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Abstract

Over 100 whole-genome sequences from algae are published or soon to be
published.The rapidly increasing availability of these fundamental resources
is changing how we understand one of the most diverse, complex, and un-
derstudied groups of photosynthetic eukaryotes.Genome sequences provide
a window into the functional potential of individual algae, with phyloge-
nomics and functional genomics as tools for contextualizing and transfer-
ring knowledge from reference organisms into less well-characterized sys-
tems. Remarkably, over half of the proteins encoded by algal genomes are
of unknown function, highlighting the volume of functional capabilities yet
to be discovered. In this review, we provide an overview of publicly available
algal genomes, their associated protein inventories, and their quality, with a
summary of the statuses of protein function understanding and predictions.
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1. INTRODUCTION

The evolution of oxygenic photosynthesis and the consequential rise in atmospheric oxygen lev-
els drastically altered biology. The increase in global primary productivity and the availability of
oxygen for new biochemical capabilities caused a shift in evolutionary trajectories resulting in
the wealth of diversity we associate with life. The genes responsible for oxygenic photosynthesis
and assimilation of carbon from CO2 also had direct influence on the evolutionary landscape. En-
dosymbiosis accompanied by endosymbiotic gene transfer (the transfer of genes from an endosym-
biont to the host nuclear genome) has spread the ability to photosynthesize between kingdoms,
from bacteria to eukaryotes, and across Eukarya. Out of all of the resulting organisms capable of
oxygenic photosynthesis, the algae represent the most diverse, complex, and understudied group.

1.1. What Is an Alga?

If we look at the diversity of photosynthetic eukaryotes that exists today, land plants (em-
bryophytes), the only photosynthetic eukaryotes not referred to as algae, belong to a small
corner of the tree of life that evolved roughly 500 million years ago, with the flowering plants (an-
giosperms) appearing around 200 million years ago (144, 173). In contrast, the algae are composed
of organisms with deep branches in the eukaryotic lineage corresponding to an evolutionary
time span of roughly 1.5 billion years (67, 92, 158) (Figure 1). Also unlike land plants, algae are
distributed throughout the eukaryotic tree of life; they do not have a single common ancestor
in the traditional sense. Instead, most algae are related through endosymbiosis that resulted in
the transfer of plastids and genes to various eukaryotic hosts and created distinct lineages of
algae outside of Archaeplastida (the phylogenetic clade to which photosynthetic eukaryotes with
primary plastids reside) (Figure 1). The algal group is, therefore, polyphyletic because the most
recent common ancestor of all eukaryotic algae was not an alga, and many algae are more closely
related to nonphotosynthetic protists than they are to other algae (Figure 1). Until recently, the
plastids of algae were thought to have a monophyletic origin: a single primary endosymbiotic
event involving the engulfment of a now-presumed-extinct cyanobacterium by the common
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ancestor of Archaeplastida. Nevertheless, at least one exception is known. The photosynthetic
bodies in Paulinella species, referred to as chromatophores, originated from an independent
primary endosymbiotic event that occurred as recently as 60–90 million years ago (55, 153).

1.2. Tracing the Origins of Plastids

The unifying characteristic of the algal group is the presence of a photosynthetic plastid (97, 122,
154, 185), but tracing the evolutionary history of these organelles is not straightforward. Algae in
Archaeplastida and Paulinella contain primary (1°) plastids that originated from an endosymbiotic
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Figure 1 (Figure appears on preceding page)

(a) A cartoon depiction of the eukaryotic tree of life based on consensus phylogeny of eukaryotes from Baldauf (15, 16) and
incorporating phylogenetic relationships of algal classes from References 63, 123, and 235. Branches containing algae are colored green
for green algae from Chlorophyta and Streptophyta, red for rhodophytes, purple for glaucophytes, blue for algae whose photosynthetic
plastids are derived from endosymbiosis of a eukaryotic alga (i.e., secondary or tertiary endosymbiosis), and yellow for the genus
Paulinella, which contains algae with primary plastids that are distinct from the primary plastids of Archaeplastida. Dashed lines
represent uncertain relationships. AME is used to abbreviate amitochondriate excavates. For each lineage of algae shown in the tree, the
presence of at least one publicly released whole-genome assembly or sequencing project is indicated with a star or diamond,
respectively. (b) The major lineages of Archaeplastida. The ranges of estimated time in million years ago (Mya) for the endosymbiotic
event (green) and last common ancestors (blue) are based on molecular clock estimates from References 67, 92, 101, 102, 104, 115, 158,
189, 239, and 243. Affinity between Cryptista and Archaeplastida observed in Reference 37 is represented with a dotted line. Among the
algal lineages within Archaeplastida, Charophyta, which contains the streptophyte algae, is polyphyletic. (c) Various theories for the
transfer of plastids and genes from Archaeplastida to protists. Events involving a red alga are indicated with red arrows, and events
involving a green alga are indicated with green arrows: 1© The chromalveolate hypothesis proposed by Cavalier-Smith (44) suggests
that endosymbiosis of a red alga happened only once in a common ancestor of algae bearing chlorophyll c–containing plastids and that
all nonplastid relatives are examples of former algae. 2© In recent years, the chromalveolate hypothesis has been superseded by
hypotheses involving multiple engulfment events. Shown here is the cryptophyte-first hypothesis proposed by Stiller et al. (207), which
holds that a cryptophyte was the original host of a red alga–derived plastid that was subsequently spread to an ancestral ochrophyte
within Heterokonta and then to haptophytes. 3© As an example of an extension of the cryptophyte-first hypothesis, the Vitrella
brassicaformis plastid may be derived from an ochrophyte (195). 4© The modern-day plastid in dinoflagellates from Kareniaceae is
derived from a haptophyte, which replaced the peridinin plastid that is found in other dinoflagellates. 5© The plastids in euglenophytes
(Euglena), chlorarachniophytes (Rhizaria), and Lepidodinium (Alveolata) are hypothesized to have originated from different green algae.
6© Paulinella chromatophores are derived from endosymbiosis of a cyanobacterium.

relationship with a cyanobacterium (reviewed in 154). Algae outside these two groups contain
plastids that originated from an endosymbiotic relationship with a eukaryotic alga. We refer to
these plastids as secondary or tertiary (2°/3°) plastids because they are derived from the engulf-
ment of an alga with a 1° plastid or 2° plastid, respectively. However, higher-order relationships
involving engulfment of algae with 3° plastids have been proposed (discussed in 36).

The engulfment and retention of eukaryotic algae has created a complex array of plastids across
the algal group. The plastids in euglenophytes, chlorarachniophytes, and the dinoflagellate genus
Lepidodinium are derived from independent endosymbiotic relationships with a green alga from
Chlorophyta (115). Dinoflagellates in Kareniaceae have a fucoxanthin-containing plastid derived
from a haptophyte alga,whereasmost other dinoflagellates have a peridinin-containing plastid (87,
114). In the case of other algae within the stramenopile, chromerid, dinoflagellate, cryptophyte,
and haptophyte groups, the exact order and number of endosymbiotic events is a topic of con-
tention (36, 227), but their plastids are most closely related to red algae (Rhodophyta) (Figure 1).
In addition to the plastid genome of cyanobacterial origin found in all photosynthetic plastids,
chlorarachniophytes and cryptophytes have periplastid-localized nucleomorphs, which are rela-
tively small remnants of nuclear genomes from the engulfed eukaryotic green or red alga, re-
spectively (141). There also exist a number of organisms that are sometimes referred to as algae
but have impermanent plastids. These acquired phototrophs either have a symbiotic relationship
with an alga, such as Paramecium bursaria with endosymbiotic Chlorella spp. (119), or are able to
engulf and steal plastids from algae (kleptoplasty). An example of the latter is the ciliateMyrionecta
rubra, which acquires plastids from cryptophyte algal prey (116). In these cases, plastid retention
is temporary and feeding on algae is needed to replenish their supply of plastids.

1.3. Phenotypic Diversity of Algae

In addition to the evolutionary distances among the major algal groups, the phenotypic variety
observed in algae is remarkable. As an example, the chlorophyte lineage contains both the smallest
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and the largest known free-living single-celled eukaryotes, Ostreococcus tauri (50) and Caulerpa
taxifolia (137), respectively, and multicellular forms that range in size from the colonial alga Tetra-
baena socialis (5) at 20 μM to the seaweed Ulva lactuca at 3 ft (206). The largest alga, Macrocystis
pyrifera, a heterokont, grows in underwater beds commonly compared to redwood forests since
this brown alga can reach a length of 200 ft (152). Algae occupy a wide range of ecological niches
and are typically found in temperate and tropical soil, fresh water, and the oceans. Extremophilic
algae have also been described. The halophilic green alga Dunaliella salina inhabits the Northern
arm of the Great Salt Lake, Utah, where the NaCl concentration is oversaturated (35). The green
alga Dunaliella acidophila survives in an environment of 1 M H+ (pH 0), with a growth maximum
at pH 1 (93), whereas red algae in the order Cyanidiales thrive at pH 0.5–3 and high temperature
(50–55°C) (43). Psychrophilic green algae, such as Chlamydomonas raudensis (UWO 241), inhabit
permanently ice-covered lakes in Antarctica (143, 164), whereas snow algae often blanket glaciers
(107), and diatoms inhabit brine channels in sea ice (213). Other algae—such as the endolithic
algae of the hyperarid, polyextreme Atacama Desert in Chile (233) or the green alga Chlorella
ohadii, which was isolated from the Negev Desert in Israel (219)—have evolved to cope with
extremes in temperature, desiccation, and light intensity.

2. GENOMES

The phenotypic and ecological niche diversity among algae hints at the breadth of functional
capabilities encoded by their genomes. Algae contain at least three separate genomes, with the
nuclear genome containing the vast majority of genetic material and coding potential. The most
gene-rich organelle genome known belongs to the red macroalga Grateloupia taiwanensis (61) and
contains 233 protein-coding genes. The least gene-rich nuclear genome known belongs to the red
microalga Cyanidioschyzon merolae and encodes 4,775 proteins (155). Because of the larger size of
nuclear genomes and their propensity for repetitive regions, which makes assembly of sequencing
reads more difficult (217), we have access to fewer nuclear genomes compared with plastid and
mitochondrial genomes. Nevertheless, with the use of hybrid strategies incorporating short- and
long-read technologies [e.g., Illumina and PacBio (186)], and because of greater speed and quality
combined with decreasing costs, we have access to ever more algal nuclear genomes each year.
We are approaching the 100th published algal nuclear genome, and with increasing recognition
of the biotechnological, nutraceutical, and environmental value of these organisms, this number
is expected to double in the next two to three years (Figure 2). With ambitious projects, such as
the 10KP Genome Sequencing Project (45), which proposes to sequence the genomes of at least
1,000 green algae and 3,000 photosynthetic and nonphotosynthetic protists in the next five years,
access to algal genomes is expected to increase rapidly. This review is intended to provide a timely
snapshot of an exponentially growing field with an emphasis on the role of genomics in generating
new paradigms for the way we understand algal biology.

Since the first draft whole-genome sequence of an alga was released in 2004 (134), sequencing
technology and the accompanying computational methods for assembly and structural annota-
tions have improved and continue to do so. The Chlamydomonas reinhardtii genome, which was
published in 2007 (139), serves as an example of how advances in both sequencing technologies
and computational methods have contributed to continuous improvements over the interven-
ing decade and emphasizes that genome projects for reference organisms are not end points at
publication (20). Only the relatively small nuclear genomes of the red alga C. merolae (155) and
the prasinophytesMicromonas commoda RCC299 (236) and Ostreococcus lucimarinus (157) are con-
sidered finished [i.e., telomere-to-telomere assembled chromosomes without gaps; however, fin-
ished does not necessarily equate to perfect. Errors could still be present, such as assembly artifacts
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Figure 2

As second- and third-generation sequencing technologies have increased the speed and decreased the cost of whole-genome
sequencing, access to algal nuclear genomes is growing. (a) The cumulative number of nuclear genome assemblies reported over time
for each major algal lineage and for all lineages (total). The asterisk signifies that the data are current as of June 2018. (b) The quality of
these assemblies varies significantly, and as such, only about half of these genome-sequencing projects are accompanied by a public
release of gene models and predicted protein sequences.

caused by repeat regions, especially in centromeres and telomeres (196)]. The completeness of the
other publicly available algal genomes ranges from chromosome-level assemblies with few gaps
and unplaced continuous runs of sequence (contigs), such as for Chromochloris zofingiensis (187), to
assemblies with tens of thousands of scaffolds containing ordered contigs separated by gaps, such
as for the large, highly repetitive draft genome of Cymbomonas tetramitiformis (38) (Table 1).

In addition to the number of contigs and scaffolds, several metrics are used to assess quality,
contiguity, and completeness of the assembly. The most popular technical metrics are the N50
length and the L50 count. These metrics can give a sense of the contiguity of the assembly and
can be used to judge whether the assembled contigs are long enough to have captured most genes
as full-length sequences.N50 length and L50 count can also be useful for assessing improvements
in an assembly (assuming the overall sequenced length does not change); contiguity increases as
the N50 length increases and L50 count decreases. Caution should be used when using the N50
and L50 statistics to compare genomes because these statistics are a measure of only assembly
contiguity, not completeness. For instance, the most recent published genome assemblies for the
dinoflagellate Symbiodinium minutum (199) and the kelp Saccharina japonica (238) are associated
with similar N50 and L50 statistics, but only 50% of the S. minutum genome was assembled,
whereas 98% of the S. japonica genome was assembled. The sizes of algal genomes that are se-
quenced or are being sequenced differ by nearly two orders of magnitude; the finished genome
of the red alga C. merolae is 16.5 Mbp (155), whereas 616 Mbp of the estimated 1,500 Mbp of
the S. minutum genome have been sequenced (199). The S. minutum genome is actually consid-
ered small among dinoflagellates, with the largest known dinoflagellate genome estimated to be
185 Gbp (42). Therefore, across the algal lineages, genome sizes vary by four orders of magnitude.

A separate method for assessing and comparing genome sequences is estimating complete-
ness based on searches for universally conserved protein sets, such as with the Core Eukaryotic
Genes Mapping Approach (CEGMA) (159) and Benchmarking Universal Single-Copy Ortholog
(BUSCO) (200, 229). These ortholog searches can be used to assess the genome assembly and the
set of gene models independently.The assumption is that the more full-length universal orthologs
are found, the more complete is the genome assembly or set of gene model predictions.
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2.1. Structural Annotations: Caveat Emptor

The raw genome sequence gives little insight into biological function by itself. The first step in
decoding the genome sequence is structural annotation. Structural annotations specify where in
the assembly genomic features, such as genes, coding sequences, transcription start and stop sites,
and alternative splice sites, are located. The completeness and accuracy of structural annotations
vary across algae. In part, gene model predictions are only as accurate as the underlying genome
sequence. A gap in the assembly that falls within a gene can result in incorrect splitting of that
gene into two or more models, and exons may be partially or entirely missing from the model.
Sometimes sequence gaps in exons are represented as stretches of X’s in predicted amino acid se-
quences, but other potential inaccuracies are not always evident from protein sequences deposited
in databases. Depending on users’ research objectives, manual assessment of the quality of indi-
vidual gene models may be needed. In the worst-case scenario, genes may be missing from the
assembly because of lack of sequence coverage or presence of highly repetitive regions that are
recalcitrant to the assembly of sequencing reads. Even with finished genomes, structural annota-
tions can be inaccurate, and typically algal research communities must invest significant resources
to increase the number of evidence-based genemodels both prior to and subsequent to publication
of the genome sequence (20, 28, 48, 176, 225).

2.2. Defining the Parts List: Functional Annotations

In the postgenomic era, research efforts are focused on the development of tools to decode the
functional significance of specific sequences in the context of biology. No single approach or bat-
tery of techniques is useful to generate an experimentally determined functional annotation for
every protein encoded in every organism’s genome. Even for Arabidopsis thaliana, arguably the
most thoroughly investigated photosynthetic eukaryote, only 30% of functional annotations are
associated with experimental evidence (12, 40). In algae, which as a group are relatively uncharac-
terized at the genetic level, the functional annotations of most proteins, like all nonreference (and
many reference) organisms, are derived from sequence similarity searches against one or more
databases. Compared with A. thaliana, which was the first photosynthetic eukaryote to have its
genome sequenced, nearly half of predicted algal proteins are not associated with a Pfam domain,
nor do they map onto any of the nearly 1.2 million orthologous groups defined by the EggNOG
database (Figure 3), giving us an indication of the considerable potential for new discovery.

For the half of protein sequences that can be annotated by sequence similarity, the reliability
of many annotations is unknown (21, 167), and automated functional annotation can be prone to
both misannotation and overannotation (126, 192).While some reliability estimates of similarity-
based approaches to functional annotation are available (214), this method of annotation is con-
founded by the observation that function may not be conserved between even highly similar se-
quences. Examples include RAF2, which based on sequence similarity alone would be predicted
to be a pterin-4α-carbinolamine dehydratase, but phylogenomic and functional characterization
suggests this protein lacks enzymatic activity and, surprisingly, is involved in assembly of Rubisco
(79, 147, 230). Another example is offered by the algal protein LFO1, which was originally anno-
tated based on its similarity to the antibiotic monooxygenases in the Pfam database. Subsequent
phylogenomic analysis and experimental characterization instead supports a role for this protein
as a heme-degrading enzyme involved in the response to Fe limitation (129). Conversely, proteins
that do not share sequence similarity may have the same function. Classic examples are distinct
families of enzymes, such as the three classes of carbonic anhydrases (39), the three superoxide
dismutase families (2, 163), or plastocyanin and cytochrome c6 (54), whose shared functions arose
through convergent evolution. While genome-wide searches against databases are a quick way
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Figure 3

Algal genomes provide a reservoir of undiscovered functional capabilities. As an indicator of the amount of protein function yet to be
discovered in algae, the number of predicted proteins from each whole-genome sequence is shown, where each protein either contains
at least one Pfam-A domain (detected by using hmmsearch with Pfam-trusted score cutoffs) (82) or maps to an orthologous group from
the EggNOG database using DIAMOND (113). For comparison, the same analyses for the choice reference land plant Arabidopsis
thaliana are also shown. The pie charts are scaled relative to the total size of each predicted proteome. For each of the major lineages of
algae (streptophyte algae, chlorophyte algae, glaucophytes, red algae, stramenopiles, rhizarians, haptophytes, cryptophytes, and
alveolates), only one representative is shown and was chosen as having the highest number of complete Benchmarking Universal
Single-Copy Orthologs (BUSCOs) compared with other predicted proteomes from closely related algae. Although the proportion of
each proteome that maps to Pfam or EggNOG is roughly similar, the two are not perfectly overlapping. For instance, for Cyanophora
paradoxa, about 2,300 proteins have at least one Pfam domain but do not map to EggNOG, whereas about 2,200 proteins map to
EggNOG but do not have a Pfam domain. These analyses are conservative and serve to illustrate the distance between algal proteomes
and sequences presently in databases. For instance, a more sensitive method, Domain Annotation by a Multi-objective Approach
(DAMA) and CLADE, was recently used to detect conserved domains in 99% of the proteins in Phaeodactylum tricornutum (176).
Assessing the number of proteins in these algae where the function is known or can be confidently predicted based on sequence
similarity to a database, such as the Reference Sequence Database (RefSeq) of the US National Center for Biotechnology Information
(NCBI) (170), UniProt (223), EggNOG, or a match to Pfam’s domain models, is difficult or impossible to determine quantitatively. As
part of the Gene Ontology (GO) Consortium’s Reference Genome Project (182), a comprehensive set of GO annotations for the A.
thaliana genome is available, and, as of June 2018, 30% of the genes in the A. thaliana genome are associated with an experimentally
supported GO term for either a molecular function or a biological process (40).

to identify highly conserved proteins or domains, orthology predictions and community-led ef-
forts involving manual curation provide more reliable functional annotations (86, 201). Indeed,
in the postgenomic era, a goal for the foreseeable future is integrating and leveraging available
genomic and postgenomic data to decipher protein function, prioritizing targets for experimental
characterization, and incorporating that knowledge into a functional framework for each system.

2.2.1. From sequence to function: integrating genomic and postgenomic data. Phyloge-
nomics is a term put forth by Eisen and colleagues (68, 69) in the late 1990s to refer to a strategy
for improving function predictions by considering the evolutionary history of proteins. The basic
tenet of this approach is that orthologs share the same function, while paralogs may have diverged
in function. Phylogeny provides a framework upon which different types of information from dif-
ferent family members are combined to inform the function of the family and/or subfamilies. In
parallel with phylogeny, protein similarity networks are useful for visualizing large protein families
and for defining subgroups of proteins based on pairwise amino acid sequence similarity (13, 91).
Sequence similarity networks have been used to explore proteins involved in algal metal transport
(22), plastid-targeted transporters (120), and algal transient receptor potential channels (8). Phy-
logeny is a tool for reconstructing protein families based on evolutionary models of amino acid
substitution from a multiple sequence alignment. However, other than the evolutionary model

616 Blaby-Haas • Merchant



PP70CH22_Blaby ARjats.cls March 25, 2019 13:2

used to calculate the E value of a pairwise BLASTp score, sequence similarity networks do not
provide a rigorous hypothesis regarding the evolutionary distances or relationships between pro-
tein family members. Instead, these networks allow one to visualize which protein sequences are
more similar to each other based on the E value threshold cutoff used to define similarity. When
combined with phylogenetic trees, sequence similarity networks are powerful tools in visualizing
functional information, such as the presence of protein domains, condition-specific gene regula-
tion, and phenotypes of corresponding mutants.

2.2.2. Comparative genomics as a tool for protein function discovery. There are several
types of comparative genomic analyses that can provide additional inferences for protein function
prediction and for building confidence in an automated functional annotation. The basic prin-
ciple is guilt by association (7). Associations between proteins of known function and unknown
or uncertain function can provide evidence for the function of the latter. The two main types of
guilt-by-association data that come directly from structurally annotated eukaryotic genomes are
phylogenetic profiles and protein fusions (Figure 4).

Phylogenetic profiles are used to infer functional coupling between proteins by assuming that
during evolution functionally related proteins aremaintained or eliminated in a correlatedmanner
(156, 162). Functional coupling can also be generated between a set of proteins and a phenotype,
morphology, ormetabolic capability.Large-scale analyses of this type have identified algal proteins
involved in photosynthesis and chloroplast biology (121, 139), cilia biogenesis (127), carbohydrate
uptake andmetabolism (17), and biosynthesis of sulfated polysaccharides (80).Occurrence profiles
can also be useful in identifying missing genes in pathways. Candidates for both locally missing
genes (the gene for a particular step in a pathway is found in some genomes but missing from
others), which are likely cases of nonorthologous gene displacement (231), and globally missing
genes (the gene encoding a particular pathway step has not been identified in any genome) can be
identified based on co-occurrence with other pathway genes (156).

Fusion proteins are valuable resources in that two proteins with separate activities are en-
coded by a single gene. These fusions, often termed Rosetta stone proteins, can provide evidence
for a functional interaction, such as membership in the same pathway and/or components of a
metabolon. As such, the known function of one domain can inform the function of the fused do-
main (132). It is estimated that up to 65% of eukaryotic proteins are multidomain proteins (72),
and given the mosaicism created by horizontal gene transfer from endo- and exosymbionts to the
nuclear genomes of photosynthetic eukaryotes, algal genomes are expected to be rich in unique
gene fusions. Indeed, a recent comparative genomic analysis identified 67 protein families from
various algae that contain fusion proteins where at least one domain is predicted to have originated
from the cyanobacterial endosymbiont (136).

2.2.3. Functional genomics as a tool for protein function discovery. Functional genomics
data sets, such as transcriptomics, proteomics, and genome-wide mutant screens, can provide ad-
ditional layers of gene-specific functional data. While these experiments supply global snapshots
of cellular behavior under different conditions, functional inference and associations can also be
derived by identifying the specific conditions under which a protein is expressed (e.g., when and
in what situation the cell requires that protein), by determining coexpressed proteins (e.g., pro-
teins involved in the same process), and by localizing proteins to specific subcompartments within
the cell (100, 188). Examples of high-throughput experimentally determined functional inferences
associated with sequenced algae that can be used for protein function predictions include identi-
fication of proteins found in cilia (85, 160), the eyespot (71), oil bodies (149), the pyrenoid (241),
the nucleus (234), the mitochondrion (14), or the chloroplast (19, 108, 212). Studies in which
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Figure 4 (Figure appears on preceding page)

A list of published algal proteomes predicted from whole-genome sequencing projects (as of June 2018). Citations for each genome are
available in Table 1. Icons to the right of the name designate cellularity, whether the alga has cilia, and whether the alga [or the origin
of the plastid from algae with secondary/tertiary (2°/3°) plastids] is from the glaucophyte, red, or green lineage.Helicosporidium sp.
ATCC 50920 is from the Chlorophyta lineage but has recently lost photosynthetic capacity (211). The most common environment
from which each alga has been isolated is also given. For most but not all algae listed, both the chloroplast-localized (cp) and the
mitochondrion-localized (mt) genome sequences are also publicly available; availability is indicated with a checked box. The
quality/completeness of the predicted proteome is indicated with a heatmap representing the number of complete Benchmarking
Universal Single-Copy Orthologs (BUSCOs) detected (out of 303). The number of total proteins in each proteome is also shown as a
heatmap. Both the number of BUSCOs and total number of proteins can be found in Table 1. Phylogenetic profiles require
high-quality genomes and gene models for confidence that the absence of a gene is due to evolution rather than a gap in the sequence.
For instance, the Galdieria phlegrea urease assembly factors were found by targeted sequencing (172), but these genes are not present in
the public genome sequence. In some cases, a missing protein is due to an inaccurate gene model and can be recovered by searching the
genome with tblastn. Whether a gene/protein was lost/never acquired or whether it is missing from the assembly can be better
predicted if that gene/protein is also missing from closely related whole-genomes (for instance from the same genus). Additionally, the
absence of functionally related proteins, such as cohorts in the same pathway, can provide support for gene loss. Comparative
genomics–based analyses present hypotheses about the biology of organisms. As an example, protein components of intraflagellar
transport (IFT) (three components are shown here) are encoded only by genomes belonging to algae that have cilia. Although cilia have
not been described in Chromochloris zofingiensis and Raphidocelis subcapitata, the presence of genes related to cilia biogenesis and biology
supports the presence of cilia in a yet-to-be-described stage of life (187). The co-occurrence of urease and assembly factors provide an
example of how proteins that interact with each other in the cell co-occur. As seen previously, two or more proteins may be fused and
proteins may be encoded by genes that are next door to one another in the genome. Both of these observations strengthen functional
association between these enzymes. Although neighborhoods of functionally related genes are thought not to be as prevalent in
eukaryotic genomes as in prokaryotes (because eukaryotes typically lack operons transcribed as polycistronic mRNA), physical
proximity of some functionally related genes has been observed in algal genomes, as shown here for genes encoding urease and
assembly factors and for genes predicted to be responsible for biosynthesis of UV-absorbing/screening mycosporine-like amino acids
(MAAs) (33). Orthology between red algal MAA biosynthesis proteins with related proteins in green algae is not clear, but physical
clustering of the corresponding genes supports a functional link between these green algal homologs, which leads to the prediction that
these proteins may be responsible for MAA biosynthesis or, likely, a similar product since the MYSB homolog is uniquely fused to a
protein from the short-chain dehydrogenase/reductase (SDR) family. While protein fusions can be an artifact of inaccurate gene
models, the presence of at least two protein fusions from independent genomes is a good indication that the fusion is real.

collections of mutants are sequenced to identify affected loci causing a specific phenotype are
another way to group genes involved in specific processes. Collections of temperature-sensitive
lethal alleles (34, 221) and sequenced mutants with photosynthetic defects (59, 60) are available.
Over 5,500 accessions of sequenced RNA from algae are deposited in the Sequence Read Archive
(SRA) of the US National Center for Biotechnology Information (NCBI) (accessed July 2018).
More than half of these data are from algae with published genome assemblies and gene models
(Table 1). The other half are de novo assembled transcriptomes or from algae whose genomes
are presently being sequenced or are publicly available but the predicted proteins are not public
(Supplemental Table 1).

3. WHAT HAVE ALGAL GENOMES REVEALED SO FAR?

The value of whole-genome sequencing cannot be overstated. To understand the genetic under-
pinnings of algal biology and achieve systems and synthetic biology objectives for algae, genome
sequences are essential. De novo transcriptomics is a powerful tool for providing a snapshot of
expressed genes/proteins under the conditions sampled, but high-quality genomes are needed for
access to promoters and regulatory elements, intron/exon structure, centromeres, epigenomics,
and a complete repertoire of genes. Whole-genome sequences are also invaluable resources for
designing and building the genetic tools needed for both bioengineering applications and protein
function discovery. As an example, a prevailing roadblock in algal-based industrial biofuel pro-
duction is the observation that the storage lipid triacylglycerol accumulates typically during stress
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conditions, which increases triacylglycerol content per cell but inhibits growth. To address this
issue, genetic or metabolic engineering efforts have targeted neutral lipid production, and suc-
cessful strategies are reported largely for algae where genomic resources are available (3, 58, 77,
95, 131, 151, 218, 237).

Genomes provide unprecedented insight into the evolution of algae and their nonalgal relatives
and are providing mechanistic insight into the genomic foundation of adaptation.Whole-genome
sequences have strengthened support for a single event of plastid endosymbiosis at the base of Ar-
chaeplastida (134, 168) and weakened support for a single event of red plastid acquisition outside
of Archaeplastida (207). Phylogenomic analyses exploring the origins and conservation of genes
have revealed extensive mosaicism, such as the retention of animal-like genes (9, 139), the pres-
ence of genes from green and red algae in the nuclear genomes of algae with 2°/3° plastids (52,
66, 145), and the presence of bacterial genes, such as those from the cyanobacterial progenitor
of the chloroplast (53, 64, 133, 185) and others from a relative of Chlamydia (76, 171). Life forms
in the oceans have acquired entire pathways and processes from marine bacteria through hori-
zontal gene transfer, generating a melting pot of protein repertoires (4). Evidence is growing that
points to the foreign genes retained by algae as drivers in colonizing new niches (4, 180, 194). In
addition to helping build our understanding of organisms and their ecosystems, these algal adap-
tations offer bioengineers a reservoir of unique functional capabilities that operate or cooperate
in a photosynthetic cell.

At the same time, whole-genome sequencing has confirmed how different algae are from one
another. The supergroups to which algae belong, based on the evolutionary origins of the het-
erotrophic hosts, are estimated to have diverged within 300 million years of the last eukaryotic
universal ancestor at least 1–1.9 billion years ago (73). The phylogenetic affinity between algae
with primary plastids and algae with 2°/3° plastids pertains to only a subset of genes. Although
estimates vary among algal genomes, horizontal and endosymbiotic gene transfer are estimated to
have contributed roughly 2,000 green and red algal proteins to Phaeodactylum tricornutum (176). At
the same time, nearly 6,000 proteins are unique to P. tricornutum and other stramenopiles [based
on reciprocal BLAST best hits with an E value of 1× 10−10; however, a sensitive homology search
detects conserved protein domains in 99% of proteins (176)]. The gene count from individual
unique isolates of marine green algae from the genusMicromonas can vary as much as 10% (236).
Similar diversity was found for isolates of the marine coccolithophorid Emiliania huxleyi, where
over 5,000 genes in the reference genome were not found in one or more of three isolates (181).

3.1. The Role of Algal Genomics in Opening Doors to New and Novel
Approaches in Biotechnology

Both the cultivation and the engineering of algal strains for industrial-scale bioproduct harvesting
and bioprospecting for functional capabilities have benefited immensely from genomics. Whole-
genome sequencing has enabled the transfer of knowledge about proteins and pathways from
bacteria, fungi, plants, and animals to algae. Reference organisms, such as C. reinhardtii and P. tri-
cornutum, have been particularly useful for experimentally characterizing algal-specific adaptations
at the genetic and molecular levels. In this way, research into the use of newly isolated or newly
sequenced algae as factories for bioproducts does not have to start at ground zero. Studies illumi-
nating organism-specific traits and research with potential commercial strains build upon a core
of shared knowledge derived through the common ancestry of metabolism revealed by genomics.

Genomes are also informative about what they do not contain. Alkanes and alkenes are high-
value chemicals that can be derived from fatty acids. These hydrocarbons are used as liquid trans-
portation fuel and to make plastics, but production by engineered microbes is still more expensive
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than extracting them from crude oil or natural gas (118). Like some cyanobacteria (190), some al-
gae have the ability to convert C16 and C18 fatty acids into alka(e)nes, but genes encoding known
hydrocarbon-forming enzymes are not found in their genomes (203). This absence motivated the
recent discovery of a new fatty acid photodecarboxylase, which is an alga-specific enzyme that is
catalytically activated by light. This is an extremely rare but biotechnologically desired property
for the development of industrial catalysts, which has the potential to impact biotechnology far
beyond fuels (202).

3.2. Adapting to Feast and Famine

In nature, access to nutrients can be variable. Acclimation to seasonal or daily changes in the
environment and competition with neighbors has left its mark on the genomes of algae. There are
large repertoires of proteins involved in responding to the changing availability of each essential
macro- and micronutrient for terrestrial and aquatic life. Genomes have also shed light on the
unique biogeochemistry of each alga’s environment and the adaptations that have been selected
for during competition and cooperation within these ecological niches.

The presence of genes encoding orthologs of well-characterized transporters and assimilatory
proteins can provide an initial survey of the nutrient sources that an organism can use. For in-
stance, transporters for four nitrogen sources (nitrate, ammonium, urea, and amino acids) were
found during initial analysis of the genome from the diatom Thalassiosira pseudonana (9). Nitrate,
ammonium, and urea transporters were also found in the genome of the prasinophyte O. tauri.
Based on a copy number comparison between the two marine algae, O. tauri may be more com-
petitive for ammonium, whereas T. pseudonanamay be more competitive for nitrate and urea (62).
Competition for Fe is also evident in algal genomes, with many algae containing multiple types
of Fe transporters and auxiliary components that are either unique to algae (FEA and ISIP2a) or
shared with yeast (ferroxidase dependent), animals (transferrin dependent), or land plants (divalent
cation transporters) (22).

All algae have an absolute requirement for metal cofactors to catalyze many of the reactions es-
sential to life, including electron transfer during both respiration and photosynthesis. It therefore
should come as no surprise that Fe, Cu, and Zn have been demonstrated to be limiting nutrients
for algal growth in the environment. The abundance and bioavailability of metal ions are funda-
mental characteristics of each environment, and to be successful, an alga must adapt to the geo-
chemistry and competition within each niche. Unlike the macroelements, which cannot be fully
replaced, there is some flexibility in the use of specific transition metal ions. This plasticity is due
to convergent evolution where two proteins with the same function have evolved independently
to use different metal ions, or in some cases, no metal at all.When both isoforms are encoded in a
genome, the corresponding genes can be differentially regulated depending on cofactor availabil-
ity. Classic examples include the Cu-regulated switch between plastocyanin (Cu dependent) and
cytochrome c6 (Fe dependent) (138) and the Fe-regulated switch between ferredoxin (Fe depen-
dent) and flavodoxin (flavin dependent) (74).

Comparative genomics can be used to determine if algae have the potential for these mech-
anisms (Figure 5). However, except in rare cases, we lack an understanding of the regulatory
sequences that determine condition-specific gene expression in algae, and transcriptomics and/or
proteomics are also required to inform the biological role of these proteins in acclimation to nu-
trient availability. For instance, the Thalassiosira oceanica genome encodes both plastocyanin and an
ortholog of cytochrome c6 (130), which suggests this diatom could be capable of a Cu-dependent
switch between the two proteins. However, plastocyanin is constitutively expressed (161). The in-
ability to dispense plastocyanin during Cu limitation may explain the growth defect of T. oceanica
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during Cu limitation (105) becauseC. reinhardtii,where the Cu-dependent switch occurs, does not
display a growth defect during Cu limitation (124). Ferredoxin and flavodoxin represent slightly
different examples that emphasize the importance of establishing orthological relationships for
accurate functional annotation propagation. A combination of expression analysis and phyloge-
netics revealed that pelagophytes contain two flavodoxin genes; one is regulated by Fe but the
other is not (232). Although the T. pseudonana genome encodes a ferredoxin and a flavodoxin, the
Fe-regulated paralog has been lost (232) (Figure 5). A similar scenario has occurred involving
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Figure 5 (Figure appears on preceding page)

Capitalizing on the wealth of knowledge for cofactor homeostasis and usage in algae, comparative genomics provides a method for
exploring the presence of these processes across the algal lineages. (a) A co-occurrence plot for the presence of orthologs for selected
metal-dependent enzymes and either their functional isoform or their assembly factors. These types of analyses provide a window into
cofactor dependencies. For instance, axenic culture of algae revealed that some algae require the vitamin B12 but others do not. No
eukaryote is known to be able to synthesize B12 de novo, and the reason for this difference remained a mystery until whole-genome
sequencing revealed the presence of B12-dependent and B12-independent methionine synthases in the genomes of algae (51, 103).
Organisms that have B12-dependent methionine synthase require exogenously supplied B12, whereas organisms that use a
B12-independent isoform do not require B12 in their diet. This knowledge enables the prediction of B12 dependency based on genome
sequencing. (b) Homolog searches are typically not sufficient for accurately predicting protein function. CYC6 transfers electrons
between cytochrome f and photosystem I but CYC4 does not. Accurately differentiating between these two proteins requires
phylogenetics or sequence similarity networks, as shown here. (c) Flavodoxin can functionally substitute for ferredoxin during Fe
limitation as a strategy to reduce dependency on Fe. Diatoms contain two flavodoxin proteins. The expression of only one paralog has
been shown to respond to Fe nutrition, whereas the other paralog is regulated by the diel cycle. Analysis of similar proteins reveals that
some green algae also have a flavodoxin that clusters with the Fe-regulated form but that flavodoxins from red algae and two additional
diatom sequences (one of which is a fragment) do not share high enough sequence similarity with proteins in the network to inform
function. Abbreviations: CuSOD, Cu-dependent superoxide dismutase; CYC4: cytochrome c-like (Fe); CYC6, cytochrome c6 (Fe); FD,
ferredoxin (Fe); Fe/MnSOD, Fe- or Mn-dependent superoxide dismutase; FLD, flavodoxin (flavin); METE, B12-independent
methionine synthase; METH, B12-dependent methionine synthase; NiSOD, Ni-dependent superoxide dismutase; PAA,
chloroplast-localized Cu transporter; PC, plastocyanin (Cu); PetJ, an ortholog of cytochrome c6 (Fe); UreF/D/G, subunits of the urease
molecular chaperone that inserts Ni.

plastocyanin and cytochrome c6 homologs. C. reinhardtii contains plastocyanin, a Cu-regulated
cytochrome c6 (CYC6), and a homolog of cytochrome c6 termed CYC4 that is not regulated by
Cu. Although the function of CYC4 is still unknown (112), most green algal genomes encode or-
thologs of both CYC6 and CYC4; red algal genomes encode only an ortholog of CYC6 (termed
PetJ and encoded on the chloroplast genome), whereas land plant genomes encode only an or-
tholog of CYC4 termed cytochrome c6A (Figure 5).

3.3. Carbon

Algae are significant contributors to global and local carbon cycling and storage. As fast-growing,
primary producers, algae typically form the foundation of ecosystems, although their importance
in some habitats was overlooked until recently (224). On the global scale, phytoplankton, com-
posed of algae and cyanobacteria, is estimated to contribute 46.2% of the annual global net pri-
mary production (81). However, the placement of algae within food webs is often complicated
by their metabolic flexibility. In addition to phototrophy, some algae are capable of heterotrophy
and mixotrophy and can assimilate reduced carbon sources, such as sugars, and ingest bacteria
and eukaryotes. Duality as producer and consumer, a common strategy for acquiring nutrients in
the oceans, was only recently incorporated into a global simulation of the marine food web (228).
Through genome sequencing, the genetic adaptations that enable this lifestyle are starting to be
explored. Comparative genomic analysis of the phago-mixotrophic green alga C. tetramitiformis
with other phagotrophic and nonphagotrophic organisms has produced a list of nearly 400 puta-
tive proteins predicted to be specific to the phagotrophic lifestyle (38). Phagocytosis is a capability
that C. tetramitiformis shares with the last common ancestor of the Archaeplastida and is a feeding
strategy that is thought to be responsible for the capture of the cyanobacterial progenitor of the
chloroplast.

Comparative genomic analyses have also been performed to gain insight into the use of or-
ganic carbon sources in nonphagotrophic algae. Based on comparative genomic analysis of the
red algaGaldieria sulphuraria, which can use over 50 organic carbon sources, and C.merolae, which
is an obligate photoautotroph, the presence of genes encoding proteins involved in carbohydrate
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metabolism was not a reliable indicator of potential carbon usage (17). Instead, the ability to use
exogenous sources of organic carbon was attributed to the relatively large number of carbohydrate
transporters encoded specifically in theG. sulphuraria genome (17). Prediction of carbohydrate us-
age based on analysis of transporter inventory is supported by the observation that introduction
of a nonnative plasma-localized glucose transporter gene into the genome of either the diatom
P. tricornutum or the green algaC. reinhardtii confers the ability to grow heterotrophically with glu-
cose (65, 240). However, when predicting carbon usage based on the presence of genes encoding
putative carbohydrate transporters, the potential localization of the proteins has to be considered.
Chloroplast membranes contain a suite of transporters that function in shuttling carbohydrates
(83).Without experimental evidence or robust localization predictions, some of these transporters
could be mistakenly predicted to function in assimilation of carbon sources from the environment.

For assimilation of inorganic carbon, many algal genomes contain genes for carbon concen-
trating mechanisms (CCMs) (197). While Rubisco is responsible for irreversible carbon fixation
and is the first enzyme in the Calvin-Benson pathway for generating reduced carbon from CO2,
algal genomes typically encode a suite of protein components of the CCM. These proteins func-
tion in assimilating and concentrating CO2 at the site of carbon fixation, thus effectively increasing
photosynthetic efficiency. CCMs are not unique to algae; cyanobacteria and some land plants with
C4 assimilation employ mechanisms to saturate Rubisco with CO2, but the diversity of CCMs in
algae is greater (177). Even Rubisco has been subject to evolutionary tinkering, with four phyloge-
netically distinct forms found in different algae resulting from combinations of endosymbiotic and
horizontal gene transfer (179). In aquatic environments, the diffusion of CO2 in still water can be
up to 10,000 times slower than through air (10), and pH can have a significant effect on the ratio
of CO2 and HCO3

− (because lipid bilayers are more permeable to CO2 than to HCO3
−). Algae

with 2°/3° plastids also have to contend with additional membranes that act as barriers for getting
inorganic carbon to Rubisco, although the membranes of diatoms appear to be more permeable to
CO2 than the membranes of some green algae (109, 208, 220). Overcoming these challenges and
acclimating to changes in the environment that affect inorganic carbon concentration and specia-
tion have resulted in the evolution of different CCMs. Experimentally characterized components
of algal CCMs include active transport of bicarbonate and/or CO2 transporters, CO2 channels
(204, 205), carbonic anhydrases (90), and proteins involved in pyrenoid biogenesis. Some evi-
dence for C4-like metabolism in individual algae has been presented (62, 117, 183, 184), but the
prevalence or contribution of these mechanisms to CCM in algae remains controversial (75, 178).

3.4. Understanding Postendosymbiotic Innovation Through Phylogenomics
and Experimentation

In addition to the genetic contribution from the proteobacterial progenitor of the mitochondrion
shared by all eukaryotes, evolution of the plastid was accompanied by the transfer of genes from
the cyanobacterial endosymbiont to the host. Whole-genome sequencing has revealed that due
to endosymbiotic gene transfer, up to 20% of the genes in the nuclear genomes from the green
lineage is estimated to have originated from the cyanobacterial endosymbiont (53, 64, 133, 185).
Often this transfer was accompanied by genetic adaptions that can be traced through genomics.
Eventual domestication of the endosymbiont and its transformation into an organelle involved
both gene loss (125) and gene fusion (135, 136) as well as adaptations that were required after
transfer of genes to the host nucleus. Examples include acquisition of localization signals and
integration of host transcription and translation signals, regulatory sequences, and introns (see
29, 154). In addition to these adaptions that had to take place for expression and proper targeting
of cyanobacterial proteins, some of these genes were duplicated, resulting in neofunctionalization
or subfunctionalization.

624 Blaby-Haas • Merchant



PP70CH22_Blaby ARjats.cls March 25, 2019 13:2

3.4.1. Evolution of the plastid from the perspectives of the host and endosymbiont. Car-
bonmetabolism is a defining aspect of algal biology. Indeed, the ability of photosynthesis to fix and
reduce CO2 was the main selective advantage behind endosymbiosis, evolution of the chloroplast,
and its transfer across Eukarya by secondary and tertiary endosymbiosis. Phylogenetic analysis
of envelope-localized transporters suggests that a majority of transporters, particularly carbohy-
drate transporters, are of host origin (222). However, the relationship between the host and the
endosymbiont was not one sided, and the requirement to sustain the endosymbiont within the
host cytosol would have served as a driving force for adaptation and fixation of genes acquired by
endosymbiotic gene transfer.

Metal ions, in particular, would have been a challenge.The reactivity of Fe,Cu,Mn, and Zn has
made these metals useful in biology, but their very reactivities render them toxic in excess, espe-
cially in the presence of oxygen (generated by the newly-acquired symbiont) where Fe and Cu can
generate reactive oxygen species that are deleterious to biological macromolecules. Photosynthe-
sis has an absolute requirement for Fe and Cu (within plastocyanin-containing algae) in electron
transfer and for Mn in the water-splitting reaction of photosystem II. Endosymbiosis must have
presented a challenge to both the host and the endosymbiont. If a nutrient was limiting, induction
of high-affinity uptake by the endosymbiont, as occurs in extant cyanobacteria, could have starved
the host. At the same time, because metal transport and trafficking are highly controlled processes
in eukaryotes, without regulated provision, the endosymbiont could itself be starved of metal ions.

3.4.2. Transition from a free-living organism to an organelle: adaptations involving trans-
port capabilities. Distributive transporters critical for metalloprotein biogenesis have been re-
tained during evolution of the chloroplast, but many of the high-affinity metal transporters found
in extant cyanobacteria are not present in the genomes of land plants and algae. The transport of
Cu andMn serves to illustrate this point and provides an example of the synergy between genomics
and experimentation in understanding functional implications involving chloroplast evolution.

In the cyanobacterium Synechocystis sp. PCC 6803, two P1B-type Cu+-ATPases function col-
laboratively to provide plastocyanin with the Cu required for its activity (215): PacS, which is a
typical Cu-detoxification exporter with a high efflux rate, and CtaA, which has a lower efflux rate
typical of other Cu+-ATPases involved in metalloprotein biogenesis (175). Orthologs of CtaA but
not of PacS are found in the genomes of green algae and land plants (98). In addition to green
algae and land plants, several diatom genomes and a haptophyte genome encode a plastocyanin
homolog, but like red algae, which are the modern relatives of the engulfed alga that became their
plastid, these algae are also missing orthologs of CtaA and PacS. This suggests that a different
pathway exists to metallate plastocyanin (23).

Photosystem II is dependent on Mn for the water-splitting reaction during photosynthesis.
The metal transporter Mnx/SynPAM71, which is a member of the UPF0016 family, functions
in transporting Mn for biogenesis and possible reassembly of the Mn-cluster in Synechocystis sp.
PCC 6803 (32, 88). A functional homolog of Mnx is present in land plants and green algae, but
its evolutionary origin is not clear, with the chloroplast transporters branching before homologs
from cyanobacteria, fungi, and metazoans (57, 191). This phylogeny was previously interpreted
as a host origin of the chloroplast transporter (222). Given the propensity within this family for
domain duplication and fusion and conservation in the genomes of algae outside of Archaeplastida,
further analysis is needed.However, as observed for Cu transport, the ABC-type high-affinity Mn
transporter present in extant cyanobacteria is not found in algae or land plants.

3.4.3. Duplication and neofunctionalization. Another adaptation necessary for chloroplast
Cu and Mn transport relates to the localization of the target metalloproteins. Transporters in
cyanobacteria are made on cytoplasmic ribosomes and inserted into the plasma membrane or
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thylakoid membrane from the cytoplasmic side. In algae and land plants, chloroplast transporters
are synthesized outside the organelle on cytoplasmic ribosomes, then transported as unfolded pro-
teins either to the envelope or through the envelope to the thylakoid membrane. These structural
differences appear to have necessitated duplication of both the Mnx functional homolog and the
CtaA endo-ortholog followed by neofunctionalization. Localization studies and phenotypes of the
corresponding mutants in A. thaliana suggest that each pair of transporters acts in tandem. One
paralog [CMT1 (Mn) (70, 242) and PAA1 (Cu) (198)] is targeted to the envelope membrane for
transport of metal ions from the host cytosol into the stroma, and the other paralog [PAM71 (Mn)
(191) and PAA2 (Cu) (1)] is targeted to the thylakoid membrane for transport of metal ions from
the stroma into the thylakoid lumen.

In the case of chloroplast Cu transport, additional adaptations have been suggested. The
chloroplast Cu transporters, like CtaA, are unidirectional ATPases. Therefore, maintaining
the topology of the cyanobacterial ancestor would result in transport of Cu from the stroma
into the intermembrane space by the envelope-targeted Cu-ATPase PAA1. This topology is at
odds with genetic evidence supporting the function of PAA1 as a chloroplast importer (198). Based
on topology experiments with purified envelope vesicles, PAA1 does appear to be situated in the
envelope membrane with the amino terminus facing the intermembrane space (24), which would
enable ATP-driven transport of Cu from the intermembrane space into the stroma. While this
transporter is flipped relative to the orientation of the ortholog in extant cyanobacteria, the ex-
perimentally determined topology would be consistent with the direction of transport of homol-
ogous P1B-type Cu+-ATPases in the Golgi and vacuole of eukaryotes. This result has yet to be
confirmed in vivo, but by surveying sequenced genomes, it becomes apparent that PAA1 orthologs
uniquely encode a conserved glycine-stretch next to the transit peptide that may function in the
localization and topology of PAA1 in the inner envelope membrane.

Eukaryotic Cu homeostasis involves routing pathways composed of Cu chaperones and
Cu+-ATPases. The evolution of a Cu chaperone is a third adaptation, which involves the endo-
ortholog of ctaA. In A. thaliana and C. reinhardtii, the Cu chaperone and PAA1 are expressed from
the same gene through an alternative splicing event. Comparative genomic analysis revealed
that duplication followed by subfunctionalization occurred independently in different land plant
lineages and resulted in the Cu chaperone and transporter being encoded by separate genes (24).
This snapshot suggests that alternative splicing can serve as an intermediary state prior to gene
duplication in the evolution of new functions involving genes derived from endosymbiotic gene
transfer. As more high-quality algal genomes and associated transcriptome resources become
available, it will be exciting to see the extent to which such evolutionary mechanisms have had
a functional impact on algae across the various lineages. For instance, transcript sequencing
in P. tricornutum (176) and the chlorarachniophyte Bigelowiella natans (52) suggests abundant
alternative splice forms in these algae.

SUMMARY POINTS

1. To understand the genetic underpinnings of algal biology and achieve systems and syn-
thetic biology objectives, genome sequences from this polyphyletic group are essential.

2. The large number of proteins of unknown function encoded on algal genomes indicates
that there is much to be discovered.

3. Comparing genomes and analyzing functional genomics data are needed to contextualize
and predict protein function, but researchers should be aware of the quality of published
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genome assemblies and associated gene model predictions.With some exceptions, most
genome assemblies are incomplete and, although improving, many structural annota-
tions are inaccurate.

4. Laboratory reference organisms, such as Chlamydomonas reinhardtii and Phaeodactylum
tricornutum, are essential for providing answers to individual investigator-initiated ques-
tions, which can be propagated with due diligence to other algae through genome-based
evolutionary relationships.

5. Algal genomes are a melting pot of unique functional capabilities encoded by genes of
disparate evolutionary origin.

6. We have a limited understanding of how inorganic nutrients are supplied and trans-
ported across the three or four chloroplast membranes in algae outside of Archaeplas-
tida, but largely due to advanced genomic and genetic resources, we are beginning to
piece together the evolutionary history and functional implications of chloroplast metal
transport within the green lineage.

FUTURE ISSUES

1. Algal diversity, with respect to both evolutionary history and ecological niche, is expan-
sive and provides fertile ground for discovery.

2. In addition to enabling a genome-based understanding of algal biology, algal genome
sequences offer a reservoir of unique functional capabilities that can be employed for
the design of new capabilities in crops and beyond.

3. In addition to sequencing more algal genomes that better represent the diversity of
algal biology, high-quality genome sequences and high-quality structural annotations
are needed to facilitate protein function prediction and contextualization of functional
annotations.

4. Whole-genome sequencing and comparative genomics, together with the application of
CRISPR-Cas systems and other genome-engineering technologies,will enable a broader
range of organisms to ascend to the level of a reference and ultimately expand our knowl-
edge of diverse algal biology.

5. The collection and collation of large functional genomics data sets, such as from pro-
teomics, transcriptomics, and mutants and their phenotypes, will give rise to functional
inferences and ultimately generate evidence-based annotations in reference algae to
serve as resources for effective genome curation.

6. While sequencing-based genome-wide experiments, such as transcriptomics, are provid-
ing valuable insight into the adaptation and acclimation of algae to their environment,
improved methods for metabolite profiling (and metabolite discovery) are needed to
elucidate the metabolic capabilities of diverse groups of algae and link genes to function.
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