ity and development of plant features in space and time in interactions with dynamic
environments require new approaches beyond classical (bio)informatics.
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