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Abstract

Guard cells perceive a variety of chemicals produced metabolically in re-
sponse to abiotic and biotic stresses, integrate the signals into reactive oxygen
species and calcium signatures, and convert these signatures into stomatal
movements by regulating turgor pressure. Guard cell behaviors in response
to such complex signals are critical for plant growth and sustenance in stress-
ful, ever-changing environments. The key open question is how guard cells
achieve the signal integration to optimize stomatal aperture. Abscisic acid
is responsible for stomatal closure in plants in response to drought, and
its signal transduction has been well studied. Other plant hormones and
low-molecular-weight compounds function as inducers of stomatal closure
and mediators of signaling in guard cells. In this review, we summarize re-
cent advances in research on the diverse stomatal signaling pathways, with
specific emphasis on signal integration and signal interaction in guard cell
movement.
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INTRODUCTION

Stomatal pores, which are formed by pairs of guard cells, function as gateways for controlling gas
exchange and transpirational water loss. Stomatal opening promotes plant growth by enhancing
carbon dioxide uptake and transpirational water loss, which are essential for photosynthesis and
the uptake of nutrients from soil to the plant body, respectively. However, stomatal opening
also causes undesirable and excess water loss from plants under drought stress conditions and
allows microorganisms to invade plants through stomatal pores. Therefore, plants have evolved
sophisticated and refined mechanisms to regulate stomatal movements, especially stomatal closure
(Figure 1).

The opening and closing of pores are regulated by changes in guard cell volume (148).
Stomatal opening is mediated by influx of water and solutes such as K+ into guard cells, and
stomatal closure is regulated by efflux of water and solutes from those cells (105). To optimize
plant growth under multiple stress conditions in nature, guard cells have developed sophisticated
signal integration mechanisms that enable appropriate control of stomatal apertures. The plant
hormone abscisic acid (ABA) induces stomatal closure, a signal mechanism that has been well
studied. The recent discovery of PYRABACTIN RESISTANCE/PYR1-LIKE/REGULATORY
COMPONENT OF ABA RECEPTOR (PYR/PYL/RCAR) has accelerated our understanding
of ABA signaling (102, 143), and several reviews on guard cell ABA signaling have been published
in recent years (62, 87). Here, we focus on stress signal transduction of other plant hormones and
small chemical compounds in guard cells and discuss the mechanisms of signal integration.
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Figure 1
Signal encoding and decoding in guard cell signal integration. Abbreviations: CAS, CALCIUM-SENSING
RECEPTOR; CBL, CALCINEURIN B–LIKE PROTEIN; CDPK, calcium-dependent protein kinase;
CIPK, CBL-INTERACTING PROTEIN KINASE; ROS, reactive oxygen species.

NAD(P)H oxidase:
a transmembrane
enzyme that generates
superoxide anions in
extracellular space by
consuming the
reduction energy of
NADH or NADPH

Patch clamp: an
electrophysiological
technique that is able
to record very small
ion currents, including
the current of a single
ion channel

1. PLANT HORMONES THAT REGULATE STOMATAL MOVEMENTS

1.1. Jasmonates

Jasmonates ( JAs) regulate stomatal aperture. Exogenous application of jasmonic acid and its methyl
ester [methyl jasmonate (MeJA)] induces stomatal closure in various plant species (128). Genetic
studies of Arabidopsis thaliana mutants have suggested that JAs share a common signaling pathway
with ABA in guard cells. Similar to ABA, MeJA requires the NAD(P)H oxidases RESIRATORY
BURST OXIDASE HOMOLOG D (AtRBOHD) and AtRBOHF to induce reactive oxygen
species (ROS) production in guard cells and stomatal closure (165). Patch-clamp studies revealed
that MeJA activates outward-rectifying K+ channels (K+

out channels) and inactivates inward-
rectifying K+ channels (K+

in channels) in guard cells (40, 151). It also activates slow-type (S-type)
anion channels in guard cells (127, 130), thereby depolarizing the plasma membranes of the guard
cells, which in turn evokes K+ extrusion through the depolarization-activated K+

out channels (170).
Clade A protein phosphatase 2Cs (PP2Cs) such as ABA-INSENSITIVE 1 (ABI1) and ABI2 are

negative regulators of ABA signaling and interact with PYR/PYL/RCAR ABA receptor proteins in
the presence of ABA (102, 143). The stomata of two ABA-insensitive dominant-negative mutants of
ABI1 and ABI2, abi1-1 and abi2-1, are insensitive to MeJA (130). Thus, JAs might affect regulation
of the ABA receptor complexes in guard cells (128). However, in spite of the robust signal crosstalk
between ABA and JAs in guard cells, no significant reduction of drought tolerance was detected in
the Arabidopsis coronatine-insensitive 1 (coi1) mutant (S. Munemasa & Y. Murata, unpublished data).
Although the coi1 mutation blocked guard cell MeJA signaling, it did not influence ABA signaling
(130). In addition, pretreatment of Arabidopsis plants with MeJA did not improve drought tolerance
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(S. Munemasa & Y. Murata, unpublished data). These facts suggest that JA-induced stomatal
closure does not play a crucial role in drought tolerance, at least in Arabidopsis, and that JAs
do not simply activate guard cell ABA signaling, although they share several signaling elements.
The results also imply that guard cells display a diversified response to environmental stimuli
even though some signaling elements are common, which may be important for understanding
the multiresponsivity of plants to environmental stimuli. By contrast, exogenous application of
JAs and coronatine, a JA-mimicking phytotoxin, induces stomatal opening and inhibits ABA-
induced stomatal closure instead of inducing stomatal closure (112, 113). Plant pathogens such as
Pseudomonas syringae hijack the JA-mediated stomatal opening signal pathway for invasion through
the opened pores. However, the physiological role and significance of endogenous JA-mediated
stomatal opening are not clear.

Both the JA precursor 12-oxo-phytodienoic acid (12-OPDA) and MeJA induce stomatal closure
(121, 155), but pretreatment with MeJA inhibits the 12-OPDA-induced stomatal closure (121).
These results suggest that 12-OPDA triggers a signaling distinct from JA signaling in guard cells,
which might be due to its electrophilic properties (6, 41).

1.2. Salicylic Acid

Salicylic acid (SA) is a phenolic compound that plays key roles in pathogen defense, thermogenesis,
and flowering. An attack by any of a broad spectrum of pathogens induces an elevation of SA
levels that triggers systemic acquired resistance (SAR), which reprograms the transcriptome and
immune responses (173). Endogenous SA levels can be increased 10–100-fold in local leaves and
up to 10-fold in systemic leaves in response to pathogens (115). Stomata are vulnerable pores in the
epidermal tissues of plants that are unprotected against microbes; an increased level of endogenous
SA induces stomatal closure, preventing the invasion of bacterial and fungal pathogens through
the aperture.

Stomatal closure induced by SA is accompanied by the production of extracellular superoxide
anions. Superoxide anion production around guard cells is inhibited by the peroxidase inhibitor
salicylhydroxamic acid (SHAM) but not by the NAD(P)H oxidase inhibitor diphenylene iodonium
(DPI) (85, 125). This suggests that superoxide anion production is associated with cell wall–bound
peroxidase activity. However, SHAM is not a specific inhibitor of cell wall–bound peroxidases.
Therefore, the mechanism of SA-induced superoxide production will need to be further inves-
tigated by molecular genetic studies. In turn, SA induces intracellular ROS accumulation and
inactivation of plasma membrane K+

in channels (85). A distinct difference between SA-induced
ROS generation and ABA- and MeJA-induced ROS generation is that NAD(P)H oxidase is nec-
essary for the latter but not for the former.

SA-induced stomatal closure is not associated with [Ca2+]cyt elevation in guard cells but is
blocked by a Ca2+ chelator, ethylene glycol tetraacetic acid (EGTA), and by a Ca2+ antagonist,
LaCl3 (85). La3+ is known to compete with Ca2+ for Ca2+-binding sites and to block Ca2+-
permeable channels. These results suggest that extracellular Ca2+ binding rather than [Ca2+]cyt

elevation is crucial for SA-induced stomatal closure. Hence, the ROS-Ca2+ signaling system in
the control of SA-induced stomatal closure appears to be different from that in the control of
stomatal closure in response to ABA (93, 144) and MeJA (130, 165).

Contact between an Arabidopsis leaf and a pathogenic bacterium induces stomatal closure. This
closure is impaired in SA-deficient transgenic NahG plants and in the SA biosynthetic mutant
enhanced disease susceptibility 16-2 (eds16-2) (113), suggesting that SA is essential for stomatal
defense against bacterial infection; that is, SA-mediated stomatal closure is an innate immune
response elicited by contact with pathogenic bacteria. In addition, it has been proposed that the
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combined action of SA and ABA signaling pathways mediates stomatal closure in response to
bacterial pathogens (113, 122). P. syringae pv. tomato strain DC3000 induced stomatal closure,
which was impaired in the ABA-deficient mutant aba3 (113), but SA-induced stomatal closure
was not impaired in another ABA-deficient mutant, aba2 (71). The mechanism of signal crosstalk
between ABA and SA during the innate immune response remains to be clarified.

Drought stress is known to increase SA accumulation levels in plants. The stomatal apertures
of the Arabidopsis mutants sap and miz 1 (siz1), accelerated cell death 6 (acd6), and constitutive pathogen
response 5 (cpr5), which accumulate higher levels of SA, are narrower than those of wild-type
plants, and consequently the accumulation of endogenous SA improves drought tolerance (119,
141). Moreover, the narrow-stomata phenotype of the mutants is compromised by application
of the peroxidase inhibitors SHAM and azide but not by application of the NAD(P)H oxidase
inhibitor DPI (119, 141). These results suggest that ROS generation mediated by SHAM-sensitive
peroxidases is involved in SA-related drought responses. In contrast to these results, however,
Catala et al. (21) reported that the siz1 mutant has a drought-sensitive phenotype. In addition,
the SA-accumulating cpr22 mutant showed reduced stomatal sensitivity to ABA and enhanced
dehydration, and the NahG transgene suppressed the cpr22 phenotype (126). SIZ1 encodes a small
ubiquitin-like modifier (SUMO) E3 ligase (120) and sumoylates various proteins, including the
MYB transcription factor PHOSPHATE STARVATION RESPONSE 1 (PHR1) (120), the basic
leucine zipper (bZIP) transcription factor ABI5 (118), and the nitrate reductases NIA1 and NIA2
(142). Thus, SIZ1 regulation of SA signaling may not be direct, but rather mediated by an indirect
complex mechanism.

1.3. Ethylene

The gaseous plant hormone ethylene functions in plants under certain biotic stress responses.
Rapid drought stress elicits production of ethylene in wheat (132) but not in common bean,
cotton, or miniature rose (123). Ethylene production is induced by moderate drought stress in
maize with a compromised ability to produce ABA, although it is not induced by severe drought
stress (174). Flooding induces stomatal closure, which is accompanied by ethylene production in
nonaquatic plants (30, 72). These results suggest that ethylene regulation of stomatal movements
under stress conditions is highly species dependent (1).

Ethylene has been shown to induce stomatal closure (36). In Arabidopsis, ethylene-induced
stomatal closure is dependent on ROS production mediated by the NAD(P)H oxidase AtRBOHF
(36). Ethylene-induced stomatal closure is impaired in the ethylene-insensitive mutants etr1-1 and
ethylene-insensitive 2-1 (ein2-1). Interestingly, ethylene-induced ROS production in guard cells is
impaired in etr1-1 but not in ein2-1, suggesting that activation of AtRBOHF occurs upstream of
EIN2 in guard cell ethylene signaling (36). By contrast, however, ethylene has been shown to
counteract ABA-induced stomatal closure (167, 168). Watkins et al. (178) showed recently that
ethylene increases the flavonol content in guard cells, suggesting that the accumulated flavonols
act as antioxidants, reducing guard cell ROS levels and suppressing stomatal closure. Therefore,
although how plants decide whether to open or close stomata in response to ethylene is unknown,
it is clear that ROS homeostasis is a main target of ethylene signaling in guard cells. Desikan
et al. (36) also suggested that an unknown cell-to-cell communication between guard cells and
mesophyll cells is required by ethylene-induced stomatal closure but not by ethylene inhibition
of ABA-induced stomatal closure. Chen et al. (22) showed that ethylene limits stomatal response
to ABA in aging leaves. These results suggest that ethylene regulation of stomatal movements is
highly dependent on surrounding environmental conditions.
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1.4. Other Plant Hormones

Other plant hormones, such as brassinolide, auxin, gibberellin, strigolactone, and cytokinin, are not
directly implicated in stomatal movements but may be indirectly involved. However, information
about stomatal movements related to these plant hormones is limited, and we refer readers to
other reviews on this subject (1, 29, 146).

2. ELICITORS

In this section, we summarize the regulation of stomatal apertures by small chemical compounds,
including elicitors and secondary metabolites, and discuss the physiological significance of this
regulation.

2.1. Flg22, Elf18, Elf26, Bacterial Lipopolysaccharide, and Chitin

It has been assumed that microscopic surface openings, such as stomata, serve as passive ports of
bacterial entry during infection in plants. Like other plant cells, guard cells respond to microbes
by detecting molecules derived from microbes, which are termed microbe-associated molecu-
lar patterns (MAMPs). Each MAMP elicitor is sensed by a specific plasma membrane–localized
receptor termed a pattern recognition receptor (PRR). Recent studies have clearly shown that
guard cells in various plant species respond to MAMPs, resulting in stomatal closure to restrict
the invasion of microbes (88, 90, 95, 113). The well-known MAMPs that induce stomatal clo-
sure include flg22 (a conserved 22-amino-acid peptide near the N terminus of bacterial flagellin)
(113), elf18 (an 18-amino-acid peptide near the N terminus of bacterial elongation factor Tu)
(185), elf26 (a 26-amino-acid peptide near the N terminus of bacterial elongation factor Tu) (34),
bacterial lipopolysaccharide (113), chitin (a fungal cell wall component) (98), chitosan (a partially
deacetylated chitin) (95), and yeast elicitor (an ethanol precipitate of yeast extract) (88).

The Arabidopsis PRRs responsible for recognition of flg22, elf18 and elf26, and chitin are
FLAGELLIN-SENSITIVE 2 (FLS2) (25, 51), ELONGATION FACTOR TU RECEPTOR
(EFR) (193), and CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) (65, 121), respectively,
and these three PRRs are expressed in Arabidopsis guard cells (97, 149). In addition, these three
PRRs cannot perceive lipopolysaccharide components, lipid A, or core polysaccharides (161). For
details on the mechanism of MAMP perception by PRRs, we refer readers to other recent reviews
(12, 104, 182, 192).

Flagellin is the constituent protein of the bacterial flagellum. The highly conserved N-terminal
epitope of flagellin, flg22 (42), is perceived by guard cells, leading to stomatal closure. Stomatal
closure in response to flg22 is abolished in the loss-of-function mutant fls2 (113) (Figure 2),
suggesting that the PRR of flg22, FLS2, plays a critical role in flg22-induced stomatal closure.
Production of hydrogen peroxide (H2O2) catalyzed by the NAD(P)H oxidase AtRBOHD is also
essential for flg22-induced stomatal closure (34, 79, 96).

The NAD(P)H oxidase AtRBOHD associates with FLS2 and BOTRYTIS-INDUCED
KINASE 1 (BIK1) and is phosphorylated by BIK1 at several amino acid residues in a Ca2+-
independent manner (80, 96). The phosphorylation of AtRBOHD by BIK1 is required for
flg22-induced H2O2 production and stomatal closure (43, 80, 96). In addition, Dubiella et al. (37)
and Gao et al. (45) reported that calcium-dependent protein kinases (CDPKs) phosphorylate and
activate AtRBOHD in response to flg22 treatment. Both CDPK-dependent and BIK1-dependent
regulation of AtRBOHD are likely required for a full ROS burst during flg22 response, but the
interdependent mechanism is unknown. Production of H2O2 induced by flg22 is attributed not
only to plasma membrane NAD(P)H oxidases but also to type III peroxidases (31, 138), suggesting
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Figure 2
A proposed simplified model for signal integration mechanisms in guard cells. Representative abiotic and
biotic stimuli, flagellin, and ABA are shown. Plasma membrane NAD(P)H oxidases and apoplastic
peroxidases are major ROS sources that activate the downstream signaling components. Activation of plasma
membrane calcium current (ICa) channels causes [Ca2+]cyt elevation, which composes a part of the [Ca2+]cyt
oscillation with a defined pattern (Ca2+ signature). The ER and vacuole are also considered to be major
intracellular Ca2+ stores. Stromal Ca2+ elevation mediated by CAS is observed during stomatal closure
induced by microbe-associated molecular patterns. The activities of NAD(P)H oxidases and CDPKs are
regulated by the direct binding of Ca2+. At the thylakoid membrane, CAS binds to Ca2+, but the functional
role of this binding is unknown. ABI2, GPX3, and ETR1 are involved in ROS sensing. The dashed arrows
show possible signaling pathways. Abbreviations: ABA, abscisic acid; ABI2, ABA-INSENSITIVE 2; BIK1,
BOTRYTIS-INDUCED KINASE 1; CAS, CALCIUM-SENSING RECEPTOR; CDPK, calcium-
dependent protein kinase; ER, endoplasmic reticulum; FLS2, FLAGELLIN-SENSITIVE 2; GHR1,
GUARD CELL HYDROGEN PEROXIDE–RESISTANT 1; GPX3, GLUTATHIONE PEROXIDASE
3; KAT1, POTASSIUM CHANNEL IN ARABIDOPSIS THALIANA 1; OST1, OPEN STOMATA 1;
PYR/PYL/RCAR, PYRABACTIN RESISTANCE/PYR1-LIKE/REGULATORY COMPONENT OF
ABA RECEPTOR; ROS, reactive oxygen species; SLAC1, SLOW ANION CHANNEL–ASSOCIATED 1.

that ROS production in the plasma membrane and in the cell wall function collaboratively in
flg22-induced stomatal closure.

A positive regulator of ABA signaling, OPEN STOMATA 1 (OST1) protein kinase, is required
for flg22-induced stomatal closure when flg22 concentrations are at or below 5 μM (113, 122);
based on the results of an in-gel kinase assay, however, flg22 does not increase OST1 activity at a
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concentration of 100 nM (122). These results suggest that flg22 does not induce ABA biosynthesis
to facilitate stomatal closure and that a basal level of ABA serves to prime flg22-induced stomatal
closure.

Like flg22, elf18 induces stomatal closure and H2O2 production in guard cells, both of which
are impaired by the AtrbohD mutation (103), suggesting that AtRBOHD participates in elf18-
induced stomatal closure. However, type III peroxidases may also mediate elf18-induced stomatal
closure, because type III peroxidases contribute to H2O2 production in plants in response to flg22
(31, 138).

2.2. Chitosan and Yeast Elicitor

Chitosan is found in the walls of fungi. Exogenous application of chitosan also induces ROS
accumulation in guard cells, leading to stomatal closure in Arabidopsis, Commelina communis, and
Pisum sativum (88, 102, 163). Chitosan also stimulates S-type anion channel activity in guard cells,
resulting in stomatal closure in Hordeum vulgare (90). The stomatal closure is completely abolished
by the peroxidase inhibitor SHAM (86), suggesting that SHAM-sensitive peroxidases are involved
in chitosan-induced stomatal closure. These peroxidases are likely type III peroxidases.

Yeast elicitor contains mainly mannan, a yeast cell wall component (158). Not only yeast elicitor
but also live yeasts induce stomatal closure and ROS accumulation in guard cells (45, 88). ROS
accumulation is not impaired in the AtrbohD AtrbohF mutant, but ROS production is slightly
inhibited by DPI and completely inhibited by SHAM (45, 83). These results suggest that SHAM-
sensitive peroxidases are essential for stomatal closure and H2O2 production induced by yeast
elicitor (83).

Like ABA and MeJA, yeast elicitor activates hyperpolarization-activated calcium current (ICa)
channels localized in the guard cell membrane to initiate [Ca2+]cyt elevation (88, 183). A mutant
study showed that a CDPK, CPK6, activates S-type channels and inhibits K+

in channels to mediate
stomatal closure induced by yeast elicitor (183). This result suggests that CPK6 is an important
Ca2+ sensor in stomatal closure induced by yeast elicitor, but little is known about the roles
of CDPKs in MAMP-induced stomatal closure. Moreover, the cpk6 loss-of-function mutation
does not affect ABA- and MeJA-induced H2O2 accumulation in guard cells but does inhibit yeast
elicitor–induced H2O2 accumulation in guard cells and in the apoplasts of leaf tissues (127, 183).
These results suggest that CPK6 downregulates certain H2O2-scavenging systems in Arabidopsis
in response to yeast elicitor.

3. REACTIVE METABOLITES

3.1. Carbonyl Compounds

A variety of stresses in plants induce disturbances of metabolism and peroxidation of lipids and
proteins through ROS production, leading to the production of reactive carbonyl compounds
such as methylglyoxal (CH3COCHO) and 4-hydroxy-2-nonenal through enzymatic and nonen-
zymatic reactions (11, 159). Hence, the reactive carbonyl compounds are likely to play important
roles in stress responses (107, 154). Both methylglyoxal and 4-hydroxy-2-nonenal induce stomatal
closure, and methylglyoxal additionally induces ROS production mediated by SHAM-sensitive
peroxidases and [Ca2+]cyt elevation (58, 122). Moreover, carbonyl compounds such as methylgly-
oxal and acrolein inhibit K+

in channels and light-induced stomatal opening (57, 70). The reactive
carbonyl compounds are likely to be closely involved in stomatal movements.
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3.2. Isothiocyanates

Isothiocyanates (ITCs) are produced by myrosinase-mediated conversion of metabolites called
glucosinolates. They have a repellent effect on insects, pathogens, and herbivores, which is a
chemical herbivory defense system found in members of the Brassicaceae. Allyl isothiocyanate
(AITC), a hydrolysis product of sinigrin, induces stomatal closure in Arabidopsis (84). AITC-
induced stomatal closure is accompanied by ROS production, which is mediated mainly by SHAM-
insensitive peroxidases (59, 84). There is genetic evidence that AITC-induced stomatal closure
and ROS production require endogenous MeJA but not endogenous ABA (84). Plants such as
crucifers may produce ITCs to induce stomatal closure, leading to suppression of water loss and
invasion of fungi through stomata.

The myrosinase-glucosinolate defense system evolved in members of the Brassicaceae. My-
rosinase catalyzes the hydrolysis of a class of compounds called glucosinolates to produce toxic
chemicals such as ITCs, thiocyanates, and nitriles. Myrosinases are reported to be involved in
stomatal movements of Arabidopsis. THIOGLUCOSIDE GLUCOHYDROLASE 1 (TGG1) is
involved in light-induced stomatal opening (189), and both TGG1 and TGG2 are involved in
ABA-induced stomatal closure (69). Some myrosinase hydrolysis products of glucosinolates inhibit
K+

in channels (189), which is favorable to inhibition of stomatal opening.
How myrosinases function in ABA-induced stomatal closure in Arabidopsis is unknown. This

function is not common to all land plants because the myrosinase-glucosinolate defense system
is not present in all plants, but ITCs may induce stomatal closure using certain common signal
pathways because of their electrophilicity.

AITC induces stomatal closure, which is inhibited by treatment with glutathione (GSH; γ-
glutamylcysteinylglycine) monoethylester (84), suggesting that GSH is closely involved in AITC-
induced stomatal closure. GSH deficiency enhances ABA- and MeJA-induced stomatal closure
(4, 73), and AITC-induced stomatal closure is disrupted in the MeJA-deficient mutant allene oxide
synthase (aos) (84). These results suggest that endogenous MeJA plays a role in AITC-induced
stomatal closure.

Tubulin is reported to be a major in vivo binding target for ITCs in animal cells (116), but little
is known about the binding target for ITCs in plant cells. However, microtubules are essential for
guard cell function in Vicia and Arabidopsis (38, 39). In plant cells, microtubules may be one of the
major binding targets for ITCs.

3.3. Glutathione

GSH is the most abundant nonprotein thiol compound in plants and is a key regulator of cellular
redox homeostasis. It is involved in various physiological processes, including growth, develop-
ment, and (in particular) defense responses to abiotic and biotic stresses (108, 134).

Monochlorobimane staining indicates that guard cells accumulate larger amounts of GSH than
other epidermal cells (73). Both ABA and MeJA induce stomatal closure and coinstantaneously
decrease the GSH contents of guard cells (4, 140). ABA- and MeJA-induced stomatal closure
was enhanced in the Arabidopsis GSH-deficient mutants chlorinal 1-1 (ch1-1) and cadmium-sensitive
2-1 (cad2-1) (3–5, 73, 140) and in Arabidopsis wild-type plants treated with the GSH-depletion
chemicals 1-chloro-2,4-dinitrobenzene, p-nitrobenzyl chloride, iodomethane, and ethacrynic acid
(5, 73). Application of GSH monoethylester, a membrane-permeable derivative of GSH, restores
the stomatal phenotype of ch1-1 and cad2-1 mutants (3–5, 73, 140), whereas application of GSH
does not affect stomatal movements (73). These results suggest that intracellular GSH functions
as a negative regulator of ABA and MeJA signaling in guard cells.
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Arabidopsis GLUTATHIONE PEROXIDASE 3 (AtGPX3) is involved in scavenging H2O2,
and stomata of atgpx3 plants are less sensitive to ABA than those of wild-type plants (117). In animal
cells, GPXs scavenge oxyradicals using GSH as an electron donor (9). However, Arabidopsis GPXs
(AtGPX1, -2, -3, -5, and -6) employ thioredoxin rather than GSH as an electron donor to scavenge
H2O2 and organic hydroperoxides (66, 117). Therefore, GPXs cannot be involved in the negative
regulation by GSH of ABA- and MeJA-induced stomatal closure. In addition, although GSH can
nonenzymatically react with various oxidants, GSH and ascorbate react much more slowly with
H2O2 than with hydroxyl radicals, singlet oxygen, and superoxide (147). Thus, GSH cannot be
expected to scavenge H2O2 nonenzymatically in plants.

Genetic depletion of intracellular GSH does not affect ABA-induced ROS production in guard
cells (73) but does significantly increase ROS production in whole leaves (129). The depletion of
GSH by the cad2 mutation may be involved in apoplastic and mesophyll cell ROS production
rather than guard cell ROS production. Moreover, intracellular GSH does not affect cytosolic
alkalization or [Ca2+]cyt elevation elicited by ABA (140), but GSH depletion enhances H2O2-
induced stomatal closure (such as ABA- and MeJA-induced stomatal closure), and activation of
ICa channels by H2O2 is potentiated in the cad2 mutant plant (129). The negative regulation by
GSH of ABA-induced stomatal closure is likely attributable in part to an increased accumulation of
extracellular ROS and modulation of ICa by GSH. The exact mechanism by which GSH modulates
the responses of guard cells to ABA and MeJA is still unclear.

GSH-depletion reagents such as ethacrynic acid can function as an inhibitor of glutathione S-
transferase (GST) (106). The genetic and chemical depletion of GSH, a substrate of GST, results
in a reduction of GST activities. Hence, the effect of GSH depletion on stomatal responses can be
both a decrease in GSH contents and an indirect inhibition of GST. Therefore, the involvement
of GST in ABA- and MeJA-induced stomatal closure should also be considered.

Other low-molecular-weight thiols, such as cysteine, cystine, γ-glutamylcysteine, cysteinyl-
glycine, and phytochelatins, are also highly reactive compounds involved in maintaining cellular
redox homeostasis and regulating cellular metabolism in plants under abiotic and biotic stresses
(7, 54, 184). However, it remains to be clarified whether such thiols negatively regulate stomatal
closure induced by ABA and MeJA or other stimuli.

4. SIGNAL INTEGRATION MECHANISM

In this section, we focus on a proposed integration of signal pathways in guard cells.

4.1. Reactive Oxygen Species: Metabolism

Abiotic and biotic stresses trigger ROS generation related to stomatal movements. ROS generation
is catalyzed mainly by two types of enzymes: plasma membrane NAD(P)H oxidases and cell wall
peroxidases (Figure 2). Other ROS-generating enzymes, such as apoplastic amine oxidases and
oxalate oxidases, may also be involved in the ROS generation responsible for stomatal closure as
well as oxidative bursts (8, 94). Here, we discuss plasma membrane NAD(P)H oxidases and cell
wall peroxidases, as both of these enzymes are well studied and such knowledge allows us to build
an integrated model of guard cell signaling.

Genetic and pharmacological studies using Arabidopsis have revealed that NAD(P)H oxidases,
including AtRBOHD and AtRBOHF, mediate ROS generation in guard cells in response to
ABA (93), MeJA (165), ethylene (36), flg22 (114), and elf18 (103). These NAD(P)H oxidases are
regulated by direct binding of Ca2+ (139), phosphatidic acid (187), and Rac GTPases (181) and
by phosphorylation by OST1/SUCROSE NON-FERMENTING 1–RELATED KINASE 2.6
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(SnRK2.6) (162), CDPKs (19, 89), and BIK1 (80) in plants. Therefore, NAP(D)H oxidases likely
integrate multiple upstream signal transductions that lead to stomatal closure.

Cytosolic alkalization is a major step in signal transduction for ABA, MeJA, and elicitors in guard
cells (10, 48, 52, 67). It has been proposed that cytosolic alkalization occurs upstream of NAD(P)H
oxidase–mediated ROS production in signal transduction (52, 165). However, the mechanism by
which cytosolic alkalization triggers activation of NAD(P)H oxidases remains to be clarified. It
has also been reported that cytosolic alkalization occurs downstream of ROS production (68, 186).

Stomatal closures induced by SA (125), chitosan (86), yeast elicitor (83), methylglyoxal (58),
and ITC (85) are accompanied by SHAM-sensitive, peroxidase-mediated extracellular ROS gen-
eration. Although the molecular identities of such peroxidases are yet to be revealed, these findings
suggest a critical role for peroxidases at a node integrating multiple signals in ROS generation
and stomatal closure. Oxidative bursts mediated by apoplastic class III peroxidases are involved
in MAMP-elicited defense responses (31, 138). It has been suggested that production of H2O2

by apoplastic peroxidases preferentially occurs at high pH in the presence of an excess of reduc-
tants (13, 138). However, how apoplastic pH and reductant amount are regulated during stomatal
closure is unknown.

Catalase, an enzyme that catalyzes the decomposition of H2O2, is predominantly located in
the peroxisomes of plant cells (81, 180). The peroxisome is considered a major ROS source (28,
32, 135). Disruption of catalase genes and treatment with the catalase inhibitor 3-amino-1,2,4-
triazole enhanced ABA- and MeJA-induced stomatal closure in Arabidopsis (75–77). Consequently,
in addition to the apoplast and plasma membrane, intracellular organelles such as peroxisomes
might be ROS sources involved in regulating stomatal movements (Figure 2). Expression of
catalase genes is tightly regulated by the circadian clock (190), suggesting that catalase might
function as a coordinator of stomatal sensitivity to environmental stresses and the circadian clock.

In addition to catalase, ascorbate peroxidase functions as an H2O2 scavenger involved in reg-
ulating stomatal movement. It catalyzes the conversion of H2O2 into H2O using ascorbate as
an electron donor. Disruption of a cytosolic ascorbate peroxidase (APX1) in Arabidopsis altered
the stomatal response to light but not to ABA (145). In tobacco plants, overexpression of dehy-
droascorbate reductase increased the ratio of ascorbate to dehydroascorbate in guard cells, reduc-
ing stomatal responsiveness to H2O2 and ABA (24). The involvement of ascorbate in stomatal
responses to biotic stress has not yet been reported.

As discussed above, the myrosinases TGG1 and TGG2 are involved in ABA and MeJA
signaling in guard cells (69, 189). Myrosinases are activated by ascorbate (20), and cleavage
of indol-3-ylmethyl glucosinolate by myrosinase in the presence of ascorbic acid produces
ascorbigen, a condensation product of ascorbic acid with 3-hydroxymethylindole, implying that
the myrosinase system could provide the storage pool of ascorbate through its inactivation (14).
Further work is needed to reveal the roles of ascorbate and myrosinases in guard cell signal
integration.

4.2. Reactive Oxygen Species: Sensing

Biochemical data have shown that the PP2Cs ABI1 and ABI2 are downregulated by H2O2 in vitro
(110, 111). In budding yeast, the GPX-like enzyme ORP1 functions as an H2O2 receptor that
oxidizes and activates the bZIP transcription factor YAP1 (33). Miao et al. (117) proposed that,
similar to the yeast ROS-sensing mechanism, AtGPX3 mediates ROS perception in guard cell
ABA signaling. They also reported that AtGPX3 downregulates and interacts with ABI2 and (to
a lesser extent) ABI1 in vitro. Therefore, a possible mechanism is that the ROS-sensing module
ABI2-GPX3 functions as a signal decoder of guard cell signaling.
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The mitogen-activated protein kinases (MAPKs) MPK3, MPK9, and MPK12 are activated
by ABA and H2O2 (74, 99). MPK3 antisense plants show attenuated ABA- and H2O2-induced
stomatal closure (55). Disruption of two MAPK genes, MPK9 and MPK12, impairs stomatal closure
responses to cold, ABA, chitosan, and yeast elicitor as well as H2O2 (74, 152, 153). Montillet et al.
(122) recently reported that MPK3 and MPK6 are involved in flagellin but not ABA guard cell
signaling. These findings highlight the importance of ROS-MAPK pathways in guard cell signal
integration. Arabidopsis MAPKs are activated not only by phosphorylation but also by calmodulin
binding (166), suggesting that Ca2+ modulates the signal integration pathway.

Hua et al. (61) recently showed that a leucine-rich-repeat receptor-like kinase, GUARD CELL
HYDROGEN PEROXIDE–RESISTANT 1 (GHR1), acts downstream of ROS and PP2Cs and
is required for ABA-, MeJA-, SA-, and flg22-induced stomatal closure. Like CPKs and SnRK2s,
GHR1 directly phosphorylates and activates an S-type anion channel protein, SLOW ANION
CHANNEL–ASSOCIATED 1 (SLAC1), in Xenopus laevis oocytes. Moreover, GHR1 interacts
with ABI2 but not ABI1, and GHR1 activation of SLAC1 is inhibited by ABI2 but not ABI1
(61). Murata et al. (131) reported that the abi2-1 mutation disrupts ABA signaling downstream of
ROS production, whereas the abi1-1 mutation does not. These findings, together with the GPX3
findings discussed above (117), suggest a dominant role of ABI2 over other PP2Cs in redox sensing
in guard cells. Desikan et al. (35) have also reported that an Arabidopsis ethylene receptor, ETR1,
mediates H2O2 signaling in guard cells and might serve as a sensor of H2O2, but the downstream
event is entirely unknown.

4.3. Calcium: Transport

The calcium ion Ca2+ is an important second messenger in both plants and animals. In guard cells,
changes in [Ca2+]cyt are sensed by Ca2+-binding proteins (63, 92); here, we focus on CDPKs and
CALCIUM-SENSING RECEPTOR (CAS). Cytosolic Ca2+ is positively involved in stomatal
closure through activation of S-type anion channels (23, 124, 156, 160) and negatively involved
in stomatal opening through downregulation of K+

in channels (53, 82, 156).
Plasma membrane Ca2+-permeable ICa channels of guard cells are activated by H2O2 (144)

and protein phosphorylation (91). Disruption of ABI2, GPX3, or GHR1 impairs the activation of
ICa channels by H2O2 (61, 117, 131). The Ca2+-dependent protein kinases CPK3 and CPK6 and
the Ca2+-independent protein kinase OST1 are also involved in ABA activation of ICa channels
(2, 124). The ICa channel activation is required for stomatal closure induced by MeJA (127, 130),
chitosan (88), and yeast elicitor (88, 183).

Nitric oxide (NO) promotes intracellular Ca2+ release from the endomembrane via a cGMP-
and cADPR-dependent pathway, leading to inactivation of K+

in channels and activation of anion
channels (47). Unlike application of ROS, application of NO does not activate plasma membrane
Ca2+ channels (47). Joudoi et al. (79) recently identified a nitrated derivative of cGMP, 8-nitro-
cGMP (8-nitroguanosine 3′,5′-cyclic monophosphate), as an important signal molecule that acts
upstream of cADPR-mediated Ca2+ release in guard cells. ROS molecules function upstream of
NO production in guard cells (19, 79), suggesting that they are responsible for both Ca2+ influx
through plasma membrane ICa channels and NO-mediated Ca2+ release from the endomembrane
in guard cells.

4.4. Calcium: Sensing by CDPKs

The genes encoding CDPKs constitute a large family of 34 members in Arabidopsis (60). CDPKs
contain EF hands in their C-terminal domains and are activated by Ca2+ binding with distinct
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affinities (15, 50). They can therefore sense changes in [Ca2+], and some of them are known to be
involved in guard cell signaling (19, 87, 92, 157).

Two Arabidopsis CDPKs, CPK3 and CPK6, are involved in ABA regulation of S-type anion
channels and ICa channels, resulting in stomatal closure (124), although CPK6 rather than CPK3
is involved in MeJA- and MAMP-induced stomatal closure (127, 183). These results suggest that
distinct Ca2+ input pathways may be triggered during abiotic and biotic stresses in guard cells.
In a heterologous expression system using X. laevis oocytes, CPK6 directly phosphorylated and
activated the S-type anion channel protein SLAC1 (18). Regulation of K+

in channels by yeast
elicitor is impaired in the cpk6-1 mutant, suggesting that CPK6 phosphorylates substrates other
than SLAC1 in guard cells (183). The possible CPK6 substrates are K+

in channel proteins such
as POTASSIUM CHANNEL IN ARABIDOPSIS THALIANA 1 (KAT1) (150), the NAD(P)H
oxidases AtRBOHD and AtRBOHF (37), and unidentified ICa channels, activities of which are
strongly related to CPK6 (124, 127, 183). More work will be needed to understand the predominant
role of CPK6 in Ca2+ signaling in guard cells. Although CPK3 can be activated by cold, salt, heat,
H2O2, and MAMPs in transient overexpression system using Arabidopsis mesophyll protoplasts,
the endogenous kinase appears to be constitutively active in roots and leaves in planta (109). Thus,
the possible role of CPK3 as a signal decoder remains to be clarified.

Two other CPKs, CPK4 and CPK11, are activated by ABA and phosphorylate two ABA-
responsive transcription factors, ABA-RESPONSIVE ELEMENT BINDING FACTOR 1
(ABF1) and ABF4 (191). Disruption of CPK4 and CPK11 impairs stomatal closure induced by
ABA (191) and by imposed Ca2+ oscillation (63) but not stomatal closure induced by MeJA (127).
In addition, interaction between CPK11 and ABF3 has been observed (100). Boudsocq et al. (17)
reported that CPK4, -5, -6, and -11 function as crucial positive regulators in flagellin signaling, and
Gao et al. (46) reported that they phosphorylate WRKY transcription factors in bifurcated immune
responses activated by the nucleotide-binding-domain leucine-rich-repeat proteins RESISTANT
TO PSEUDOMONAS SYRINGAE 2 (RPS2) and RESISTANCE TO PSEUDOMONAS
SYRINGAE PV. MACULICOLA 1 (RPM1). These results suggest that CPK4, -5, -6, and -11
provide hubs for signal crosstalk between abiotic and biotic stresses via transcriptional regulation
of downstream target genes (16, 157). Another CPK, CPK12, phosphorylates ABF1 and ABF4
in vitro and phosphorylates ABI2 to increase phosphatase activity of ABI2 in vitro; CPK12–RNA
interference lines do not show any ABA-related stomatal phenotype (188).

CPK21 and CPK23 directly phosphorylate and activate SLAC1 and SLAH3 in X. laevis oocytes
(49, 50), and SLAC1 activation results in rapid stomatal closure (133, 172). However, CPK21
and CPK23 in planta function as negative regulators of drought and osmotic stress responses
(44, 101). The challenge for future research is to reveal the environmental stimuli that trigger
CPK21/CPK23-mediated SLAC1 activation in planta.

Another CPK, CPK10, interacts with a heat shock protein, HSP1, which is facilitated by Ca2+,
and these proteins are involved in the regulation of K+

in channels by ABA (194). In addition to ABA-
induced stomatal closure, CPK10 is involved in stomatal closure induced by high extracellular Ca2+

(194) and by imposed Ca2+ oscillation (63). CPK4 and CPK11 also interact with HSP1 (171).
In Arabidopsis, CPK1 localizes to oil bodies and peroxisomes. This protein is a regulator of

the innate immune system (27) that phosphorylates and downregulates a calmodulin-stimulated
Ca2+ pump, ARABIDOPSIS CA2+-ATPASE ISOFORM 2 (ACA2), in the endoplasmic reticulum
membrane (64). Both CPK1 and CPK2 phosphorylate the NAD(P)H oxidases AtRBOHD and
AtRBOHF (46), implying a possible role in regulating stomatal movement.

A noncanonical CDPK, CPK13, phosphorylates and inhibits the guard cell–expressed K+
in

channel proteins KAT1 and KAT2 in X. laevis oocytes (150). A single disruption of CPK13 does
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not cause a measurable stomatal phenotype, but CPK13 overexpression suppresses light-induced
stomatal opening (150).

Like CPK12, CPK32 phosphorylates ABF4 in vitro (26). And like cpk3 cpk6 and cpk4 cpk11 dou-
ble mutants, the cpk7 cpk8 cpk32 triple mutant shows impaired Ca2+ oscillation–induced stomatal
closure (63).

4.5. Calcium: Sensing by CAS

CAS was originally identified as a plasma membrane–localized extracellular Ca2+-sensing receptor
that exhibits low-affinity/high-capacity Ca2+ binding (56). Subsequent reports revealed that it is
in fact a chloroplast-localized protein involved in extracellular Ca2+-induced [Ca2+]cyt elevation
(136, 179). Nonetheless, it is involved in stomatal closure in response to high extracellular Ca2+

(56) and water stress (176). A recent study demonstrated that CAS mediates flg22-induced stomatal
closure (137). These results suggest that CAS functions as a Ca2+ signal decoder under abiotic
and biotic stresses.

CAS mediates production of inositol 1,4,5-trisphosphate (169), ROS, and NO (177) in guard
cells in response to high extracellular Ca2+. Nomura et al. (137) recently demonstrated that CAS
mediates flg22-induced Ca2+ transients in guard cells and stomatal closure. Although flg22 in-
duces stomatal closure via AtRBOHD activation (80, 103, 114), the NAD(P)H oxidase inhibitor
DPI does not inhibit flg22-induced stromal Ca2+ transients, and the cas-1 mutant showed intact
flg22-induced ROS generation (137), suggesting that stromal Ca2+ transients occur parallel to
AtRBOHD activation in guard cell flg22 signaling. Moreover, phosphorylation of CAS is de-
pendent on Ca2+ (164). However, the functional roles of the CAS phosphorylation in guard cell
signaling are unknown.

Stomatal aperture

Ca2+

Plant hormone A

Stress A

Activity of enzyme A

Stress A + B

?
Plant hormone B

Time

Figure 3
Real-time imaging for an array of responses involved in stress signal integration in guard cells. In this
example model, stress A causes [Ca2+]cyt oscillation, resulting in a concentration increase of plant hormone
A. Plant hormone A then induces [Ca2+]cyt oscillation and activates enzyme A, leading to stomatal closure.
In response to stomatal closure, the concentration of plant hormone B decreases. The question then is, if
stress B happens at this point, what will we see? The development of sensors for in vivo detection of second
messengers, plant hormones, and enzyme activities will allow high-resolution analysis of plant stress
integration responses to help answer this and similar questions.
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5. CONCLUSION

The emerging principle is that Ca2+ and ROS are key to signal integration in plants. The cel-
lular mechanisms of ROS sensing remain unclear. It has been reported that stomatal aperture
is programmed by defined [Ca2+]cyt signatures. Recent studies have revealed that plant Ca2+-
binding proteins have a wide range of Ca2+ affinities and that the subcellular localization is tightly
controlled. However, how the defined Ca2+ messages are decoded in plant cells remains elusive.

Guard cells rapidly transduce environmental input signals into activation of plasma membrane
ion channels in order to respond to environmental stimuli, in most cases within a few minutes.
Recently, techniques have been developed for directly visualizing plant hormones in vivo using
genetically encoded biosensors (78, 175). In the future, simultaneous time-resolved live imaging
of guard cells for second messengers, plant hormones, and enzyme activities will advance our un-
derstanding of how guard cells achieve their fine-tuned integration to ensure growth optimization
(Figure 3).

SUMMARY POINTS

1. Guard cells employ signal transduction mechanisms that integrate diverse environmental
signals with reactive oxygen species (ROS) and Ca2+ signals in order to optimize stom-
atal aperture. How environmental signals are integrated into ROS and Ca2+ signatures
remains to be clarified.

2. ROS and Ca2+ are versatile second messengers and play crucial roles in signal integration.

3. The Ca2+ signature is decoded by Ca2+-binding proteins, including calcium-dependent
protein kinase (CDPKs) and CALCIUM-SENSING RECEPTOR (CAS). The mech-
anisms by which the Ca2+ signature is decoded to yield stimulus-specific stomatal re-
sponses need investigation. Moreover, plasma membrane Ca2+-permeable cation chan-
nels in guard cells need to be identified.

4. ROS molecules are produced in several systems in the signal integration. The temporal-
spatial dynamics of ROS generation, which are likely to be associated with the Ca2+

signature, need to be clarified.
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