
PP71CH11_Schwender ARjats.cls May 11, 2020 11:52

Annual Review of Plant Biology

Modeling Plant Metabolism:
From Network Reconstruction
to Mechanistic Models
Teresa J. Clark,1 Longyun Guo,2 John Morgan,2

and Jorg Schwender1
1Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA;
email: tclark@bnl.gov, schwend@bnl.gov
2Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907,
USA; email: theobald1214@gmail.com, jamorgan@purdue.edu

Annu. Rev. Plant Biol. 2020. 71:303–26

First published as a Review in Advance on
February 4, 2020

The Annual Review of Plant Biology is online at
plant.annualreviews.org

https://doi.org/10.1146/annurev-arplant-050718-
100221

Copyright © 2020 by Annual Reviews.
All rights reserved

Keywords

plant metabolism, metabolic flux, flux balance analysis, systems biology

Abstract

Mathematical modeling of plant metabolism enables the plant science com-
munity to understand the organization of plant metabolism, obtain quan-
titative insights into metabolic functions, and derive engineering strategies
for manipulation of metabolism. Among the various modeling approaches,
metabolic pathway analysis can dissect the basic functional modes of sub-
sections of core metabolism, such as photorespiration, and reveal how clas-
sical definitions of metabolic pathways have overlapping functionality. In the
many studies using constraint-based modeling in plants, numerous compu-
tational tools are currently available to analyze large-scale and genome-scale
metabolic networks. For 13C-metabolic flux analysis, principles of isotopic
steady state have been used to study heterotrophic plant tissues, while non-
stationary isotope labeling approaches are amenable to the study of pho-
toautotrophic and secondary metabolism. Enzyme kinetic models explore
pathways in mechanistic detail, and we discuss different approaches to de-
termine or estimate kinetic parameters. In this review, we describe recent
advances and challenges in modeling plant metabolism.
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Model: representation
of a system or process
by a mathematical
formalism (e.g.,
algebraic equations),
programming
language, or both

Metabolic
engineering: the
directed modification
of metabolism based
on recombinant DNA
technology toward the
production of desired
chemicals

Metabolic flux:
rate at which matter is
transported through
the multiple reactions
of a metabolic pathway

Metabolic network:
series of linked
biochemical or
transport reactions
that can achieve
several distinct overall
net biochemical
transformations

Contents

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
2. DEFINING THE METABOLIC MAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
3. MODELING TECHNIQUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

3.1. Stoichiometric Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
3.2. Constraint-Based Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
3.3. In Vivo Flux Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
3.4. Enzyme Kinetic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

4. FUTURE PERSPECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
4.1. Whole-Plant Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
4.2. Plant Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
4.3. Cell-Type Specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
4.4. Scales of Kinetic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
4.5. Design and Integration of Synthetic Pathways into Plant Metabolism . . . . . . . . 318

1. INTRODUCTION

With a growing global population, increasing demands for food and feed and a shortage of arable
land have led to a need to enhance crop yields and improve resistance against abiotic and biotic
stresses (105). At the same time, to shift away from society’s dependence on fossil fuels, the de-
velopment of carbon-neutral, renewable, plant-based resources for bioenergy and biomaterials is
urgently needed (110). Plant sciences play an important role in addressing these challenges. There
is a rapidly growing number of sequenced plant genomes (94), and owing to the recent applica-
bility of precise, RNA-guided genome editing tools to model and crop plants (9, 17), the redesign
of plant metabolism has become increasingly feasible. The metabolic engineering design-build-
test cycle in crop plants and functional genomics research efforts in model and crop plants can be
expected to benefit from metabolic modeling (41, 130). Metabolic modeling and metabolic flux
analysis (MFA) often reveal robustness of metabolism against different environmental or genetic
perturbations, which is why these approaches have proved to be important components during
decades of metabolic engineering of industrial microbes (71, 74). With regard to plants, current
efforts to improve photosynthetic carbon assimilation and crop yield include implementing C4

photosynthesis and designing and testing synthetic pathways to reduce carbon loss during pho-
torespiration (162).

In this review, we first describe the importance and challenges of defining the metabolic map of
a plant cell.We then give an overview of frequently used methods for metabolic network and flux
analysis in plants: (a) metabolic pathway analysis of smaller subsections of cellular metabolism,
(b) constraint-based analysis of large-scale models, (c) isotope tracer–assisted in vivo flux analysis,
and (d) models relying heavily on explicit enzyme kinetics.

2. DEFINING THE METABOLIC MAP

Plant metabolism is particularly complex in its multicellularity, subcellular compartmentation of
metabolic pathways, and redundancy of pathway functions. For example, to generate the five-
carbon building blocks used to synthesize the structurally diverse group of terpenoid metabo-
lites, vascular plants use two distinct biosynthetic pathways: the acetate/mevalonate pathway and
the 2-C-methyl-d-erythritol 4-phosphate pathway (86, 156). Other organism groups most often
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Metabolic pathway:
series of linked
biochemical or
transport reactions
that cooperate to
catalyze one overall
net biochemical
transformation;
elementary flux modes,
for example, are a
mathematically strict
definition of pathways

Reaction: biochemical
transformation of
small molecule
substrates to one or
several products, or
transport of small
molecules across a
membrane

ENTNER-DOUDOROFF PATHWAY IN PLANTS

The Entner-Doudoroff (ED) pathway is a variant of the glycolytic pathways long believed to occur only in several
prokaryotic taxa. Recent evidence supports the presence of this pathway in cyanobacteria, several algal taxa, mosses,
ferns, and flowering plants (21). The ED pathway intersects with both the Embden-Meyerhof-Parnas pathway of
glycolysis and the oxidative pentose phosphate pathway but has two unique enzyme-catalyzed steps, transform-
ing 6-phosphogluconate into glyceraldehyde 3-phosphate and pyruvate (phosphogluconate dehydratase, 2-keto-3-
deoxygluconate-6-phosphate aldolase). To what extent and under which physiological conditions the ED pathway
is used in cyanobacteria and flowering plants have not yet been explored, but the ED pathway might be particularly
relevant under mixotrophy, i.e., when reduced carbon and light are available at the same time (21).

possess only one of these pathways (156), but in plants, these pathways reside in parallel in the
cytosol and plastid compartments, respectively. Plants feature more of such parallelisms, for ex-
ample, with regards to glycolysis. The presence of ATP- and pyrophosphate-dependent phos-
phofructokinase enzyme isoforms in plant cells (both allosterically regulated) is thought to con-
tribute to plants’ metabolic plasticity and ability to cope with various biotic and abiotic stresses
(107). Plants seem to be unique in harboring both enzyme types at the same time (93). Such paral-
lelism and redundancymight easily evade detection by biochemists.Therefore, coremetabolism in
plants likely still hides many surprises, such as the very recent detection of the Entner-Doudoroff
pathway in cyanobacteria and barley (21) (see the sidebar titled Entner-Doudoroff Pathway in
Plants).

Technological advances in DNA sequencing and the exponential decrease in sequencing cost
have led to a genomic revolution. Currently, more than 200 angiosperm genomes are publicly
accessible (19). High-quality genomes encode the complete metabolic inventory of an organism.
The representation of all genome-encoded metabolic functions in a knowledge database can be
understood as the metabolic potential of an organism and can be transformed into a computable
format (84). What currently limits this approach is the lack of detailed experimental information
available for genome annotation. Since it is clearly impossible to characterize all the genes that are
identified in each newly sequenced genome, homology-based gene annotation is regularly relied
upon (121, 150).Althoughmuch effort has been put into the development of advanced tools specif-
ically for inference of enzyme function, such as the Ensemble Enzyme Prediction Pipeline (126),
such approaches are ultimately dependent on a gold standard set of experimentally characterized
proteins. Transfer of the full enzyme function (e.g., as defined by all four digits of the Enzyme
Commission number) is required to unambiguously define reaction stoichiometry in metabolic
models. For transfer of function via protein sequence homology, enzyme function may start to
diverge quickly below 70% pairwise sequence identity (121). Even for intensely studied organ-
isms such as yeast or humans, a substantial fraction of enzymes may have ambiguous or false an-
notations, a finding that is part of the problem of the “catalytic dark matter” (36). For Arabidopsis
thaliana, an estimated 57% of the enzymes in AraCyc 6.0 are missing direct experimental evidence
(174).

In addition to bona fide metabolic enzymes, a substantial part of the unexplored enzyme in-
ventory may be associated with metabolite damage control. Alongside the intensely studied DNA
damage and repair mechanisms, researchers are increasingly considering the harmful effects of the
accumulation of pathway intermediates damaged by chemical instability (50, 63). Another chal-
lenge for metabolic modeling is enzyme promiscuity, which relates to relaxed substrate and reac-
tion specificity (72). Enzyme promiscuity is prevalent in plant specialized (secondary) metabolism
(164), making it hard to define accurately in stoichiometric metabolic networks.
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3. MODELING TECHNIQUES

An important principle underpinning mathematical modeling of biological systems is that of char-
acteristic time hierarchy or timescale separations (47, 55). The cellular processes taking place
in an organism and environmental influences operate at very different timescales (Figure 1a).
Metabolism and gene regulation are often considered different layers that are most often mod-
eled separately, and integrative approaches to unify these layers are challenging (44). Metabolism
can be simulated dynamically based on systems of ordinary differential equations that include en-
zyme kinetic rate laws (Figure 1b). Since information on enzyme kinetic parameters, particularly
for larger metabolic networks, is often limited, other approaches are followed. Many studies on
metabolism invoke an assumption of steady state or quasi steady state. This simplification again
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Figure 1 (Figure appears on preceding page)

Principles and approaches to metabolic modeling in plants. (a) A time hierarchy of biological processes can be defined based on their
response times (i.e., the amount of time needed to adjust to a perturbation) (55). Shown are approximate response times (enzyme
catalysis, metabolite turnover, gene expression, and protein half-life) in relation to the developmental and cyclic processes that are
inherent to an organism and strongly influenced by its environment (cell cycle, diurnal cycle, and annual life cycle of an annual plant).
Based on the ranges of response times, metabolism can adjust more quickly than changes in gene expression or protein levels occur in
response to environmental changes (see also Supplemental Table 1 for information on how these times were estimated). (b) The
mathematical bases that are shared by or distinguish between the major modeling approaches discussed in this review are illustrated,
starting from the structure of a metabolic network and its encoding into a stoichiometric matrix (S) and vectors of metabolite
concentrations (m) and reaction rates (v). Expressions that are typical for each approach are exemplified by the reaction v1. Based on
the stoichiometric network, the mass balances around all metabolites can be augmented by kinetic rate laws for analysis and simulation
of the system dynamics. For a constant physiological setting, metabolite levels and reaction rates can be assumed to be constant
(steady-state assumption). Sv is a linear equation system describing a multitude of possible steady-state flux states (null space).
Stoichiometric network analysis can be used to reveal all distinct pathways within the metabolic network. Constraint-based modeling
and 13C-metabolic flux analysis explore flux states, often by integrating additional information on cellular biomass composition (BC),
measured rates of exchange with the environment (XR), objective function (OF), and carbon labeling experiments (CLE). Other
abbreviations: A, concentration metabolite A; Km, Michaelis binding constant; vmax1, maximal velocity for reaction v1.

relates to timescale separation. If we assume that cell-internal metabolic processes change much
faster than environmental conditions and the external signals affecting the cell (Figure 1a), then
metabolism can be viewed from a perspective of metabolic quasi steady state (154), a basic concept
to stoichiometric modeling and the different derived MFA approaches (Figure 1b).

3.1. Stoichiometric Network Analysis

Methods of stoichiometric network analysis, also termed pathway analysis, are important to char-
acterize a metabolic process at a structural or stoichiometric level by systematically inspecting all
distinct overall network conversions (127). Methods of stoichiometric network analysis require
only the definition of a network based on reaction stoichiometries and reaction directionality. El-
ementary flux modes (EFMs) are minimal and distinct sets of network reactions that can operate
together at steady state and are independent from the rest of the network in catalyzing a net trans-
formation between certain network inputs and outputs with a characteristic stoichiometry (125,
127). A mostly equivalent type of network analysis is extreme pathway analysis (123). In short,
extreme pathways can essentially be understood as a subset of EFMs, and all possible steady states
of a network can be defined by linear combinations of the extreme pathways (76, 123, 124).

3.1.1. Elementary flux modes. An example of the use of EFM analysis is in a study on the
biochemical control of the accumulation of sucrose in sugar cane culm tissue (117). To devise
metabolic engineering strategies to enhance sucrose content, the authors derived an enzyme ki-
netic model. In doing this, they first analyzed the stoichiometry of the considered 10-reaction
network and found 14 EFMs, which were further categorized into (a) six modes resulting in syn-
thesis of sucrose from glucose and fructose and storage in the vacuole, (b) five modes describing
cyclic sucrose synthesis and degradation of sucrose without storage accumulation, and (c) three
distinct modes of glycolytic degradation of glucose or fructose. Since multiple modes that per-
form the same overall conversion can be recognized, EFMs give an understanding of pathway
redundancy in a system. Also, as all possible conversions in the system are explored, EFMs give a
quantitative measure of network flexibility or robustness.With increasing size of a network under
investigation, the enumeration of all possible EFMs can quickly become a challenge due to a com-
binatorial explosion of the number of identified pathways and the limitation given by computer
memory. To address this problem, various extensions of the EFM concept to large networks have
been developed that are not further discussed here (146).
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While the comprehensive analysis of cellular stoichiometric networks became a focus in plant
modeling in recent years (see Section 3.2), the characterization of the flexibility of subsections of
central metabolism by EFM analysis is still relevant. For example, the tricarboxylic acid (TCA)
cycle is known as a central hub between catabolism and anabolism. Apart from the commonly
understood role of the TCA cycle in oxidative degradation of substrates to drive mitochondrial
ATP synthesis, several noncyclic modes of the TCA cycle are part of metabolic conversions re-
quired under different physiological conditions (142), which can be exhaustively enumerated by
EFM analysis (13, 140). Besides the TCA cycle, the oxidative pentose phosphate pathway (OPPP)
has been recognized as another versatile subsection of central metabolism. Schuster et al. (128)
analyzed a 19-reaction network combining OPPP with glycolysis, resulting in seven functional
modes. EFM analysis has also been applied, in parallel with 13C tracer experiments, to iden-
tify pathways with optimal conversion of sugars to fatty acids in developing seeds (132). In this
work, some aspects of the integrated operation of glycolysis, OPPP, and the Calvin cycle were
demonstrated.

3.1.2. Applications of stoichiometric network analysis. EFM analysis has also been used to
systematically dissect functional modes of the photorespiratory cycle, which is an integral part of
C3 photosynthesis that deals with the consequences of RubisCO oxygenation activity.Reactions of
photorespiration stretch across four subcellular compartments, and the cycle is intertwined with
nitrogen assimilation and other processes (10, 59). In a recent study, EFM analysis was used to in-
spect a network of 90 reactions, comprising the photorespiratory cycle and associated processes in
the plastid, peroxisome,mitochondrion, and cytosol as well as metabolite exchanges between these
compartments (64). Fifty-six flux modes were identified with the RubisCO oxygenase reaction be-
ing active, revealing the complex coupling of photorespiratory activity with the reduction of nitrate
to ammonia,mitochondrial metabolism, cytosolic ATP production, and the glutathione-ascorbate
cycle.To further confirm how the 90-reaction network represents the process of photorespiration,
the authors compared gene essentiality within the network to known photorespiratory mutants.
There are 43 reactions that are active in all 56 photorespiratory flux modes. The authors found an
overall good agreement between the corresponding genes and mutants known to negatively affect
photorespiration (64).

3.2. Constraint-Based Modeling

Constraint-based modeling (CBM) is concerned with metabolic networks at the cellular scale and
beyond.A complete set of biochemical reactions of an organism, as defined by its genome, is known
as a metabolic reconstruction (84), and its mathematical representation is referred to as a genome-
scale model (GEM) (84). Methods of CBM explore the range of possible flux states of a GEM,
given the requirements of maintaining steady state (reaction stoichiometry) and staying within the
limits assigned to the rates of individual exchange reactions, such as measured maximum substrate
uptake rates (109, 112). Here, it is important to realize that the mathematical constraints used in
CBM typically allow a larger space of achievable cellular flux states (solution space) (103). Flux bal-
ance analysis (FBA), the most basic and widely used method, finds flux states that are optimal with
respect to a presumed optimality criterion (102). The optimality criterion, or objective function,
may state that an organism is optimized to grow with a maximal possible growth rate, to produce
cellular energy most efficiently (maximal ATP yield), or to distribute flux load across the network
to use enzyme capacity most efficiently (137). In addition to FBA, a substantial repertoire of other
computational methods has been developed, including analysis of gene deletions and methods for
adding constraints based on various types of omics data (75, 84). For further reading on general
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Simulation: various
kinds of numerical
calculations that are
performed with a
model

concepts and applications of CBM, the primer by O’Brien et al. (103) is recommended. Detailed
protocols for network reconstruction and simulation are recommended as well (57, 149).

3.2.1. Challenges in the construction of plant genome-scale models. Reconstruction of a
metabolic network starts from genomic, biochemical, and literature data. Model reconstruction
is an arduous task. In some cases, the reconstruction of microbial genome-scale networks has
been driven by community efforts (54, 148). Supplemental Table 2 lists 35 published GEMs for
more than 10 seed plant species. Of these GEMs, 11 are of the model plant species A. thaliana.
Yuan et al. (171) detected substantial discrepancies in model-predicted fluxes between three of the
A. thalianamodels when the samemodeling constraints and objective functions were applied.This
might reflect varying approaches in network reconstruction.Most often, the primary source of in-
formation for A. thaliana–specific biochemical reactions and pathways is AraCyc (174), and less
frequently, the Kyoto Encyclopedia of Genes and Genomes (KEGG) (69).Models for other plant
species listed in Supplemental Table 2 mostly rely on pathway reconstructions from the Plant
Metabolic Network (PMN) database (126). PMN andKEGGplant pathway resources mostly lack
information on subcellular localization of enzymes and on transmembrane transport functions.
While genome-wide computational predictions and experimental data on subcellular localization
of A. thaliana gene products are available online (60, 70), not all localization predictions are of
high confidence, and some are ambiguous. Therefore, comprehensive resolution of subcellular
compartmentation of genome-scale metabolic plant networks remains challenging. A part of the
challenge is the limited knowledge on transmembrane transport reactions, which in many cases
are needed to connect pathway modules across membranes. An estimated 1,800 A. thaliana genes
could encode membrane proteins with transport functions (129). Lacking specific knowledge on
intracellular transport, such reactions can be added by computational inference based on algo-
rithms that minimize the number of transmembrane transports that would be required to render
a network functional (96).

Genome-scale plant models typically contain more than 1,000 reactions (Supplemental
Table 2). Information on reaction direction and irreversibility is essential to flux modeling. In
a strict sense, derivation of these properties requires knowledge of the Gibbs free energy of a bio-
chemical reaction and of the reactant concentrations (79). In practice, directionality information
is often adopted from existing models and databases, derived by a standardized set of heuristic
decision rules (52), or, at best, could be defined using group contribution methods for estimating
the standard Gibbs free energies for metabolites and reactions (67).

3.2.2. Defining cellular maintenance energy requirements. Metabolic pathways and pro-
cesses that consume energy cofactors [e.g., ATP, NAD(P)H] put a demand on cofactor produc-
ing processes; however, not all cellular energy–consuming processes are explicitly defined by the
biochemical reaction network. A substantial part of a plant cell’s energy budget is allocated to cell
maintenance processes (34).Cellular maintenance is defined as the energy expenditures [e.g., ATP,
NAD(P)H] required for functions that do not directly fuel cellular growth and includes costs due
to protein turnover, transport, membrane leakage, or ATP dissipation in substrate cycles (144).
Such additional costs are typically added to the model as a fixed flux through a generic ATPase
reaction. In experimental settings where tissues or cell cultures grow heterotrophically and sub-
strate uptakes can be measured accurately, maintenance ATP cost can be assessed by increasing
the flux of the generic ATPase in the model until the model-predicted uptake of carbon substrates
matches the measured uptake (i.e., until a measured carbon conversion efficiency is reached) (52,
108). However, modeling cellular maintenance costs solely as ATP consumption might be unre-
alistic, since oxidative stress can also add redox expenditures, which have to be paid in production
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of NADPH that is above the cellular demands for biosynthetic purposes (144). In the case of
A. thaliana cell cultures, flux through the OPPP and accompanied NADPH production was mea-
sured by in vivo flux analysis (13C-MFA).TheNADPHproduction was about 50%higher than the
cellular biosynthetic demands, and the surplus was accounted for by a generic NADPH oxidase
reaction (22).

3.2.3. Modeling of multicell interactions. Since plants are multicellular organisms, models
representing different cell types and their interactions are important. A primary metabolic recon-
struction represents the general metabolic potential of the plant. A cell- or tissue-type-specific
model can be derived by defining the subsets of reactions present in that particular cell or tis-
sue based on transcriptome and proteome data (75, 89). Various plant models that are generated
by connecting cellular models representing different cell types have been reported. For example,
interactions between mesophyll and bundle sheath cells in C4 photosynthesis (14, 32, 91) and be-
tween different tissues in developing seeds (15, 118) have been studied by CBM. Other studies
have explored whole-plant systems represented by interconnected leaf, stem, and root cell models
(33, 136, 173). Some of these studies have also taken account of the pronounced differences be-
tween day and night metabolism, in that starch accumulation in leaves during the daytime serves
as energy storage for the nighttime (33, 136). Such whole-plant diel models are entirely simu-
lated based on a steady-state approach as two replicate plant modules, representing day and night
metabolism, which balance each other.

Another example of multicellular models is rhizobial symbiosis in legumes. Pfau et al. (106)
reconstructed a general genome-scale metabolic network for Medicago truncatula, a model plant
for legume-rhizobia mutualism. The rhizobia bacteria reside in root nodules, where they fix at-
mospheric nitrogen with an oxygen-sensitive nitrogenase and trade the nitrogen to the plant in
exchange for carbon resources. Although nitrogen fixation in the bacterial symbiont requires a
low-oxygen environment, oxygen is needed for the efficient generation of ATP by oxidative phos-
phorylation, so the nodule is unlikely to be a completely oxygen-free environment. To discern
how oxygen levels can affect rhizobia metabolism and the mutualistic benefits of carbon-nitrogen
trade, Pfau et al. (106) developed models for Sinorhizobium meliloti rhizobia as well asM. truncat-
ula root- and shoot-tissue-specific models.Here, the tissue-specific models were created using the
gene-protein-reaction associations in the general network reconstruction and either permitting
reactions to be on or constraining them to be off based on differential expression of the associated
genes (12). Together, the three models simulated the transport of photosynthetically fixed carbon
to the roots, where it was then transported into the nodules in exchange for a nodule metabolite.
The identity of the metabolite that entered the nodule was significantly affected by the oxygen
concentration (106). When oxygen was plentiful, the rhizobia would import succinate and use
it via the TCA cycle for ATP generation (oxidative phosphorylation). However, as oxygen levels
decreased, the metabolite imported was more likely to be malate, which produces less NADH in
the TCA cycle. Consequently, this study reveals how carbon use in rhizobia is jointly affected by
metabolic needs and the nodule environment.

3.3. In Vivo Flux Analysis

Like stoichiometric network analysis (Section 3.1) and CBM (Section 3.2), in vivo flux analy-
sis is built around the key concept of a metabolic network and its mathematical representations
(Figure 1). However, instead of invoking an optimality principle to calculate fluxes, in vivo flux
analysis integrates isotope tracer experiments with network stoichiometry of central metabolism
to measure metabolic flux in a living cell (165). 13C-MFA studies uncover the integrated
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functioning of central metabolism and can reveal regulatory circuitry if flux maps derived under
different physiological conditions are compared. Plant central metabolism tends to be recalcitrant
to attempts of redirecting fluxes (143). Studying this idea of rigidity in plant central metabolism
has been part of the motivation behind numerous plant 13C-MFA studies over the past 20 years
(Supplemental Table 3).

Important mathematical and theoretical concepts for 13C-MFA were originally developed in
the field ofmicrobial metabolic engineering, and a great diversity of analytical protocols, computa-
tional methods, and software tools has emerged (101). Among the five major isotope tracer–based
flux analysis approaches that were distinguished by Niedenführ et al. (101), the isotopic station-
ary and nonstationary 13C-MFA approaches have been of major relevance in recent plant studies.
Upon feeding of the labeled precursor, redistribution of substrate label through themetabolic net-
work can be traced in a dynamic way or after an isotopic steady state is reached (101) (Figure 2a).
The flux distribution in the central metabolism biochemical network is then indirectly observ-
able based on a best fit between the empirical data (i.e., labeling signatures, measured fluxes such
as substrate uptake rates) and computationally predicted labeling states and fluxes (165). State-
of-the-art algorithms used in this process represent labeling states of metabolites as cumulative
isotopomers (cumomer) fractions or are based on elementary metabolic unit network decompo-
sition (Figure 2b).

3.3.1. Steady-state 13C-metabolic flux analysis. The stationary approach has been applied
quite frequently to plant cell or tissue cultures if they can be grown heterotrophically while being
fed a 13C-labeled substrate. While not all of the significant work can be discussed here, 18 of the
studies surveyed in Supplemental Table 3 applied the steady-state 13C-MFA approach.Typically,
a culture grows for a prolonged time on a labeled substrate until the cell mass has doubled multi-
ple times and an isotopic steady state is reached (Figure 2a). The duration of the culture can be
between 5 and 20 days (Supplemental Table 3). Critical to the stationary approach is awareness
that during such prolonged incubation, the physiological and metabolic state of a culture may
shift significantly. Also, substantial cellular heterogeneity might be present in a cultured tissue. In
both cases, the flux modeling process might give a distorted picture of cellular metabolism. More
detailed discussion on this issue can be found elsewhere (111, 119). Also, for the best resolution of
a flux map in 13C-MFA, the choice of isotope label is important, and it is critical to obtain as much
labeling information as possible frommetabolites relevant to the studied metabolic network (100).
Isotope label can be quantified by techniques based on 13C-nuclear magnetic resonance or mass
spectrometry (Figure 2a). The information readout differs between the two analysis types, and
combining bothmay better resolve the isotope labeling state of a molecule (2, 100, 111).Figure 2b
shows the relationship between a mass spectrometry readout (mass isotopomer fractions) and the
carbon isotope labeling state that is fully described by isotopomer or cumomer fractions. In ex-
tension of established mass spectrometry analytical protocols (2), the use of tandem mass spec-
trometry has recently been explored (8). Also, the flux modeling process can benefit substantially
from a priori design of the isotope labeling experiments, in which mixtures of labeled substrates
can be computationally evaluated for optimal flux identifiability prior to the real experiment (100).
Furthermore, the resolution of flux maps in plant studies has been enhanced by the use of parallel
labeling experiments, in which different substrate labels are used in a series of parallel experiments
and the resulting complementary labeling information is integrated into one simulation (29, 85,
134).This approach has been applied to flux studies on central metabolism flux in developing seeds
of Brassica napus (68, 134), Glycine max, and Helianthus annuus (1, 4–6) as well as Zea mays kernels
and root tips (6, 7). Another feature that is useful with the steady-state 13C-MFA approach is the
readout of compartment-specific labeling information if amino acids are analyzed. For example,
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Figure 2

Flux modeling using 13C labeling experiments. (a) In traditional 13C-metabolic flux analysis (13C-MFA),
substrates of mixed isotopic composition are fed to the biological cells or organism, such as a mixture of
labeled (black circles) and unlabeled (white circles) substrates or substrates that are positionally labeled, while
uniformly labeled substrates are often fed in isotopically nonstationary 13C-MFA (INST 13C-MFA) and
kinetic flux profiling (KFP). Analytical methods are applied to the variants of 13C-MFA to determine mass
isotopomer or positional label information based on gas chromatography/mass spectrometry (GC/MS),
liquid chromatography/mass spectrometry (LC/MS), or nuclear magnetic resonance (NMR) spectroscopy.
KFP also uses GC/MS or LC/MS measurements, but the subsequent analysis uses the decay kinetics of
unlabeled molecular species without considering positional labeling information; thus, the labeling isotope
could be 15N or 2H instead of 13C. (b) Different isotopomer systems used in 13C-MFA to represent labeling
states in the network. For a three-carbon compound (A), eight isotopomer fractions (I) fully describe any
possible labeling state. The same information can be represented as cumomer fractions or as mass weights in
elementary metabolic units (EMU) to reduce the computational time necessary for simulations of isotope
balanced networks (see 169 for more information on these mathematical representations). Red boxes denote
the atoms that are included in an EMU.
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valine is synthesized from pyruvate in the chloroplast. Therefore, the valine labeling signature
yields information about the chloroplast-specific pool of pyruvate (3, 131). This principle aids in
resolution of subcellular compartmentation in flux maps.

Recent studies have shown how flux measurements in primary metabolism can be combined
with other biochemical data to advance understanding in pathway regulation (16, 133). In studying
variation in seed composition among nine genotypes of oilseed rape (B. napus), Schwender et al.
(133) measured metabolite levels, flux, and enzyme activity profiles in central metabolism as well
as proteome data in parallel. While it formerly had been shown that in oilseed rape, a substantial
part of the carbon flux from sugars into lipids can proceed via the carbon-efficient RubisCO shunt
(132), the correlative multilevel analysis of flux, metabolome, and enzyme data revealed potential
regulatory mechanisms with regards to control of glycolytic flux and a lipid/starch trade-off. The
findings suggest that plastid pyruvate kinase activity controls flux through the phosphofructoki-
nase step of glycolysis and ADP-glucose pyrophosphorylase via an allosteric feedbackmediated via
phosphoenolpyruvate and 3-phosphoglycerate, respectively. Figure 3 shows results from simula-
tions of an enzyme kinetic model that incorporates these regulatory features. It illustrates how the
flux ratio at the glucose 6-phosphate branch point can be controlled only by the level of pyruvate
kinase activity (parameter vmax), while the model simulations also recapitulate the major changes
in metabolite levels (Figure 3b).

3.3.2. Nonstationary 13C-metabolic flux analysis. In addition to stationary 13C-MFA, tran-
sient labeling approaches with more complex workflows have been developed for plants over the
past decade (18, 167). In isotopically nonstationary 13C-MFA (INST 13C-MFA) and kinetic flux
profiling (KFP), isotope labeling of metabolic intermediates is measured in a time series to cap-
ture the transient of the system toward approaching isotopic steady state. Only transient labeling
approaches are amenable to exploration of photoautotrophic systems with CO2 as the sole carbon
source because when reaching steady state, every carbon comes from 13CO2, and hence label-
ing patterns become uninformative (135). For central metabolism, transient labeling approaches
require direct measurement of intermediates of glycolysis, the Calvin or TCA cycle, or other path-
ways, and their respective pool sizes need to be measured or estimated for the modeling process. A
comprehensive flux map of 76 fluxes of photoautotrophic central metabolism, based on the INST
13C-MFA approach and feeding 13CO2, was first achieved using the unicellular cyanobacterium
Synechocystis (168), followed by a similar study resolving fluxes in photosynthesizing A. thaliana
rosettes (88). Ma et al. (88) used 13CO2 labeling and INST 13C-MFA to study how primary pho-
tosynthetic metabolism in A. thaliana adjusts if plants grown at low light (200 μmol m−2s−1) are
acclimated for a prolonged time to 500 μmol m−2s−1. As expected by measurements of the net
photosynthetic rate, RubisCO carboxylation flux was increased in the acclimated plants. In addi-
tion, in acclimated plants, a relatively higher proportion of carbon was lost to photorespiration and
more was diverted to sucrose export, while the relative flux toward starch synthesis was decreased
under high light. This study highlights that the ability of plants to adapt to different light levels
is important for their survival and biomass productivity. It also points out the need to obtain flux
maps under various environmental conditions.

3.3.3. Other nonstationary labeling approaches. While INST 13C-MFA is based on
network-wide isotopomer balancing, nonstationary labeling is frequently being used in other,
less generalized modeling frameworks. For example, KFP has been used to explore autotrophic
metabolism (58, 145, 172). The approach results in more localized flux information (Figure 2a).
Also, there are limitations for determination of flux through reversible reaction steps. In what is
referred to as gross flux in KFP (172), the distinction between net flux and exchange flux is not as
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Figure 3

Simulations of an enzyme kinetic model illustrating the feedback control of carbon partitioning as suggested
by analysis of flux, metabolite levels, and enzyme activities. Developing embryos of Brassica napus from
different genotypes were cultured in vitro for 13C-metabolic flux analysis and targeted metabolomics,
proteomics, and enzyme activity profiling (133). (a) Based on the study, an enzyme kinetic model was
developed ( J. Schwender, unpublished data) with 11 reactions defined as kinetic rate laws (single-headed
arrow: irreversible rate law; double-headed arrow: reversible rate law). At the G6P (glucose 6-phosphate)
branchpoint, glucose uptake flux (yellow arrows) is partitioned toward lipid biosynthesis (red arrows) and
starch biosynthesis (blue arrows). (b) Model simulations (lines) are shown along with experimental data (x’s)
from the study. The model was fit to the average of two data sets corresponding to flux values close to
100 mM h−1 for chloroplast PK activity. Then the model was simulated for a range of PK activity between
25 and 300 mM h−1 to predict steady-state metabolite levels and fluxes in the biochemical network. Flux
units shown are in millimole per hour per liter of metabolically active volume. Model simulations were
performed using COPASI (61). Abbreviations: 3PGA, 3-phosphoglycerate; AGPase, ADP-glucose
pyrophosphorylase; Aldo, aldolase; DHAP, dihydroxyacetone phosphate; ENO, enolase; F6P, fructose
6-phosphate; FBP, fructose 1,6-bisphosphate; G1P, glucose 1-phosphate; G6P, glucose 6-phosphate; GA3P,
glyceraldehyde 3-phosphate; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GK, glucose kinase;
Glc, glucose; PEP, phosphoenolpyruvate; PFK, phosphofructokinase; PGAM, phosphoglycerate mutase;
PGI, phosphoglucose isomerase; PGK, phosphoglycerate kinase; PGM, phosphoglucose mutase; PK,
plastidic pyruvate kinase; TPI, triose phosphate isomerase.

clearly resolved as it is in 13C-MFA. In 13C-MFA, reversible reactions are assigned an exchange
flux, a component of mass flow that goes in both directions at the same time (166). In addition to
KFP, various studies integrate kinetic labeling data with kinetic models (Supplemental Table 3).
For example, labeling transients obtained from feeding [2H5]phenylalanine to petunia flowers,
producing volatile phenylpropanoid compounds, allowed researchers to determine in vivo kinetic
parameters for a kinetic model of the benzenoid network (28). Metabolic control analysis then
allowed major control steps to be identified (28).

Problems for both INST 13C-MFA and KFP arise from isotopic distortion effects due to cel-
lular and subcellular heterogeneity. This means the labeling transient of a metabolite can be dis-
torted if parts of what is measured as a metabolite come from a metabolically inactive subpool.
These effects have to be corrected for in the modeling process based on fitting of dilution param-
eters or by inclusion of nonaqueous fractionation techniques into the workflow (58).
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Workflow of kinetic modeling in plants. Kinetic models typically target a specific metabolic process and
specific aspects of its regulation or responses to the environment that might be of interest. This determines
which reactions are to be represented in the model and which types of regulatory features, such as specific
allosteric mechanisms, need to be represented in the kinetic rate equations. Abbreviations: α, rate constant;
β, kinetic order; E, enzyme concentration; h, Hill coefficient; kcat, kinetic rate constant; Kd, effector binding
constant; KM, Michaelis binding constant; S, substrate concentration; ν, rate of reaction.

3.4. Enzyme Kinetic Models

Kinetic modeling is a mathematical approach to describe cellular metabolism in a mechanistic
manner. Most of its applications in plants are focused on a target pathway in a specified tissue
(97, 116) (Figure 4; Supplemental Table 4). Similar with MFA, it uses mass balance equations
to describe the metabolic dynamics within a pathway. In contrast to MFA, the reaction velocity
is no longer represented by a fixed parameter, but it is simulated as a rate equation, which is a
function of the concentrations of substrates, the catalyzing enzyme, and other metabolites as al-
losteric regulators if necessary. Michaelis-Menten kinetics are usually the default choices for the
rate equations (67a). However, other kinds of functions are also widely used in different kinetic
models, including the Hill equation (163), mass action (46), and generalized mass action (62, 155)
(Figure 4; Supplemental Table 4). Specifically, the Hill equation is used when substrate cooper-
ativity is observed for the corresponding enzyme kinetics (30, 175). And if no mechanistic kinetic
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information is available for the reactions, generalized mass action is a good choice to empirically
fit the data (38, 39, 82, 83).

3.4.1. Parameter determination. If most enzymes within the target pathway have already
been characterized with in vitro assays, the easiest way to parameterize the kinetic model is to
apply those kinetic parameters to the model (30, 153, 158, 160, 175). Since enzyme amounts
vary between different species and tissues, the vmax for each enzyme needs to be quantified from
the studied organism instead of the in vitro systems. In plants, this approach has been taken to
study sucrose metabolism (153), photosynthesis (159, 160, 175), the aspartate-derived amino acid
pathway (30), lignin biosynthesis (158), and others. Care must be taken when one implements
these models, as the in vitro assays’ conditions might be distinct from the physiological ones (147).
The best practice is thus to perform any needed in vitro assays under conditions that best mimic
the intracellular environment. Ideally, kinetic models built in this way have good agreement
with the in vivo dynamics (30). While this bottom-up approach is straightforward, a top-down
parameter estimation is necessary when some or all parameters are missing. Indeed, the situation
of missing literature values for enzyme parameters is frequently encountered, especially when it
comes to secondary metabolism (28, 38, 39, 48, 56, 82, 83, 87, 104). In this case, this top-down
approach is essentially an optimization problem, in which the objective function is to minimize
the differences between the model predicted dynamics and available measurements by adjusting
the values of unknown kinetic parameters.Various optimization algorithms are applied to solve the
parameter estimation problem (27, 28, 87, 99), yet because of the nonconvexity of the problem,
none of them guarantee they can identify the global minimum. This limitation makes the model’s
fidelity questionable, and careful validation with independent data sets is indispensable to verify
that the model trained in this way correctly reflects in vivo behaviors. Some successful examples
using this optimization framework include the parameterization of phenylpropanoid metabolism
(56), fenclorim metabolism (87), the flavonoid pathway (104), and the benzenoid network
(28).

Other methodologies for parameter estimation partially overcome the limitation of the current
optimization algorithms. Ensemble modeling increases the reliability of the modeling output by
summarizing outputs from thousands or even millions of individual models (38, 39, 82, 83, 151).
Each individual model is parameterized with a sample from a prior parameter distribution, which
is usually a uniform distribution spanning the possible physiological range. One model is selected
into the ensemble only when it passes the prespecified criteria, which are the minimum agreement
it needs to match with the known facts. Therefore, although each model might fit the data up to
a suboptimal degree, the sum of many models could end up with an output range covering the
reality with a high confidence. The limitation of ensemble modeling is that the choices of sample
number and filtering criteria are somewhat arbitrary. Moreover, when the parameter distribution
matching the observation is significantly narrower than the prior distribution, the valid samples are
very difficult to obtain. To improve the efficiency of ensemble modeling, various frameworks have
been developed by combining it with optimization (38, 83), FBA (39, 82, 83), dimension reduction
(39), and other methods. A series of models for lignin biosynthesis in different plant species were
developed using ensemble modeling (38, 39, 82, 83), and hypotheses of metabolic channeling by
multiple enzymes were proposed based on comparison between models with different structures.

Monte Carlo sampling is another methodology to infer parameter values by estimating the
distribution of parameters that allow the model to fit given experimental data (157). While a
vanilla Monte Carlo sampling method requires the knowledge to calculate the probability given
a sample, Markov chain Monte Carlo (MCMC) methods eliminate the need for such knowledge
with a carefully designed sample proposal and accepting mechanisms (157). An advanced MCMC
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sampling strategy (49) has been successfully applied for the parameter estimation of a kinetic
model of phenylpropanoid metabolism (48). The advantage of MCMC is that it guarantees the
global minimum can be reached given a sufficient number of samples, which can be achieved
in a reasonable computation time with a moderate-size model. However, when it comes to a
high-dimensional problem, even MCMC could suffer from the extremely high computation
demands for parameter estimation.

3.4.2. Applications of kinetic models. Once the kinetic model is developed, it can be used in
different ways. One of the most common applications is metabolic control analysis (40). As is sug-
gested by its name, metabolic control analysis is performed to calculate the changes of the target
flux when each network component is slightly perturbed. For instance, the flux control coefficient
for individual enzymes within the pathway can be obtained with this analysis, and instead of only
a single enzyme being the sole limiting step determining the pathway flux, the control of flux is
spread to multiple enzymes in most cases (11, 20, 28, 30, 117, 153, 160). Other applications of
kinetic models include flux estimation; simulation of metabolic responses to genetic or environ-
mental changes (25, 26, 28, 38, 39, 48, 80, 83, 87, 98, 158); parameter scanning, in which one adjusts
the value of a given parameter in a specified range to see the model’s sensitivity to the parameter
(11, 30, 31, 87, 113, 158, 160); pathway modulation, in which one monitors the significance of each
kinetic mechanism by removing it from the model and observing the effect (11, 30, 39, 48, 77, 82,
114); and pathway optimization, in which one simulates the optimal adjustments to the pathway
to achieve a given objective, which can be a metabolic engineering goal (83, 160, 175). The kinetic
model can also help with the optimization of bioprocesses in bioreactors for plant cell cultures,
where better control strategies can be developed for higher product yields with a model-aided
systems approach (25, 26).

3.4.3. Limitations of current kinetic models. While kinetic modeling has improved our un-
derstanding of cellular dynamics in plants, most studies have focused only on targeted pathways
(Supplemental Table 4). Such limitations in the modeling scope constrain the model’s ability
to describe the dynamic interactions across multiple pathways. Development of large-scale ki-
netic models is currently limited by multiple factors, including data availability and amount and
computational hurdles (152). In addition, the presence of different cell types along changing de-
velopmental stages makes it more challenging to model plants, while large-scale kinetic models
are indispensable to the mechanistic interpretation of omics data (116, 139).

4. FUTURE PERSPECTIVES

In this review, we have described the major modeling approaches used to better understand and
predict plantmetabolic behavior.Having highlighted the separate approaches and their advantages
and shortcomings, the need to develop integrated modeling approaches is obvious.

4.1. Whole-Plant Models

While 13C-MFA provides in vivo flux maps, this empirical information comes with limitations in
the resolution of the cellular network (131). Transfer of flux information from 13C-MFA–derived
flux maps via flux ratio constraints into large-scale FBA models helps to shrink the solution space,
resulting in more realistic FBA flux predictions (53). In addition, more generalized frameworks
for the integration of 13C tracer experiments into large-scale models or GEMs have emerged
(92, 141).
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4.2. Plant Development

Metabolism drives growth and ultimately sustains plant development through its life cycle. At
the whole-plant level, functional–structural plant modeling is a widely used approach that in-
tegrates the environment, plant architecture, and organ-level carbon and nitrogen partitioning
(138).Whole-plant models that link down to the molecular level are still rare (23, 45). One study
addressed changing source-sink relationships during growth of the barley plant (45). Metabolism
of shoots, stems, and roots was simulated by cellular FBA models, and the static FBA modeling
was extended by a dynamic approach (90) into a dynamic whole-plant model. Such multiscale
modeling approaches need quantitative inputs on growth dynamics. In the future, quantitative
phenotyping data obtained at the tissue, plant, or canopy level (24, 42) could be integrated into
such whole-plant models.

4.3. Cell-Type Specificity

One recurring issue in plant metabolic and modeling studies is the presence of different cell types
that create physiological and metabolic heterogeneity across a studied tissue. It would be desirable
to study and model the metabolic phenotype with higher spatial resolution. Experimental tech-
niques such as single-cell metabolomics (35) are definitely needed to provide high-quality data
sets for model development. In conventional 13C-MFA, labeling measurements obtained from a
heterogenous cell population are averaged over multiple cell types, resulting in a distorted flux
map. This problem could potentially be addressed by peptide-based 13C-MFA, which allows for a
label readout from proteins that are uniquely present in a certain cell type (43). Similarly, reporter
protein–based 13C-labeling techniques have been proposed to resolve subpopulation-specific flux
in microbial communities (122) and have recently been extended to cell type–specific 13C-labeling
approaches in plants (120). In another study, the central metabolism of mesophyll and guard cells
of A. thaliana leaves was explored based on CBM and by 13C-labeling (115). In this study, guard
cell–specific flux was estimated by 13C-labeling transients after isolation of guard cells from leaf
epidermis.

4.4. Scales of Kinetic Models

To address the limitation in size of kinetic models due to limited information on enzyme kinet-
ics and other data, inputs from other modeling strategies such as FBA and 13C-MFA can help
with kinetic model development at genome scale. For instance, Khodayari & Maranas (73) have
successfully developed a genome-scale kinetic model of Escherichia coli using fluxomic data from
a previous 13C-MFA approach (66). The model was parameterized with an ensemble modeling
approach, integrating with a genetic algorithm-based optimization. Besides the expansion of the
kinetic models to larger scales, another promising direction is to combine kinetic models for cellu-
lar metabolism with models that capture other regulation, such as gene regulatory networks (51).
Such combinations should greatly expand the applicable scopes of the models, as they incorpo-
rate the regulatory controls over enzymes under different conditions and timescales.Many studies
have shown the benefits of integrating transcriptomic or proteomic data into FBA models (37, 65,
81, 161), and similar successes are expected for kinetic modeling in the near future as well.

4.5. Design and Integration of Synthetic Pathways into Plant Metabolism

The stoichiometry-based modeling approaches discussed in this review are important tools for
the design of new (synthetic) metabolic routes within the context of the plant metabolic network
(78). Various recently reported synthetic biology approaches aim at increasing the efficiency of
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pathways by which plants use light to convert CO2 into biomass (162). This includes various syn-
thetic photorespiratory bypass routes that reduce loss of carbon relative to the native photores-
piratory cycle (162). The malyl-CoA-glycerate pathway is an example of a synthetic pathway for
more efficient generation of acetyl-CoA (170), a precursor of energy-dense fatty acids and storage
oils. Acetyl-CoA is conventionally derived from pyruvate by pyruvate dehydrogenase at a cost of
one CO2 released per acetyl-CoA unit produced. In cyanobacteria the malyl-CoA-glycerate path-
way can generate acetyl-CoA from photosynthetically generated C3 sugars or from glycolate, the
second intermediate of photorespiration, without loss of carbon (170). This route might therefore
help to increase yields of energy-dense oils in bioenergy crops.
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