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Abstract

In plants, male sterility can be caused either by mitochondrial genes with
coupled nuclear genes or by nuclear genes alone; the resulting conditions are
known as cytoplasmic male sterility (CMS) and genic male sterility (GMS),
respectively. CMS and GMS facilitate hybrid seed production for many
crops and thus allow breeders to harness yield gains associated with hybrid
vigor (heterosis). In CMS, layers of interaction between mitochondrial and
nuclear genes control its male specificity, occurrence, and restoration of
fertility. Environment-sensitive GMS (EGMS) mutants may involve epige-
netic control by noncoding RNAs and can revert to fertility under different
growth conditions, making them useful breeding materials in the hybrid seed
industry. Here, we review recent research on CMS and EGMS systems in
crops, summarize general models of male sterility and fertility restoration,
and discuss the evolutionary significance of these reproductive systems.
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INTRODUCTION

Plant male sterility, in its broadest sense, refers to the failure to produce dehiscent anthers, func-
tional pollen, and viable male gametes. First observed by the German botanist Joseph Gottlieb
Kölreuter in 1763 (98), male sterility has been reported in more than 610 plant species (63); it
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Environment-
sensitive genic male
sterility (EGMS):
male sterility that is
reversible in response
to environmental
conditions such as day
length and
temperature

includes cytoplasmic male sterility (CMS), which is caused by mitochondrial genes with cou-
pled nuclear genes, and genic male sterility (GMS), which is caused by nuclear genes alone (132).
Male-sterility mutants can cause abnormal development of either the sporophytic or gametophytic
anther tissues. Most sporophytic male-sterility mutants affect primarily tapeta and meiocytes (cells
undergoing meiosis), leading to pollen abortion or pollenless sterility (41). By contrast, gameto-
phytic male-sterility mutants affect mainly the development of microspores or pollen grains.

Male-sterility plants provide crucial breeding tools to harness hybrid vigor, or heterosis, in
hybrid crops and also provide important materials to study stamen and pollen development and
cytoplasmic-nuclear genomic interactions. Therefore, scientists have long been interested in the
genetic and molecular mechanisms of male sterility and fertility restoration (reviewed in 11, 41,
46, 63, 122). Dozens of CMS and environment-sensitive GMS (EGMS) systems have been stud-
ied at the genetic and molecular levels. Here, we review the advances in research on CMS and
EGMS and discuss emerging insights on cytoplasmic-nuclear genomic interactions in plants. CMS
nomenclature varies in the literature, including different formats such as CMS-XX or XX-CMS,
where XX indicates a specific CMS type; in this article, we use the format CMS-XX. Other kinds
of GMS, including general male-sterility mutants caused by defective essential anther genes and
hybrid sterility caused by divergence of speciation genes, have been reviewed recently (41, 109,
110) and thus are not described here.

THE IMPORTANCE OF MALE STERILITY
AND FERTILITY RESTORATION

Cytoplasmic and Genic Male Sterility: Important Genetic Resources
to Harness Heterosis in Crop Production

Hybrid vigor, or heterosis, refers to the phenomenon in which the progeny derived from a cross
of two inbred lines outperform the parent lines. For example, hybrid crops can produce 15–50%
higher yields than inbred varieties (130). The utilization of heterosis has produced tremendous
economic benefits in worldwide crop production. More than half of the production of major crops
such as maize, rice, sorghum, rapeseed, and sunflower comes from hybrid varieties (84). Thus,
hybrid breeding contributes significantly to the food supply in the world.

Producing hybrid seeds of self-pollinating plants requires emasculation—the removal of func-
tional pollen grains—to prevent self-pollination. Before the mid-twentieth century, emasculation
in hybrid seed production involved manual labor, machines, or chemical treatments and thus was
costly, inefficient, and even damaging to the environment. CMS and EGMS lines do not require
emasculation and therefore are ideal female lines for hybrid seed production. In the 1950s, the
maize CMS-T (Texas) system was first used for hybrid corn, greatly increasing the efficiency of
hybrid seed production and improving maize yields. Later, CMS-based hybrid technology was
developed in many other crops, including rice. Commercial hybrid rice, which increases the grain
yield by over 20%, was first released in 1976 in China, and it has accounted for approximately
55% of the total rice planting area in China since the late 1980s (15).

CMS-based hybrid seed technology uses a three-line system, which requires three different
breeding lines: the CMS line, the maintainer line, and the restorer line (Figure 1a). The CMS
line has male-sterile cytoplasm with a CMS-causing gene (hereafter termed a CMS gene) and
lacks a functional nuclear restorer of fertility (Rf, or restorer) gene or genes (122), and is used as the
female parent. The maintainer line has normal fertile cytoplasm but contains the same nuclear
genome as the CMS line, and thus serves as the male parent in crosses for the propagation of the
CMS line. The restorer line possesses a functional Rf gene or genes, and thus serves as the male
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Figure 1
Application of cytoplasmic male sterility (CMS) and environment-sensitive genic male sterility (EGMS) for
hybrid seed production in a three-line system and a two-line system. (a) The three-line system requires a
CMS line, containing sterile cytoplasm (S) and a nonfunctional (recessive) restorer (rf ) gene or genes; a
maintainer line, containing normal cytoplasm (N) and a nuclear genome identical to that of the CMS line;
and a restorer line, with normal (N) or sterile (S) cytoplasm and a functional (dominant) restorer (Rf ) gene
or genes. The CMS line is propagated by crossing with the maintainer line; the maintainer and restorer lines
can produce seeds by self-pollination. The CMS line is crossed with the restorer line to produce male-fertile
hybrids. (b) In the two-line system, an EGMS [photoperiod-sensitive GMS (PGMS), reverse PGMS, or
temperature-sensitive GMS (TGMS)] mutant (MT) line is propagated by self-pollination when grown under
permissive conditions (PC) (short-day conditions for PGMS, long-day conditions for reverse PGMS, or
low-temperature conditions for TGMS). The EGMS line is male sterile under restrictive conditions (RC)
(long-day conditions for PGMS, short-day conditions for reverse PGMS, or high-temperature conditions for
TGMS) and thus serves as the female parent for crossing with a wild-type (WT) line to produce hybrid seeds.

Photoperiod-
sensitive genic male
sterility (PGMS):
male sterility that is
determined by day
length

parent to cross with the CMS line to produce F1 hybrid seeds. In the F1 plants, the Rf gene restores
male fertility, and the combination of nuclear genomes from the CMS line and the restorer line
produces hybrid vigor.

In contrast to CMS, most GMS mutants are not suitable for hybrid seed production because
their male-sterility traits cannot be efficiently maintained. However, the discovery of EGMS
mutants has enabled some GMS traits to be used for hybrid crop breeding (134). The pollen fertility
of EGMS lines changes in response to environmental cues such as day length and temperature. The
first photoperiod-sensitive GMS (PGMS) mutant in rice, Nongken 58S (NK58S), was discovered
in japonica rice (Oryza sativa ssp. japonica) in 1973. NK58S is completely male sterile when grown
under long-day conditions but male fertile when grown under short-day conditions (123). A
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Temperature-
sensitive genic male
sterility (TGMS):
male sterility that is
determined by
temperature

Pentatricopeptide
repeat (PPR): a
35-amino acid protein
motif; most
PPR-containing
proteins in plants
target to mitochondria
or plastids for RNA
processing

temperature-sensitive GMS (TGMS) mutant, Annong S-1, was found in indica rice (O. sativa ssp.
indica) in 1988. Annong S-1 is completely male sterile when grown at high temperatures but male
fertile at low temperatures (21).

The reversibility of male fertility in PGMS and TGMS enables hybrid seed production with a
two-line system. A PGMS or TGMS line grown under restrictive conditions (long-day or high-
temperature conditions) serves as the male-sterile female parent. This same line can be propagated
under permissive conditions (short-day or low-temperature conditions) (Figure 1b). The two-line
system thus eliminates the requirement for crossing to propagate the male-sterility line. Moreover,
all normal varieties possess the wild-type fertility gene alleles that can restore male fertility, and
thus they can be used as the male parents for hybridization. Therefore, a two-line system simplifies
hybrid seed production and reduces costs. Recently, the production of two-line hybrid rice based
on PGMS or TGMS has occupied approximately 20% of the total hybrid rice planting area in
China (84).

Cytoplasmic Male Sterility/Restorer Systems: Models to Study
Mitochondrial-Nuclear Coevolution and Interaction

Nuclear genomes play important roles in regulating gene expression in response to developmental
and environmental cues. Plant mitochondria and plastids are semiautonomous organelles; their
genomes contain only part of the genetic information required for normal function. Mitochondria
are important organelles in the tricarboxylic acid cycle, the respiratory electron transfer chain,
and ATP synthesis (89). Plant mitochondrial genomes have only approximately 60 known genes
for the electron transfer chain, ribosomal proteins, transfer RNAs, and ribosomal RNAs (76).
However, proteomics analysis showed that plant mitochondria contain more than 1,000 proteins,
most of which are encoded by the nuclear genome (75). For example, Arabidopsis and rice have
approximately 450 and 650 nucleus-encoded pentatricopeptide repeat (PPR)–containing proteins,
respectively, and most PPR proteins target to the mitochondria or plastids for their functions (119).
In anterograde regulation, nuclear genes, including Rf genes, affect the functions of mitochondrial
or chloroplast (plastid) genes. In retrograde regulation, the functions of some mitochondrial or
chloroplast (plastid) genes, like CMS genes, may regulate the expression of certain nuclear genes
(16, 138). Several plant mitochondrial genomes, including those of maize, rice, wheat, rapeseed,
and sugar beet, have been sequenced (17, 45, 77, 105, 107). Sequence analysis of the mitochondrial
genomes of CMS and maintainer lines may identify CMS candidate genes. Therefore, extensive
studies on CMS/Rf systems can reveal the molecular basis of the interactions, including conflicts
between the mitochondrial and nuclear genomes, and improve our understanding of the origin of
novel mitochondrial genes and their evolutionary significance for the fitness of a species.

CURRENT PROGRESS ON CYTOPLASMIC MALE STERILITY
AND RESTORER GENES IN MAJOR CROPS

Identification and Functional Analysis of Cytoplasmic Male Sterility Genes

Some wild plants contain CMS cytoplasm but are male fertile because of the broad presence of
Rf genes in their nuclear genomes. Therefore, CMS cytoplasms are usually discovered by genetic
crossing or somatic hybridization (protoplast fusion) that separates the CMS cytoplasm from its
nuclear Rf gene(s). Crosses between the potential CMS cytoplasm-containing lines (as female
parents) and non-Rf lines (i.e., lines containing recessive rf alleles) of the same or different species
can be followed by selection of male-sterile progeny.

www.annualreviews.org • Male Sterility and Fertility Restoration in Crops 583



PP65CH21-Liu ARI 8 April 2014 22:18

ORF: open reading
frame

Mitochondrial
electron transport
chain (mtETC):
a series of inner-
membrane-bound
metalloproteins of the
mitochondria that pass
electrons from the
reducing products to
the oxidizing dioxygen

SUO: sequence of
unknown origin

CMS candidate genes can be identified by several strategies. The most common is to search
for differences in mitochondrial gene organization and/or differences in the mitochondrial tran-
scriptome or proteome in CMS cytoplasm lines with and without the Rf gene(s). For example, to
clone the gene for rice CMS-WA—the male-abortive wild rice (Oryza rufipogon)–derived CMS
system that is most widely used for hybrid rice breeding—Liu et al. (88) used 43 probe sequences
covering the whole rice mitochondrial genome to perform RNA-blot analysis of the CMS-WA
line, maintainer line, and fertility-restored lines (with the restorer gene Rf3 or Rf4). A transcript
was found to be specific to the CMS-WA line, and the abundance of this transcript was reduced in
the Rf4-restored lines. Sequence analysis identified a novel chimeric open reading frame (ORF),
named WA352, as the CMS-WA candidate gene (88, 91). In other CMS systems, several CMS-
causing proteins, such as URF13 of maize CMS-T (32) and the truncated COX2 of sugar beet
CMS-G (28), were detected by comparing the proteomes of CMS and fertile lines. In a few cases,
such as radish CMS-Ogu (7) and wheat alloplasmic CMS-AP (115), the CMS candidate genes
were identified by analysis of the mitochondrial DNAs of segregating somatic hybrids (cybrids)
derived from protoplast fusion between CMS-carrying lines and normal fertile lines. However,
for most crops this approach is not effective because of the great difficulty in obtaining cybrids
and the uncertainty of recombination events between the mitochondrial DNAs of the fusion
lines.

Verifying CMS gene candidates requires testing their effect on male sterility. One of the main
technical barriers for functionally testing CMS genes is the lack of a successful method to transform
plant mitochondrial genomes. As an alternative strategy, He et al. (47) prepared a recombinant
construct of the CMS candidate gene orf239 in common bean fused with a 5′ mitochondrial target-
ing signal sequence, and transferring this construct into the nuclei of tobacco plants caused male
sterility, thus verifying the CMS function of orf239. This strategy has succeeded in functional anal-
ysis of other CMS genes, such as orf79, orfH79, and WA352 in rice (51, 91, 113, 136); orf129 in sugar
beet (140); orf288 in rapeseed (59); orf220 in mustard (141); and orf456 in pepper (68) (Table 1).
The use of the mitochondrial targeting signal is critical for this method; in our experience, the
mitochondrial targeting signal-encoding sequence (+1 ∼ +105 base pairs) from the restorer Rf1b
(136) works in CMS-transgenic rice and Arabidopsis.

Sequence Characteristics of Cytoplasmic Male Sterility Genes

Many CMS genes result from rearrangements of the mitochondrial genome. Table 1 summarizes
28 types of CMS from 13 crop species. At least 10 essential mitochondrial genes, most belonging
to the mitochondrial electron transfer chain (mtETC) pathways, have been found to be involved
in the formation of CMS genes. Among them, cox1, atp8, and atp6 are frequently involved in
the origination of CMS genes. In addition, most CMS genes encode transmembrane proteins
(Table 1). In rice, orf79 for CMS-BT (derived from the indica rice variety Boro II) and its variant
orfH79 for CMS-HL (derived from the wild rice accession Hong-Lian) encode small proteins
with an N terminus similar to COX1 and the remaining SUO (sequence of unknown origin)
portion (136) (Figure 2). In sorghum CMS-A3, the chimeric orf107 encodes a protein with a
segment of ATP9 at the N terminus and a remaining portion that is similar to ORF79 (129). In
wheat, the CMS-AP line, containing the nuclear genome of Triticum aestivum and the cytoplasm
of Triticum timopheevii, is associated with orf256 (115). The 5′ flanking region of orf256 and the
first 11-amino-acid coding sequence are identical to cox1. The atp8 sequences form parts of the
CMS genes in dicot species. The Brassica CMS genes orf138 and orf125, which originated from
radish, encode atp8-like proteins. The Brassica CMS-Pol and CMS-Nap genes orf224 and orf222,
encoding membrane proteins with 79% sequence similarity, contain an atp8-derived sequence
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Table 1 Characterized cytoplasmic male sterility (CMS)/restorer (Rf ) gene systems in major crops

Crop species CMS typea
Associated

ORFb Protein propertyc
Rf

locusd
Protein

propertyc Reference(s)
Maize (Zea
mays)

CMS-T (S) urf13-atp4 13-kDa toxic
membrane protein

Rf1 (R) UK 18, 23, 25

Rf2 (M) Aldehyde de-
hydrogenase

CMS-S (G) orf355-orf77 UK Rf3 (R) UK 144

CMS-C (S) atp6-C UK Rf4 UK 24
Rice (Oryza
sativa)

CMS-BT (G) B-atp6-orf79 (T) Membrane protein Rf1a (R),
Rf1b (R)

PPR protein 2, 66, 72, 136

CMS-HL (G) atp6-orfH79 (T) Membrane protein Rf5
(Rf1a)
(R)

PPR protein 51, 135

CMS-LD (G) L-atp6-orf79e UK Rf2 (P) Glycine-rich
protein

53, 54

CMS-CW (G) orf307 UK Rf17 (P) Acyl-carrier
protein
synthase

34–36

CMS-WA (S) rpl5-WA352 (T) Membrane protein Rf3 (P),
Rf4 (R)

UK 91, 145, 149

CMS-RT120 rpl5-orf352 Membrane protein Rf102 UK 108

CMS-RT98 orf113-atp4-cox3 Membrane protein UK UK 52
Sunflower
(Helianthus
annuus)

CMS-PET1
(G)

atp1-orf522 15-kDa toxic
membrane protein

Rf1 (R) UK 49, 70, 79

Brassica
(B. napus)

CMS-Ogu (S) orf138-atp8 30-kDa ATP8-like
toxic membrane
protein

Rfo (P) PPR protein 10, 131

CMS-Pol (S) orf224-atp6 ATP8-like protein Rfp (R) UK 99, 125

CMS-Nap (S) orf222-nad5c-
orf139

ATP8-like protein Rfn (R) UK 9, 82

Brassica
(B. juncea)

CMS-Hau (S) atp6-orf288 (T) Toxic protein UK UK 59

CMS-orf220 orf220 (T) 26-kDa membrane
protein

UK UK 141, 148

Brassica
(B. tournefortii )

CMS-Tour (S) atp6-orf263 32-kDa membrane
protein (deduced
29 kDa)

UK (P) UK 78

Radish
(Raphanus
sativus)

CMS-Kos (S) orf125-atp8 ATP8-like
membrane protein

Rfk1 (P) PPR protein 55, 71

CMS-Don (S) orf463 Membrane protein Rfd1 (P) UK 112
Sorghum CMS-A3 (G) orf107 UK Rf3 (R) UK 129

(Sorghum bicolor) CMS-A1 (G) UK UK Rf1, Rf2 PPR protein 61, 69
(Continued )
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Table 1 (Continued)

Crop species CMS typea
Associated

ORFb Protein propertyc
Rf

locusd
Protein

propertyc Reference(s)
Wheat (Triticum
aestivum)

CMS-AP orf256 7-kDa membrane
protein

UK UK 127

Common bean
(Proteus vulgaris)

CMS-Sprite (S) atp1-
orf98-orf239 (T)

27-kDa protein Fr (G),
Fr2 (P)

UK 1, 47, 95

Pepper (Capsicum
annuum)

CMS-Peterson cox2-orf456 (T) 17-kDa protein UK UK 39, 58, 68

cox2-orf507 19.5-kDa protein

Carrot (Daucus
carota)

CMS-Petaloid orfB ATP8-like
membrane protein

UK (R) UK 104

Sugar beet (Beta
vulgaris)

CMS-Owen preSatp6 35-kDa membrane
protein

Rf1 (P) Peptidase 97, 139

I-12CMS(3) orf129 (T) 12-kDa matrix
protein

UK (P) UK 140

CMS-G cox2 31-kDa truncated
COX2 protein

RfG1,
RfG2

UK 28

aLetters in parentheses indicate the generation where the CMS acts: S, sporophytic; G, gametophytic.
bUnderlined cotranscripts indicate the CMS-causing open reading frame (ORF); a letter T in parentheses indicates that the biological function as a CMS
gene has been validated in transgenic plants.
cPPR, pentatricopeptide repeat; UK, gene or product is unknown.
dLetters in parentheses indicate the level at which male fertility is restored: G, genomic level; R, RNA (posttranscriptional) level; P, protein (translational
or posttranslational) level; M, metabolic level.
eK. Toriyama, personal communication.

and a SUO (125). The atp8 sequences are also present in orf522 in sunflower CMS-PET1 and
orfB-cms in carrot CMS-Petaloid, with an additional SUO (70, 79, 104). Many other CMS genes
contain atp6 sequences of different lengths, including atp6-C in maize CMS-C (24), orf456 in
pepper CMS-Peterson (68), and preSatp6 in sugar beet CMS-Owen (139).

Distinct from most CMS genes, which contain sequences of the known functional mitochon-
drial essential genes, several recently identified rice CMS-associated ORFs consist of sequences
of putative mitochondrial ORFs. For instance, the CMS-WA gene WA352 and its variant orf352
comprise three segments derived from the putative mitochondrial ORFs orf284, orf224, and orf288
and a short SUO (91, 108) (Figure 2). CW-orf307 for CMS-CW contains the 5′ sequence of orf288
and a SUO (34). Therefore, sequences of the known functional mitochondrial genes are not nec-
essarily the components of some functional CMS genes. In addition, several identified CMS genes
(such as orf125 in radish CMS-Kos and its variant orf138 in Brassica CMS-Ogu) and the mutated
cox2 in sugar beet CMS-G are nonchimeric genes that contain sequences from single sources (8,
28, 55).

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 2
Genomic structures of cytoplasmic male sterility (CMS)–associated genes in various crop species. The boxes represent coding
sequences, and the horizontal lines indicate flanking regions of the open reading frames (ORFs). The sequences with similarity to the
same genes (including flanking and coding sequences) are shown in the same colors. Black boxes represent sequences of unknown
origin (U). Diagrams not to scale. Abbreviation: cp, chloroplast; UTR, untranslated region.
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Identification and Sequence Characteristics of Restorer Genes

Nine Rf genes have been isolated in seven plant species: Rf2 (maize) (18, 86), Rf-PPR592 (Petunia)
(6), Rfo (Rfk1) (radish, Brassica) (10, 22, 71), Rf1a (Rf5) (rice) (2, 51, 72, 136), Rf1b (rice) (136), Rf2
(rice) (53), Rf17 (rice) (36), Rf1 (sorghum) (69), and Rf1 (bvORF20) (sugar beet) (43, 97) (Table 1).
Rf-PPR592, Rfo, Rf1a, Rf1b, and sorghum Rf1 encode PPR proteins. PPRs are a group of RNA-
binding proteins, and most act in organellar posttranscriptional mRNA processing, such as editing,
splicing, cleavage, degradation, and translation (19, 121). Rf2 in maize CMS-T, the first isolated
plant restorer gene, encodes an aldehyde dehydrogenase (18). Rf17 in CMS-CW encodes a 178-
amino-acid mitochondrial sorting protein containing an acyl-carrier protein synthase-like domain
(36). Rf2 in CMS-LD encodes a mitochondrial glycine-rich protein (53). Recently, bvORF20,
encoding a putative peptidase of the M48 family, has been shown to be a strong candidate for Rf1
in sugar beet CMS-Owen (43, 97). Therefore, except for the conserved PPR Rf genes, Rf genes
are highly multifarious.

CURRENT PROGRESS ON ENVIRONMENT-SENSITIVE GENIC
MALE STERILITY IN MAJOR CROPS

Several EGMS mutants have been reported in crops (84), but few EGMS genes have been func-
tionally studied, and most research has been on rice (Table 2). The japonica rice PGMS mutant
line NK58S is mainly photoperiod sensitive, but when this trait is crossed into the indica genetic
background, the resulting lines—such as PeiAi 64S (PA64S)—become mainly temperature sen-
sitive. The NK58S PGMS locus ( pms3) and the same locus for TGMS in PA64S ( p/tms12-1)
were mapped to chromosome 12 (90, 151). Recently, a long noncoding RNA (lncRNA) gene
was identified at the pms3 ( p/tms12-1) locus, and in the male-sterility lines, this lncRNA gene
has a single nucleotide mutation (C-to-G) (26, 151). The expressed lncRNA is processed into a
21-nucleotide small RNA (osa-smR5864), and the mutation is located in this small RNA (151).
Therefore, this mutation mediates the PGMS trait in japonica rice and the TGMS trait in in-
dica rice, suggesting that the potential target gene or genes of the lncRNA and osa-smR5864 may
respond to day length and temperature, respectively, in the japonica and indica genetic backgrounds

Table 2 Functionally studied environment-sensitive genic male sterility (EGMS) genes in crops

Crop species EGMS line GMS typea EGMS gene Protein and function Reference(s)
Rice (Oryza sativa) NK58S PGMS

≤13 h (F), ≥13.75 h (S)
pms3 Noncoding RNA 26, 100

PA64S TGMS
≤23.5◦C (F), ≥27◦C
(S)

tms12-1 Noncoding RNA/small
RNA

151

CSA rPGMS
≥13.5 h (F), ≤12.5 (S)

csa MYB transcript
regulator

147

Ugp1 TGMS
≤21◦C (F), ≥28◦C (S)

Ugp1 UDP-glucose
pyrophosphorylase

14

Wheat (Triticum
timopheevii)

Norin26 (D2-type
cytoplasm)

PCMS
≤14.5 h (F), ≥15 h (S)

orf25/Rfd1 Unknown 101

aAbbreviations: PGMS, photoperiod-sensitive genic male sterility; TGMS, temperature-sensitive genic male sterility; rPGMS, reverse photoperiod-
sensitive genic male sterility; PCMS, photoperiod-sensitive cytoplasmic male sterility. A letter F in parentheses indicates male fertility; a letter S in
parentheses indicates male sterility.
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(151). Expression of the lncRNA is affected by differential DNA methylation at its promoter re-
gion in NK58S and wild-type rice, and this methylation is mediated by a small interfering RNA
that targets the promoter region (27). Although the potential target gene or genes of the lncRNA
and osa-smR5864 have not been identified, these studies have revealed a mechanism by which en-
vironmental factors interact with the genetic and epigenetic elements that regulate male fertility
(152).

The rice TGMS gene Ugp1 encodes a UDP-glucose pyrophosphorylase (UGPase). Ugp1 is
expressed in developing pollen and is required for callose deposition; Ugp1-silenced plants are
male sterile. Ugp1-overexpressing transgenic rice plants also show male sterility caused by co-
suppression of the endogenous Ugp1 in which the primary mRNA is not spliced (14). How-
ever, these cosuppressed plants revert to being male fertile when grown at low temperatures
(≤21◦C) owing to the highly efficient splicing of the primary Ugp1 mRNA into mature mRNA
(Table 2). Therefore, male sterility caused by Ugp1 cosuppression represents another type
of TGMS.

Rice CARBON STARVED ANTHER (CSA) is an R2R3-MYB transcription factor that reg-
ulates the expression of OsMST8, encoding a monosaccharide transporter family member that
functions in sugar partitioning from vegetative tissues to anthers for pollen maturation (146). In-
terestingly, csa mutant plants are male sterile under short-day conditions and male fertile under
long-day conditions, a reverse PGMS trait (147) (Table 2). The csa mutant phenotype can be
recovered under long-day conditions, probably because one or more similar pathways compen-
sate for the defective CSA-OsMST8 pathway under long-day conditions. Introduction of the csa
locus from the original japonica mutant into an indica background maintains the reverse PGMS
character. F1 hybrid plants made by crossing the indica csa line with an indica fertile line exhibited
heterosis and higher yield, suggesting the potential for using this reverse PGMS mutant for hybrid
rice breeding (147).

A special alloplasmic wheat containing the nuclear genome of T. aestivum cv. Norin 26 and the
D2-type cytoplasm of Aegilops juvenalis or Aegilops vavilovii exhibits pistil-like stamens (pistillody),
and shows complete male sterility under long-day conditions (≥15 h) and high male fertility under
short-day conditions (≤14.5 h) (102) (Table 2). This photoperiod-sensitive CMS (PCMS) may be
caused by unprocessed mitochondrial orf25 through alterations in the expression of nuclear class-B
MADS-box genes, and it can be restored by Rfd1 on chromosome 7B (44, 101, 106). PCMS may
provide promising breeding material for hybrid wheat production in a two-line system.

CURRENT MODELS FOR CYTOPLASMIC MALE
STERILITY MECHANISMS

Expression of Cytoplasmic Male Sterility Genes and Mechanisms
Determining Male Specificity

One interesting and long-standing question is how CMS genes affect only male development. This
male specificity may result from one of three possible types of expression patterns of CMS genes:
male organ (anther)–specific mRNA expression and protein accumulation, constitutive mRNA ex-
pression and protein accumulation throughout plant tissues, or constitutive mRNA expression but
specific or preferential protein accumulation in the male organs (anthers). Anther-specific expres-
sion provides a straightforward explanation of the male specificity of the trait, but, to our knowl-
edge, no CMS system shows anther-specific expression. The I-12CMS(3) cytoplasm derived from
wild beet shows constitutive orf129 mRNA expression and protein accumulation; the CMS protein
ORF129 accumulates in flowers and also in roots and leaves (140), but the mechanism restricting
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its function in the male organ is unknown. One possible explanation is that normal development
of anthers requires much more energy than vegetative organ development (see The Energy De-
ficiency Model, below); thus, impaired mitochondrial function may affect only male development
(137).

For most CMS systems, the expression patterns belong to the third type, constitutive mRNA
expression but tissue-specific protein accumulation. In CMS-Sprite common bean, the CMS gene
orf239 is transcribed ubiquitously, but the ORF239 protein is present only in the reproductive
organs (1). A nucleus-encoded mitochondrial protease, LON, appears to be responsible for the
turnover of ORF239 in vegetative tissues (120). In CMS-WA rice, WA352 is transcribed consti-
tutively, but the production of WA352 protein is highly spatiotemporally specific; it accumulates
mainly in the tapetal cells at the microspore mother cell stage and not in the anther cells before
or after this stage (91). In CMS-BT rice, ORF79 accumulates preferentially in the microspores
to cause gametophytic male sterility (136). Therefore, for most CMS systems, the spatial and
temporal regulation of CMS protein production determines the male specificity of the trait.

Emerging research on CMS systems of diverse crops supports four models for the mechanisms
that cause CMS (Figure 3): the cytotoxicity model, the energy deficiency model, the aberrant
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Figure 3
A general model for different layers of mitochondrial-nuclear gene interactions in cytoplasmic male sterility (CMS)/restorer (Rf )
systems. The nucleus-encoded mitochondrial-sorting gene (MSG) products—including RF proteins and tissue-specific regulatory
factors (TSRFs) and subunits of the mitochondrial electron transfer chain (mtETC) complexes—target to the mitochondria for
anterograde regulation. TSRFs may regulate, at the translational or posttranslational level, the male organ (anther)–specific
accumulation of CMS proteins for male specificity. The CMS proteins may interact with the mtETC subunits to affect their functions
or redox status or ATP biogenesis, leading to production of retrograde signals (such as reactive oxygen species and cytochrome c
release) that trigger aberrant programmed cell death (PCD) in tapeta or microspores. CMS restoration by RF proteins can be achieved
at the genomic level (G), mRNA level (R), protein level (P), or metabolic level (M).
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programmed cell death (PCD) model, and the retrograde regulation model. These models are
discussed in the sections below.

The Cytotoxicity Model

In the cytotoxicity model, the CMS protein directly kills the cells. The first discovered CMS
protein, URF13 for maize CMS-T, is toxic to Escherichia coli (23, 73) and to many eukaryotic
cells (74, 81). Since the discovery of URF13, several CMS proteins—including ORF522 for sun-
flower CMS-PET1 (103), ORF138 for radish CMS-Ogu (29), ORF288 for Brassica CMS-Hau
(59), ORF79 for rice CMS-BT (91, 136), and WA352 for rice CMS-WA (H. Xu & Y.-G. Liu,
unpublished data)—have also been shown to be toxic to E. coli (Table 1). Most CMS proteins are
10–35-kDa transmembrane proteins and have a hydrophobic region (Table 1), which are typical
features of cytotoxic proteins. Therefore, a straightforward model for CMS in these systems is
that the CMS proteins cause mitochondrial dysfunction in the sporophytic or gametophytic cells
of the anthers, leading to male abortion (81).

However, our information on the cytotoxicity of CMS proteins is derived from the transgenic
expression of CMS genes in prokaryotic or eukaryotic cultured cell systems. Direct biochemi-
cal evidence for the cytotoxicity of the CMS proteins in plant anther cells is currently lacking.
A mechanistic relationship between the structures of the CMS-causing toxic proteins and CMS
occurrence remains unclear. The toxicity of the CMS-WA protein WA352 to E. coli is depen-
dent on the specific transmembrane structure (H. Xu & Y.-G. Liu, unpublished data). However,
transgenic plants expressing truncated WA352 proteins that contain no transmembrane segments
still showed male sterility (91), indicating that CMS induction by WA352 is not dependent on the
transmembrane domains.

The Energy Deficiency Model

In the energy deficiency model, the CMS protein causes mitochondrial deficiencies, and the cells
fail to meet the substantial energy requirements of male reproductive development. Mitochon-
dria are vital for producing biological energy (ATP) via mtETC of the respiratory complexes.
The biogenesis of the sporophytic and gametophytic cells of plant anthers is thought to demand
more cellular energy than other organs. Cells may produce more ATP either by increasing the
number of mitochondria or by increasing the metabolic activity of mitochondria. Lee & Warmke
(80) observed rapid division of mitochondria during anther development of maize CMS-T, and
therefore proposed that the CMS gene causes mitochondrial dysfunction and the mitochondria
fail to provide enough ATP for male development. According to the chemiosmotic theory of ATP
production, primary proton pumps such as complexes I (NADH dehydrogenase), II (succinate
dehydrogenase), III (ubiquinol-cytochrome c reductase), and IV (cytochrome c oxidase) produce a
high proton gradient and a downhill proton flow, which allow complex V (F1Fo-ATPase) to gen-
erate ATP (89). Therefore, an intact mitochondrial membrane is essential for mtETC function
and energy production in mitochondria.

The sequences and structural features of many CMS proteins have provided a possible molecu-
lar basis for the energy deficiency model. First, many CMS proteins—including URF13 for maize
CMS-T, ORF138 for Brassica CMS-Ogu, ORF79 for rice CMS-BT, ORFH79 for rice CMS-HL,
and preSatp6 for sugar beet CMS-Owen—are mitochondrial transmembrane proteins (Table 1).
These proteins may integrate into the inner mitochondrial membrane, destroying the proton
gradient and affecting ATP synthesis (117).
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Reactive oxygen
species (ROS):
molecules that act as
secondary messengers
or retrograde signals

Second, as chimeric ORFs, many (but not all) CMS genes consist of portions of some essential
mitochondrial genes involved in respiration pathways, including nad3, nad5, and nad7 for complex
I; cox1 and cox2 for complex IV; and atp1 (atpA), atp4, atp6, atp8, and atp9 for complex V (Figure 2).
The CMS proteins may competitively interact with the mtETC complexes. These features of CMS
genes strongly indicate a link between respiratory pathways and CMS.

Direct evidence supporting the energy deficiency model comes from the sugar beet CMS-G
system (28). Molecular study of CMS-G identified two mutated proteins in male-sterile plants:
an extended NAD9 (the core of complex I) and a truncated COX2 (a subunit of complex IV).
The CMS phenotype is correlated with this deletion form of cox2, which diminishes the activity of
normal COX2, providing a molecular link between the mtETC defect and CMS. Another example
comes from pepper CMS-Peterson, in which two analogs of the CMS gene, orf456 and orf507,
are cotranscribed with cox2, and orf507 impairs cytochrome c oxidase activity in the mitochondria
in the CMS line (58). Similarly, CMS-HL rice shows reduced ATP and NADH levels in anthers
expressing ORFH79, which is a homolog of ORF79 for CMS-BT (113). ORFH79 interacts with
the nucleus-encoded subunit P61 of mtETC complex III in the mitochondria, impairing the
activity of complex III and resulting in decreased ATP production (135).

In mammalian and yeast cells, atp8 encodes a core subunit for the assembly of F1Fo-ATPase.
In plants, the mitochondrial orfB is an ortholog of atp8, despite their limited sequence similarity,
and the protein functions as a subunit of plant F1Fo-ATPase (118). In sunflower CMS-PET1, the
chimeric orf522 gene encodes a novel protein containing a small portion (19 amino acids) identical
to the N terminus of ORFB. The ATPase activity of CMS-PET1 plants is significantly lower than
that of fertile plants, suggesting that ORF522 may compromise F1Fo-ATPase activity (118). In
CMS pearl millet, the activities of F1Fo-ATPase and cytochrome c oxidase are impaired (62).
Other CMS proteins containing sequences similar to ORFB, including ORF138 and ORF125
in CMS radish, ORF224 and ORF222 in Brassica, and ORFB-cms in carrot, may share similar
mechanisms. In fact, ORF138 forms part of a large complex in the mitochondrial inner membrane
(30).

Together, the lines of molecular evidence support the hypothesis that some CMS may be
related to energy deficiency in developing anthers, which require more energy. CMS proteins
may affect mitochondrial membrane integrity, leading to proton leakage and inadequate ATP
production. Alternatively, CMS proteins may serve as dysfunctional homologs competing with
native components of the mtETC or F1Fo-ATPase complexes, forming inactive or less efficient
mtETC or F1Fo-ATPase complexes for ATP production.

The Aberrant Programmed Cell Death Model

PCD in plants is an apoptosis-like cellular process that includes fragmentation of nuclear DNA
and is controlled by mitochondrion-driven signals. Plant PCD functions in developmental pro-
cesses such as senescence, seed germination, organ development, root tip elongation, xylem and
aerenchyma formation, and disease resistance (116). The release of cytochrome c from mitochon-
dria into the cytosol and overproduction of reactive oxygen species (ROS) function as the major
retrograde signals triggering animal apoptosis and plant PCD (38, 87, 142).

The development of plant male gametophytes in anthers requires cooperative interactions
between sporophytic (anther wall) and gametophytic (microspore) cells and requires proper PCD-
controlled cellular degeneration of the tapetum, the innermost cell layer of the anther wall tissue
(92). Therefore, normal tapetum function requires the properly timed initiation and progression
of PCD; premature or delayed tapetal PCD leads to male sterility (57, 64, 111). For example,
the gametophytic CMS-PET1 cytoplasm in sunflower causes premature PCD of the tapetal cells,
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which is associated with early release of cytochrome c from the mitochondria to the cytosol (4).
ORF522 is proposed to affect the activities of F1Fo-ATPase and cytochrome c oxidase (4, 118);
however, the mechanism by which ORF522 induces premature tapetal PCD remains unclear.

COX11 is a nucleus-encoded assembly factor for cytochrome c oxidase, which is highly con-
served in eukaryotic organisms (5). Yeast COX11 (ScCOX11) and rice COX11 (OsCOX11) have
another role in hydrogen peroxide degradation and may act as negative regulators of PCD (91,
133). In rice CMS-WA lines, the CMS protein WA352 accumulates preferentially in the tapetal
cells at the microspore mother cell stage and physically interacts with OsCOX11. This detri-
mental interaction inhibits OsCOX11’s function in peroxide metabolism, thus causing an early
cytochrome c release and ROS burst, which then triggers premature tapetal PCD at the meiotic
prophase I stage—much earlier than normal tapetal PCD, which occurs at the dyad stage in male-
fertile rice plants (91). These abnormal molecular events lead to rapid cellular degeneration of the
tapeta and consequent pollen abortion. Abnormal PCD was also observed in anthers of CMS-HL
rice at the tetrad and early-uninucleate stages, associated with excess ROS production (83). How-
ever, because CMS-HL is gametophytic, whether the aberrant PCD occurs in the microspores
remains to be clarified by in situ assays.

The Retrograde Regulation Model

In CMS-CW rice, derived from O. rufipogon, a mitochondrial chimeric ORF, CW-orf307, was
identified as a CMS gene candidate (34). The restorer gene Rf17 in CMS-CW encodes the mito-
chondrial protein RETROGRADE-REGULATED MALE STERILITY (RMS), which has an
acyl-carrier protein synthase-like domain. Rf17 and rf17 alleles do not alter CW-orf307 transcrip-
tion. However, the CMS-CW cytoplasm upregulates, through one or more unknown retrograde
signals, the expression of rf17, whereas Rf17 is not upregulated by the CMS cytoplasm, owing to
the presence of a mutation in the Rf17 promoter regulatory region. Increased RMS expression
suppresses pollen germination, thus leading to gametophytic sterility (36).

MADS-box transcription factors have major roles in flower development (96). Carpeloid CMS
and petaloid CMS refer to CMS systems in which the stamens are replaced by carpels and petals,
respectively, in the florets. These CMS phenotypes morphologically resemble homeotic mu-
tants. Indeed, expression of two MADS-box genes controlling whorls 2 and 3 in carrot flowers
is suppressed in the carpeloid CMS lines. This strongly indicates that retrograde signaling from
mitochondria regulates the expression of these nuclear MADS-box genes, determining the organ
conversion in carpeloid CMS (85).

In general, we speculate that the various CMS systems involve complex processes; for example,
energy deficiency and premature PCD may be parts of the same mechanisms underlying CMS.
Regardless of the mechanisms causing CMS, the sporophytic cells (mainly the tapetum) or the
gametes eventually die because of the abnormalities in redox processes and energy production in
the mitochondria, which may be the primary causes of the retrograde signaling for aberrant PCD
in tapeta or microspores (Figure 3).

MECHANISMS FOR CYTOPLASMIC MALE STERILITY RESTORATION

As described above, the deleterious effects of CMS proteins cause CMS phenotypes. In this sce-
nario, any mechanisms that suppress the expression of CMS genes or counteract their negative
effects will restore male fertility. Thus, the restoration of fertility in CMS/Rf systems (referred to as
CMS restoration) may be achieved by various mechanisms at different molecular levels (Figure 3).
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Cytoplasmic Male Sterility Restoration at the Genomic Level

Mitochondrial genomes are highly dynamic, with frequent variations in the structure and copy
number of mitochondrial DNA molecules (95). Spontaneous reversion to fertility occurs occa-
sionally in some CMS plants and involves substoichiometric shifting in the relative copy numbers
of certain subgenomic molecules containing CMS genes. Common bean CMS-Sprite is caused by
the mitochondrial PVS sequence located downstream of atp1 (12, 60). The 25-kb PVS-associated
mitochondrial genomic sequence is altered by specific excision in the presence of a dominant
nuclear gene, Fr. As a result, the majority of the CMS mitochondrial DNA molecules convert
to normal ones, and thus the progeny of the following generations are male fertile regardless of
whether Fr is present (1, 56, 94). This system provides the first example of an Rf gene that recovers
CMS at the genomic level through substoichiometric shifting. Another case of substoichiometric
control of a CMS gene occurs in pearl millet CMS-A1. CMS-A1 plants are prone to spontaneous
reversion to fertility, in which a subgenomic molecule containing the cox1-1-2 junction region is
amplified 10-fold in fertility-reversed plants (31).

Cytoplasmic Male Sterility Restoration at the Posttranscriptional Level

In plant mitochondria and chloroplasts, transcripts usually undergo modifications such as editing,
splicing, and cleavage. The RNA editing changes cytidine (C) residues to uridine (U) at certain sites
of the RNA sequences in plant organelles, especially in mitochondria (124). RNA exo- or endonu-
cleolytic cleavage may occur in the coding regions and/or the intercistronic (spacer) sequences
of multicistronic transcripts. Expression and sequencing analyses have indicated that most CMS-
associated (co)transcripts in various crops are processed by different posttranscriptional mecha-
nisms, such as editing, polyadenylation, cleavage, and degradation mediated by Rf gene products
(Table 1). For example, in sorghum, the CMS-A3-associated orf107 transcript has four C-to-U
editing sites that are processed with different levels of efficiency. In the sterile plants, site 1 is edited
frequently and site 2 is edited infrequently. The effective editing of sites 3 and 4, with rates of ap-
proximately 80% and 60%, respectively, requires the action of Rf3. The edited orf107 transcript is
degraded rapidly in the Rf3-restored plants (114, 128). In CMS-PET1 sunflower, orf522 is cotran-
scribed with atp1. The atp1-orf522 transcript is edited at two sites in orf522 and one site in atp1. The
atp1-orf522 mRNAs in the florets of the Rf1-restored plants are polyadenylated at the 3′ untrans-
lated region and then degraded by two distinct ribonuclease activities (37, 100). Therefore, Rf1 may
function in the specific polyadenylation of the transcript, which is unstable and rapidly degraded.

Multiple CMS transcripts in various CMS crops are cleaved or degraded by the corresponding
Rf proteins. In CMS-T maize, which is restored by Rf1 and Rf2, the urf13-orf221 dicistronic
transcript is processed in an Rf1-specific manner, causing reduced abundance of the cleaved
urf13 RNA fragment (67). In CMS-Pol Brassica plants, the orf224-atp6 dicistronic transcript
is cleaved by the action of Rfp, and the resulting orf224 RNA fragment is degraded rapidly in
the reproductive organ (99). ORF222 in CMS-Nap has a 79% sequence similarity to ORF224.
The cotranscripts of orf222-nad5c-orf139 undergo processing similar to that of orf224-atp6
(82). The specificity of the processing events conditioned by Rfn and Rfp may depend on RNA
structural differences of the CMS cotranscripts (9).

In CMS-BT rice, RF1A cleaves the B-atp6-orf79 dicistronic transcripts at the intercistronic
region and the 5′ untranslated region of B-atp6, but RF1B promotes rapid degradation of the
B-atp6-orf79 transcripts (136). When Rf1a and Rf1b are both present in the restored plants, RF1A
has an epistatic effect on the cleavage of the transcripts (136). The cleaved orf79 RNA fragment
loses its ribosome-binding site and is not translated (65, 136). In CMS-HL rice, atp6-orfH79
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is a homolog of B-atp6-orf79 (143). In the presence of Rf5—the same gene as Rf1a for CMS-
BT—atp6-orfH79 transcripts are cleaved similarly to the cleavage pattern of B-atp6-orf79 in Rf1a-
restored CMS-BT plants. However, in contrast to the direct binding of RF1A with B-atp6-orf79
mRNA (65), RF5 alone cannot bind with atp6-orfH79 mRNA; it requires the glycine-rich protein
GRP162 as an adaptor in a restoration-of-fertility complex to bind to the atp6-orfH79 mRNA
for cleavage (51). These different mRNA binding modes may be due to the divergence of their
binding sequences in the intercistronic regions of B-atp6-orf79 and atp6-orfH79. In CMS-WA
rice, Rf4 acts to degrade the dicistronic rpl5-WA352 and monocistronic WA352 transcripts; the
abundance of these transcripts is reduced to approximately 20% in the Rf4-restored plants (91).

These findings indicate that most PPR RF proteins suppress CMS gene expression through
posttranscriptional mechanisms such as editing, cleavage, and degradation of the target mRNAs.
However, because PPR proteins contain no nucleolytic domains, they may function with other
cofactors for RNA processing (19).

Cytoplasmic Male Sterility Restoration at the Translational or
Posttranslational Level

In some CMS systems, the amounts and sizes of CMS-associated transcripts do not change in CMS
and fertility-restored plants. In these cases, fertility restoration may be controlled by translational
or posttranslational mechanisms (Table 1). For example, in maize CMS-C, Rf4 does not affect the
steady-state level of atp6-C mRNA, suggesting that restoration may act at the protein level (24).
In common bean CMS-Sprite, Fr2 does not affect PVS transcript levels but does suppress the ac-
cumulation of ORF239 protein (120). In fertility-restored CMS-Tour Brassica plants, the level of
CMS-associated orf263 mRNA is unchanged but the ORF263 protein is absent (78). In Brassica and
radish, CMS-Ogu is restored by Rfo, which encodes the PPR protein PPR-B (also named ORF687).
The amount of orf138 mRNA in the anthers is not altered, but the accumulation of ORF138 is sup-
pressed (131). PPR-B binds the orf138 mRNA, thus probably blocking ORF138 translation (131).
In CMS-WA rice, Rf3 does not affect WA352 mRNA levels, but WA352 protein does not accumu-
late in the anthers of the plants restored by Rf3 alone, suggesting that Rf3 may function at the trans-
lational or posttranslational level (91). Rf2 in CMS-LD rice encodes a glycine-rich protein. Unlike
the CMS-HL RF5-interacting protein GRP162, which contains an RNA-binding domain, RF2
has no RNA-binding domain, suggesting that RF2 may restore CMS-LD at the protein level (53).

Cytoplasmic Male Sterility Restoration at the Metabolic Level

Rf2 in maize CMS-T encodes an aldehyde dehydrogenase enzyme (18, 86). Aldehyde dehydroge-
nase enzymes play roles in the metabolism of fatty acids and amino acids and detoxify alcohols and
toxins by altering aldehyde damage to cells and tissues. The RF2 protein oxidizes at least three alde-
hydes (86). Given that neither the urf13-orf221 transcripts nor the URF13 protein is changed in the
presence of Rf2, RF2 may restore CMS-T by eliminating harmful molecules caused by URF13 (86).

EMERGING INSIGHTS INTO MALE STERILITY
AND RESTORATION OF FERTILITY

The Origins and Coevolution of Cytoplasmic Male Sterility
Genes and Restorer Genes

The structures and sizes of plant mitochondrial genomes are highly variable. Plant mitochondrial
genomes possess many recombinantly active sequences; recombination among them can divide
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the genome into subgenomic molecules or join different molecules into new ones. These
recombination processes may create new molecular structures and novel ORFs, including CMS
genes (95). In addition, plant mitochondrial genomes are subject to frequent invasions of DNA
sequences from chloroplast and nuclear genomes as well as SUOs (46). In fact, most identified
CMS genes contain SUOs, in addition to those from mitochondrial genes of known functions
or putative ORFs (Figure 2). For example, in the CMS-WA mitochondrial genome, a 15.7-kb
rearranged region related to the origin of WA352 contains a chromosomal sequence, four
mitochondrial sequences, and two SUOs; the new ORF WA352 consists of three mitochondrial
sequences and one SUO (91) (Figure 2). Notably, the major part of WA352, encoding the
COX11-interacting domains, was derived from orf288, which is not expressed in anthers (91).
Therefore, DNA sequences that originally do not function in anthers can be the major donor
sequences for the formation of new active CMS genes.

The creation and establishment of active CMS genes during evolution involve several steps.
First, DNA fragments of some mitochondrial genes and other resources integrate into the mito-
chondrial genomic sites through multiple recombination events. Second, the newly created ORFs
may possess promoter-5′ ORF sequences derived from other mitochondrial genes, or may land
next to local sequences with promoter activity or locate downstream of preexisting active genes.
Consequently, the new genes may be expressed independently, be cotranscribed with upstream
genes, or both. For instance, WA352 is located downstream of rpl5 and contains a promoter-5′

ORF sequence derived from the putative mitochondrial gene orf284. WA352 is transcribed as
three transcripts: one that is cotranscribed with rpl5 and two that are independently expressed
(91). However, the initially created CMS potential genes may be present in low copy numbers,
in a substoichiometric manner, and thus have only low expression levels, preventing expression
of CMS phenotypes even in the absence of Rf genes (46). This may prevent the rapid elimination
of these genes by negative selection. During evolution, when substoichiometric shifting occurs
that increases the copy numbers of the recombinant mitochondrial DNA molecules, the CMS
potential genes are normally expressed, finally becoming truly active CMS genes. This mecha-
nism of CMS gene origination occurs in the common bean CMS-Sprite-associated PVS region;
the PVS-containing sequence is present at substoichiometric levels (low copy numbers) in most
(∼90%) undomesticated Phaseolus vulgaris lines but is present at high copy numbers in other lines
(3). Similar substoichiometric variations have also been observed in the WA352-related sequences
in wild rice (H. Tang & Y.-G. Liu, unpublished data).

More than half of the identified Rf genes encode PPR proteins. The PPR gene family has
expanded in land plant species, and the members tend to exist as tandem gene clusters (19, 121).
Chromosome 10 in rice has a cluster of nine PPR genes and includes at least three Rf genes: Rf1a
(Rf5) and Rf1b for CMS-BT (Rf5 for CMS-HL) and likely Rf4 for CMS-WA (2, 33, 51, 72, 136,
149). The Rfo locus for CMS-Ogu also has three highly similar PPR-encoding genes (10, 22). In
some PPR gene clusters, such as that containing Rf1a and that containing Rfo, more copies of the
PPR genes are present in restorer lines than in nonrestorer lines, suggesting that some Rf genes
originated recently through duplication events (48, 136). The generation of PPR and diverse other
types of Rf genes demonstrates that plants have evolved complex pathways to counteract the effects
of CMS. The evolved CMS/Rf-based gynodioecy, a gender dimorphic genetic system, promotes
outcrossing, increases genetic diversity, and provides adaptive flexibility of plant populations to
increase evolutionary fitness in changing environments (20, 93).

Some Rf genes may have functions in addition to their roles in fertility restoration. For example,
rice RF1A promotes the editing of atp6 mRNA (136), and maize RF2 has an aldehyde dehydro-
genase activity required for male fertility in plants with normal cytoplasm (86). In Brassica, the Rf
genes Rfp, Mmt, and Rfn for CMS-Pol and CMS-Nap are divergent alleles or haplotypes of the
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Mitochondrion-
sorting genes
(MSGs): nuclear
genes encoding
proteins containing a
mitochondrion-sorting
signal that target to
mitochondria for
biological functions

same locus (9). The Rfp-encoded product, RFP, modifies the CMS-Pol-related orf224-atp6 (99)
and processes CMS-independent mitochondrial transcripts such as those of nad4 and ccl1, strongly
suggesting that the endonucleolytic cleavage activity on these transcripts is the original function
of RFP, apart from its role as a restorer (9, 126). Therefore, the generation of Rf genes is thought
to result from coevolution with CMS through origination of new genes or functional divergence
of existing genes. This situation is similar to the coevolution of avirulence genes in pathogens and
resistance genes in plant immune systems (13).

Whether some CMS genes have additional biological functions apart from CMS or some of
them just have negative side effects is also an interesting question. For example, URF13 serves
as a receptor for the T toxin of fungal pathogens, and the interaction between URF13 and this
toxin causes the formation of hydrophilic pores in the mitochondrial inner membrane and disrupts
the proton gradient, leading to cell death and pathogenesis in CMS-T maize (81). ORFH79 also
affects root growth in CMS-HL rice seedlings (113).

Cytoplasmic Male Sterility/Restorer Systems Involve Multiple Layers of
Mitochondrial-Nuclear Gene Interaction

CMS phenotypes generally result from incompatible interactions between the mitochondrial and
nuclear genomes in divergent plant populations. The layers of interaction between the mito-
chondrial and nuclear genes involve the spatial and temporal regulation of CMS proteins, CMS
occurrence, and CMS restoration (Figure 3). For example, nuclear mitochondrion-sorting gene
(MSG)–encoded proteins target to mitochondria and interact with the CMS proteins to regulate
the anther-specific accumulation of most, if not all, CMS proteins. However, so far, only one
nucleus-encoded mitochondrial protease, LON, has been identified as involved in the anther-
specific accumulation of a CMS protein (120).

Whether CMS induction, like CMS restoration, involves direct interaction between CMS
genes and nucleus-encoded factors was unclear for a long time (40). Examinations of the interac-
tion between WA352 and COX11 in CMS-WA (91) and the interaction between ORFH79 and
P61 in CMS-HL (135) revealed that this layer of mitochondrial-nuclear gene interaction comprises
the key processes for CMS occurrence, which reflects the incompatibility between the cytoplasmic
and nuclear genomes. The subunits of the mtETC complexes are critical CMS protein interactors
in mediating the release of retrograde signals such as ROS and cytochrome c to trigger abnormal
PCD in tapetal cells or microspores, leading to sporophytic or gametophytic CMS (Figure 3).

Another layer of mitochondrial-nuclear gene interaction includes processes for CMS restora-
tion. In these processes, RF proteins are targeted to mitochondria and interact with CMS genes
to restore fertility by suppressing the expression of CMS genes or eliminating the detrimental
effect of the CMS proteins via different mechanisms at the genomic DNA, RNA, protein, or
metabolic level (Figure 3).

In addition to the retrograde signaling that induces abnormal tapetal and microspore PCD,
recent studies have uncovered distinct retrograde regulation of CMS occurrence and restoration,
such as in the carrot CMS-Petaloid and rice CMS-CW systems (35, 36, 85). Little is known about
mitochondrial retrograde regulation in plants, and the question of whether ROS and certain
unknown mitochondrial noncoding RNAs may serve as retrograde signals, as implicated by those
identified in plastids (50), remains to be investigated.

Noncoding RNAs Emerge as Players in Plant Male Sterility

Noncoding RNAs represent a group of widely distributed transcripts that are not translated into
proteins but serve as epigenetic regulatory factors at the DNA or RNA level to mediate several
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biological processes (42). Identification of the gene responsible for PGMS and TGMS in rice
suggests that lncRNAs or small RNAs may be important players in regulating male development
in response to environmental cues (26, 151).

Challenges and Opportunities in the Study and Application
of Male Sterility and Fertility Restoration

Many CMS-associated ORFs and some of the corresponding Rf genes have been identified and
characterized, and these studies have provided some molecular insights into plant mitochondrial
signaling pathways. However, for most CMS systems, the interactors of CMS proteins and RF
proteins and the mitochondrial retrograde signals have not been identified. In addition, the mecha-
nisms underlying the regulation of the male-specific accumulation of CMS proteins and induction
of CMS remain unclear.

Recent development of new technologies may help resolve current challenges in the study
of CMS/Rf systems. High-throughput next-generation sequencing enables whole-genome se-
quencing in more crops with large and complicated genomes, such as sorghum, wheat, maize,
and soybean, which will accelerate the identification of Rf genes in crop CMS systems. Deter-
mining the complete mitochondrial genome sequences of CMS lines through high-throughput
sequencing also provides an effective way to search for novel CMS candidate ORFs, as exempli-
fied in rice and radish (34, 52, 112). When more genomes are sequenced, the black box of the
SUOs may be exposed, thus adding valuable information to our understanding of the evolution
of CMS/Rf systems. In addition, recent implementation of transcription activator-like effector
nuclease (TALEN) technology in plants (150) may provide a powerful tool to knock out target
mitochondrial ORFs, offering a new strategy to validate the functions of CMS-associated ORFs
and to restore CMS at the genomic level.

Isolation of genes in PGMS and TGMS genetic resources provides important clues for un-
derstanding EGMS traits regulated by novel mechanisms such as noncoding RNA or alternative
splicing. Further identification of the target genes of the noncoding RNA regulators and the study
of their interaction with environmental factors as well as their biological functions will uncover
the molecular mechanisms underlying the control of EGMS.

CONCLUDING REMARKS

Although our understanding of the molecular mechanisms of CMS/Rf systems in rice and Brassica
has advanced tremendously, CMS/Rf research in some major cereal crops, such as wheat, sorghum,
and corn, has remained stagnant in recent years. More CMS systems in staple crops need to be stud-
ied and applied in agriculture to avoid genetic vulnerability in hybrid crop production that relies on
a few CMS cytoplasms, such as CMS-WA in rice, CMS-Owen in sugar beet, and CMS-Peterson
in pepper. Scientists and breeders need to pay more attention to research on EGMS because of its
great potential and advantages in hybrid seed production to meet the increasing demand for food.

SUMMARY POINTS

1. Most cytoplasmic male sterility (CMS)–associated genes are chimeric, consisting of mul-
tiple fragments with different origins, and most of them encode membrane proteins.

2. CMS genes are transcribed constitutively, but most CMS proteins are produced mainly
in male organs.
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3. CMS proteins may interact with nucleus-encoded mitochondrial factors to in-
duce abnormal programmed cell death in tapeta and microspores, leading to male
sterility.

4. CMS restoration can be achieved at the genomic, posttranscriptional, posttranslational,
or metabolic level.

5. Many restorer genes encode pentatricopeptide repeat (PPR) proteins, which target to the
mitochondria and suppress the expression of CMS genes through cleavage or degradation
of the CMS transcripts.

6. Noncoding RNAs and epigenetic control are involved in environment-sensitive genic
male sterility (EGMS) traits.
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