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Abstract

Most land plants are now known to be ancient polyploids that have
rediploidized. Diploidization involves many changes in genome organiza-
tion that ultimately restore bivalent chromosome pairing and disomic inher-
itance, and resolve dosage and other issues caused by genome duplication. In
this review, we discuss the nature of polyploidy and its impact on chromo-
some pairing behavior.We also provide an overview of twomajor and largely
independent processes of diploidization: cytological diploidization and genic
diploidization/fractionation. Finally, we compare variation in gene fraction-
ation across land plants and highlight the differences in diploidization be-
tween plants and animals. Altogether, we demonstrate recent advancements
in our understanding of variation in the patterns and processes of diploidiza-
tion in land plants and provide a road map for future research to unlock the
mysteries of diploidization and eukaryotic genome evolution.
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Bivalent:
a pair of homologous
chromosomes aligned
on the meiotic spindle
during meiosis I

Cytological
diploidization:
the process of
chromosomal
evolution and
restoration of bivalent
pairing and disomic
inheritance following
polyploidy

Genic diploidiza-
tion/fractionation:
the process of gene
removal and loss
following polyploidy
by molecular
mechanisms such as
pseudogenization and
gene deletion by
recombination
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INTRODUCTION

Amajor insight from two decades of sequencing plant genomes is that most are not simply diploid
but are diploidized paleopolyploid genomes. Although it has long been recognized that many con-
temporary plants are polyploids (8, 109, 163, 178), or species with duplicated genomes, compara-
tive genomic analyses were required to provide conclusive evidence that plants experienced cycles
of polyploidy followed by diploidization (4, 79, 89, 124, 169, 172, 177). Over the past century (10,
97, 176), we have learned a lot about polyploidization, but we know comparatively little about the
mechanisms and forces that drive diploidization (40, 177). In the most basic sense, diploidization
is the return of a polyploid genome to a diploid state (105, 160, 172, 177). One of the earliest
references to this sort of diploidization was by Stebbins (161) in reference to a study by R. E.
Clausen (32) on pairing behavior in Nicotiana allopolyploids (see also 163). (The fungal literature
used the term diploidization in a different manner, e.g., 54.) The restoration of bivalent chromo-
some pairing behavior and associated diploid genetics is considered a key feature of diploidization.
As recognized early on (161), the characteristics of a given whole-genome duplication (WGD)
event impact the pairing behavior, genetics, and subsequent course of diploidization in a poly-
ploid genome. Thus, all polyploid species do not necessarily experience the same processes of
postpolyploid genome evolution and diploidization.

Althoughmanymechanisms of genome evolution contribute to diploidization, it can be broadly
described as involving twomajor and largely independent processes: cytological diploidization and
genic diploidization/fractionation (101, 105).Cytological diploidization occurs via sequence diver-
gence, chromosomal rearrangements, fission, fusion, and other large-scale chromosomal evolution
events that produce significant changes in genome structure and eventually lead to diploid-like
chromosome pairing behavior during meiosis (101). During fractionation, many genes duplicated
during the WGD event are lost, and only a subset of genes are retained as paralogs over time (53,
86). These two processes occur largely independently of each other and at different rates, yield-
ing a diversity of genomes with different patterns of diploidization following polyploidy across
lineages (104, 127, 177).

In this review, we discuss the different aspects of diploidization and postpolyploid genome
evolution. We largely focus on genome evolution in the land plants but also compare their pat-
terns and processes of diploidization to those in animals and other eukaryotes. We begin with
an introduction on the nature of polyploidy and how it may affect chromosome pairing behavior
during meiosis. This includes a new survey of the plant cytological literature to assess the distri-
bution of bivalent pairing among contemporary polyploid species. In the following sections we
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Disomic inheritance:
regular pairing and
segregation of two
chromosomes that
produce two alleles at
a locus

Multivalent: three or
more homologous
chromosomes aligned
on the meiotic spindle
during meiosis I

Homologous
chromosomes
(homologs): a set of
chromosomes that pair
up during meiosis I; in
each pair, one is of
maternal origin and
the other of paternal
origin

Homoeologous
chromosomes
(homoeologs): a set
of chromosomes in an
allopolyploid that are
derived from different
parental species and
have shared homology

Multisomic
inheritance:
combinations of
chromosome pairing
and segregation that
yield more than two
alleles at a locus; also
known as polysomic
inheritance

Allopolyploidy:
polyploid species
formed by interspecific
hybridization and
whole-genome
duplication; generally
considered to have
pairs of homologous
chromosomes from
each parent that form
bivalents during
meiosis

describe cytological and genic diploidization and summarize current knowledge on the molecu-
lar mechanisms of these distinct diploidization processes. We also review differences in the rates
of diploidization in plants and present new analyses on the rates of gene loss across land plants.
Finally, we highlight the growing importance of developing new models and simulations to rig-
orously test hypotheses on diploidization as we try to understand the fundamental question: why
diploidize at all?

THE NATURE OF POLYPLOIDY AND CHROMOSOME
PAIRING BEHAVIOR

A key milestone during diploidization is establishing bivalent chromosome pairing during meio-
sis (177). Bivalent pairing is important because it is a precursor to restoring diploid-like genetics
with two alleles per locus (i.e., disomic inheritance). Although polyploids are often imagined to
have multivalent pairing, many polyploid species actually have bivalent pairing at formation or
evolve it quickly (166). Differences in pairing behavior are often used to distinguish the two major
categories of polyploid species, allopolyploids and autopolyploids (8, 127, 138, 139). Distinguish-
ing allo- and autopolyploids by pairing behavior is considered to be the genetic classification of
polyploid species (8, 42, 43). In allopolyploids, divergence between the parental taxa is expected
to limit pairing among the homoeologous chromosomes, and the homologous chromosomes are
expected to form pairs of bivalents during meiosis. In contrast, autopolyploids are expected to
have homologous chromosomes that form either bivalents or multivalents (Figure 1). The biva-
lent pairing expected to occur in allopolyploids should lead to mostly disomic inheritance (i.e.,
two alleles at each of two distinct loci), whereas autopolyploids are expected to have multisomic
inheritance (i.e., multiple alleles at a single locus) (Figure 1). It is important to point out that even
though strictly bivalent pairing can occur in some autopolyploids, random segregation of homol-
ogous chromosomes during meiosis can result in multisomic inheritance (66, 76, 83, 137, 164).
Therefore, multisomic inheritance is a unique feature that can define autopolyploids (129, 166).
Although the genetic definition is widely used in the field, many studies distinguish allo- and au-
topolyploid species by a taxonomic definition that emphasizes the number of progenitor species
(139). Allopolyploid species result from the hybridization of two or more species with genome
duplication. In contrast, autopolyploids result from a genome duplication within a single progen-
itor species (8, 42). The taxonomic definition putatively gets around one of the limitations of the
genetic definition: change in pairing behavior over time. As polyploid species diploidize, bivalent
pairing and disomic inheritance are restored. This means the genetic classification of an allo- or
autopolyploid may be contingent on the age of the polyploid species. The taxonomic definition
captures the nature of polyploid species regardless of the age of the WGD event and stage of
diploidization.

Although the definitions of allopolyploidy and autopolyploidy are straightforward, in practice
it is often difficult to describe the nature of polyploid species and degree of diploidization because
of the dynamic processes of genome divergence and evolution. Allo- and autopolyploidy represent
two ends of a continuum of variation in subgenome divergence and independence (8, 139, 161).
This gradient of polyploid variation has long been recognized (161, 163). For example, the term
segmental allopolyploidy was used for polyploid species that show mixtures of bivalent and mul-
tivalent formation (161). Differences in observed pairing behavior across this spectrum have been
documented in multiple systems (139). This variation led to describing the inheritance patterns of
segmental allopolyploids and other polyploids in the middle of this gradient of pairing behavior
as being mixosomic (160). Although segmental allopolyploidy and mixosomic inheritance can be
recognized by careful genetic analyses, most studies simply classify polyploid species as allo- or
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Autopolyploidy:
polyploid species with
a single progenitor
species; typically
expected to have sets
of homologous
chromosomes that
form multivalents
during meiosis

Segmental
allopolyploidy:
polyploid species with
a mixture of bivalent
and multivalent
chromosome pairing

Bivalent pairing

Bivalent pairing

Multivalent pairing

Diploid (Aa)

Diploid (Bb)

Autotetraploid (AAaa)

Bivalent pairing

Allotetraploid (AaBb)

×

Figure 1

Illustration of chromosome pairing behavior during meiosis in a diploid (white), autotetraploid (pink), and
allotetraploid (yellow). Chromosomes that are the same size but different shades of the same color represent
homologous chromosomes. Chromosomes of the same size but in different colors (i.e., blue versus gray)
represent homoeologous chromosomes.

autopolyploids without distinguishing the polyploid variation continuum (8). However, to under-
stand diploidization we ultimately must grapple with this continuum of variation and recognize
that not all studies of postpolyploid genome evolution are examining the same biology. For ex-
ample, if a polyploid species is born with diploid-like bivalent pairing and disomic inheritance,
is the ongoing divergent evolution of those homoeologous chromosomes really diploidization?
Is it equivalent to the evolution of bivalent pairing in a multivalent autotetraploid? Analyses of
diploidization in recent and ancient polyploid genomes need to better understand the origin of
the species to evaluate what is and is not due to diploidization in these genomes.

One starting point to understand diploidization in polyploid genomes is to assess how many
contemporary polyploid species have bivalent pairing and how this pattern aligns with allo- and
autopolyploid species. To address this gap in our knowledge, we conducted a survey of pairing
behavior in allo- and autopolyploid species recognized by the taxonomic definition. The initial
survey was based on a previous study of the frequency of allo- and autopolyploidy that examined
data for 4,003 species from 47 genera of vascular plants (8). For each species, we recorded the
chromosome pairing behavior during meiosis from the cytological literature (Supplemental
Table 1). We classified the meiotic chromosome pairing behavior as either strictly bivalent
pairing (only bivalent formation was observed) or a mix (multivalent or a mixture of bivalent
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Mixosomic
inheritance:
the combination of
disomic and
multisomic
inheritances in a
species
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Figure 2

The frequency of strictly bivalent (orange) versus multivalent or a mix of bivalent and multivalent pairing
(blue) and whether species are reported as allo- or autopolyploids. This meta-analysis is based on 208 species
(Supplemental Table 1). Pairing behavior was not significantly different between allo- and autopolyploids
(Fisher’s exact test p = 0.2054). The categories represent allopolyploids, autopolyploids, or all polyploids
combined. The y-axis represents the number of species. Data from Barker (7).

and multivalent pairing). We identified 208 polyploid species from 40 genera (Supplemental
Table 1) with at least one record of meiotic chromosome pairing behavior (Figure 2). Although
it would be optimal to include more than one observation of pairing behavior per species, most
historical cytological analyses do not report the frequency of the chromosome pairing behavior
occurrence and include only a single observation. Among these studies, 118 were classified by
Barker et al. (8) as allopolyploids and 90 as autopolyploids (Figure 2; Supplemental Table 1).
Overall, we found that 92 of these species had strictly bivalent pairing, whereas 116 had mixed or
multivalent pairing. Among species classified as allopolyploids, 48.3% had bivalent pairing and
51.7% had at least some multivalent formation during meiosis. Only 38.9% of the autopolyploids
had bivalent pairing and 61.1% of the autopolyploids had multivalent or mixed pairing behavior.
Consistent with our expectations, we found a lower frequency of strictly bivalent pairing among
autopolyploid species compared to allopolyploids. However, the difference in pairing behavior
between allo- and autopolyploids was not significantly different (Fisher’s exact test p = 0.2054).
This result may be due to the taxonomic and phylogenetic classification of allo- and autopolyploid
species used by Barker et al. (8), but the methodology used to classify polyploid species in that
study is consistent with the approaches used broadly in the community. The distribution of
pairing behaviors suggests that segmental allopolyploidy may be prevalent among polyploid plant
species and that bivalent pairing may evolve rapidly in many autopolyploid species.

Despite possessing twice the number of chromosomes as their progenitors, and regardless of
the taxonomic nature of polyploid speciation, nearly half (44.2%) of the polyploid species we
surveyed had bivalent chromosome pairing behavior. As expected, allopolyploid species demon-
strated more strictly bivalent pairing than autopolyploid species. The stable meiosis of allopoly-
ploid species likely results from pairing preferences for homologs with highly similar and collinear
sequences and suppression of pairing between the divergent homoeologs (33, 72, 127, 139). Fu-
ture studies need to determine whether and to what degree sequence and structural divergence
among homoeologous chromosomes lead to bivalent formation in polyploids. Further analyses
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on the degrees of sequence and structural divergence of the parental diploids and the pairing
behavior of their allopolyploid species would provide some insight into this question. Similarly,
analyses of the age of the surveyed autopolyploid species would help explain why nearly 40% had
strictly bivalent pairing. Are these species simply older autopolyploids compared to species with
more frequent multivalent pairing? Or are they cryptic allopolyploids that were misclassified as
autopolyploids? The answers to these questions will help us understand the mechanisms that lead
to the restoration of bivalent pairing in allo- and autopolyploids and, eventually, the evolution of
disomic inheritance across the spectrum of polyploid species.

MECHANISMS OF CYTOLOGICAL DIPLOIDIZATION

What are the mechanisms that lead to the restoration of bivalent pairing, disomic inheritance, and
cytological diploidization of polyploid genomes in plants? Although the forces and mechanisms
driving cytological diploidization are not completely understood (50, 72, 85), the process broadly
involves sequence divergence and changes in genome organization that ultimately produce pairs of
homologous chromosomes that pair with each other and limit homoeologous pairing (Figure 3).
These changes include chromosomal rearrangements, fissions, fusions, and other reorganizations
that lead to differentiated pairs of homologous chromosomes (85, 152). Dysploidy can also occur
as a part of genome evolution associated with cytological diploidization, causing changes to base
chromosome numbers (48, 105) and chromosome loss following WGD (99, 103, 106, 152, 183).
More broadly, it is not yet clear if these changes accumulate (neutrally or through local adaptation)
and lead to divergent resolution in different populations of a polyploid species (174), or if natural
selection is driving cytological diploidization because of some fitness benefit of diploid genetics
or meiosis.

Polyploidy (WGD)

Polyploid state Diploidized state

Diploid

Neopolyploid Mesopolyploid

Paleopolyploid
(diploid)

Diploidization completed

Genic diploidization and fractionation

Cytological diploidization

Figure 3

The major processes and mechanisms of diploidization. From left to right, the abrupt transition from white
to blue represents a change from diploidy to polyploidy. The gradual transition from blue to white
represents diploidization. The shade of color shows the hypothetical level of diploidization. The differences
in shade of color between cytological and genic diploidization show that they are independent processes that
occur at different rates. The process of cytological diploidization involves chromosomal evolution leading to
the restoration of bivalent pairing and disomic inheritance following polyploidy. The process of genic
diploidization and fractionation involves gene removal and loss following polyploidy by molecular
mechanisms such as pseudogenization and gene deletion by recombination. Abbreviation: WGD,
whole-genome duplication.
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Evidence from studies of established polyploid species indicates that natural selection is likely
driving some aspects of cytological diploidization. Research on established polyploids suggests
they have lower crossover frequencies compared to neotetraploids or their diploid relatives (139,
184). Recently formed polyploid species, especially autopolyploids but many allopolyploids as well
(Figure 1), produce multivalents during meiosis. Multivalents are generally less stable during
meiosis than bivalents and can lead to the loss of chromosomes during anaphase (85, 183, 187).
This loss of chromosomes and other challenges of multivalent pairing and segregation can lead
to reductions in fitness. These observations lead to a hypothesis that selection may reduce the
number of crossovers or chiasma to suppress multivalent formation and nonhomologous pairing
in polyploid species (20, 29, 85). Reducing the number of crossovers limits the opportunity for
chromosomes to pair with more than one partner duringmeiosis and leads to more stable, bivalent
pairing.

In autopolyploids, meiotic stability is associated with the rate of crossover (19). More meiot-
ically stable autopolyploids have diploid progenitors with lower frequencies of crossover forma-
tion, whereas polyploids with higher multivalent frequencies are formed by diploids with higher
crossover rates (19, 70, 115). Studies suggest a single crossover per pair of homologous chromo-
somes is essential in most diploid species for chromosome segregation (36, 80). For a chromosome
to be associated with more than one partner during meiosis, at least two crossovers are required
(19). Theoretically, reducing crossover to one per pair of homologous chromosomes in autopoly-
ploids would be ideal for chromosome segregation and lead to bivalent formation (20).Amodel has
been proposed for the mechanistic basis for limiting the number of crossovers in autopolyploids
(20). In this model, the number of crossovers is reduced to one if the range of crossover interfer-
ence needs to be larger than the distance to the end of the chromosome. Although the genetic and
molecular mechanisms that control the number of crossovers are not well understood, progress
is being made in understanding the genetic basis of autopolyploid meiosis in autotetraploid Ara-
bidopsis arenosa (73, 114, 184). Previous studies used population data to show that eight unlinked
candidate genes were important for meiotic chromosome pairing (73, 184). Strong signatures of
selective sweeps are found on these genes, and they are differentiated between polyploids and
diploids. The results suggest that the genetics of reestablishing bivalent pairing in autopolyploid
meiosis is likely to be polygenic (184). A more recent follow-up study has identified the derived
alleles of two genes, ASY1 and ASY3, that are associated with meiotic changes in A. arenosa (114).
This functional study also found that derived alleles of both genes are associated with traits in
meiosis, such as reduction of multivalent formation, reduced chromosome axis length, and a ten-
dency of more rod-shaped bivalent formation during meiosis (114). This work provides the first
empirical analysis of multiple genes involved in bivalent restoration in autopolyploid meiosis and
provides evidence that pairing behavior in autopolyploids can be genetically controlled. Although
this model of restoring bivalent pairing has been developed in the context of autopolyploid species,
it likely applies to many allopolyploids that experience multivalent pairing as well (Figure 2).

Meiotic chromosome pairing behavior in allopolyploids is traditionally considered to be sta-
ble and diploid-like (33, 127, 139). The general explanation of the stable meiosis in allopolyploid
species is that the homoeologous chromosomes are already differentiated, making it easier to es-
tablish bivalent pairing between homologs and suppress homoeolog pairing (33, 127, 139). Al-
though the molecular mechanism of how sequence and structural divergence of chromosomes in-
fluence pairing remains unclear (21, 34, 85), many allopolyploid species still experience significant
chromosomal change following genome duplication. Extensive chromosomal rearrangements and
chromosome losses have been found in both synthetic Brassica napus and natural populations of
Tragopogon miscellus (28, 183). As we found above (Figure 2), many allopolyploids also demon-
strate some multisomic pairing and need to at least partially restore bivalent pairing to diploidize.
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Studies have shown that the restoration of diploid-like chromosome segregation is genetically
controlled (50, 60, 72, 107, 144). The best-known example is the Ph1 locus, which has been stud-
ied in grasses, especially in wheat. This locus is associated with suppressing homoeologous pairing
and promoting homologous chromosome pairing in meiosis. In the absence of Ph1, the number of
crossovers increases and extensive homoeologous pairing can occur (147). Loci with similar effects
have also been identified in allotetraploids B. napus (77, 96) and Arabidopsis suecica (71). A recent
study proposed a mechanism for suppression of nonhomologous crossovers in allopolyploids (60).
The geneMSH4 is essential for the main crossover pathway in B. napus. The number of nonho-
mologous crossovers decreases ifMSH4 returns to a single copy, and these crossovers will not be
affected if MSH4 is lost. Significantly, they found a convergent pattern of MSH4 returning to a
single copy following multiple independentWGDs across the angiosperms.However, researchers
suggestMSH4 is unlikely to contribute to meiosis stability in autopolyploids because it mainly af-
fects nonhomologous crossovers that are not thought to be important in autopolyploid pairing.
This study provides a new mechanism for the restoration of bivalent pairing in allopolyploids and
suggests that chromosome pairing in allopolyploids is genetically determined across flowering
plants (60).

Overall, the mechanisms behind restoring bivalent pairing and disomic inheritance are still
not fully understood (50, 72, 85). Some evidence suggests that chromosome pairing is genetically
determined in different auto- and allopolyploid systems (71, 77, 96, 184). Few systems have been
studied to understand the cytological diploidization of autopolyploids (21, 73, 114, 184). It remains
to be studied how these mechanisms may vary across the phylogeny (21, 73, 114, 184). The recent
study on MSH4 suggests that at least some of the molecular mechanisms for restoring bivalent
pairing are potentially broadly shared across flowering plants (60). Future studies should look for
MSH4 and other genes associated with pairing and test whether chromosome pairing is genetically
determined across land plants. Beyond the genetics of bivalent pairing, the accumulated empiri-
cal evidence has also shown that chromosomal changes such as rearrangement, translocation, and
chromosome loss occur during diploidization (85, 99, 103, 106, 152, 183).Chromosomal evolution
could lead to sequence divergence by introducing gene deletions or duplications and by chang-
ing the positions of recombination hotspots that lead to differential rates of sequence divergence
(78, 118, 121). A recent study using autopolyploid Arabidopsis thaliana lines highlights the com-
plexity of different forces that may influence pairing in polyploids. Crosses within and between
synthesized A. thaliana Col and Ler lines were used to explore chiasma formation and pairing
in autopolyploids (130). A significant excess of bivalent pairing in these crosses was observed for
chromosomes 2 and 3. Notably, chromosome 3 has a relatively large inversion between Col and
Ler, and other sequence and structural divergence may play a role in driving higher bivalent pair-
ing on these chromosomes (130). Future investigations such as this are needed to understand how
the interactions among sequence similarity and chromosomal structure ultimately reduce homoe-
ologous pairings and drive the restoration of bivalent pairing and disomic inheritance.

GENIC DIPLOIDIZATION AND FRACTIONATION

Although some polyploid species are essentially cytologically diploid at birth with bivalent pair-
ing, most polyploid genomes go through extensive gene loss and fractionation. Plant genomes
are highly dynamic with significant turnover in content, especially following WGDs (9, 149, 160,
172). All genes are duplicated during polyploidization, and many of these new paralogs do not
persist for long (1, 11, 35, 41, 156). This process of gene removal and loss following polyploidy is
known as fractionation (53, 86). Although fractionation does not necessarily lead to the restora-
tion of bivalent pairing or disomic inheritance, focusing on pairing behavior as the only process
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involved in diploidization misses the other aspects of post-WGD genome evolution. These in-
clude significant changes in gene content, network structure, and expression (18). Fractionation
is a particularly important component of diploidization and postpolyploid genome evolution be-
cause nearly all polyploids that persist experience gene loss and the resolution of duplicated gene
networks.

Gene deletion by illegitimate recombination is considered to be the predominant mechanism
of fractionation and genome size reduction in flowering plants (39, 52, 53, 59, 100, 128). Illegit-
imate recombination can occur through unequal recombination between dispersed homologous
regions (65). This asymmetric pairing followed by unequal sequence exchange can result in gene
duplication or deletion (6, 63, 175). Illegitimate recombination can also occur via intrachromoso-
mal recombination and is characterized by flanking direct repeats, which are the products of cir-
cular recombination and excision that result in gene deletion (84). Many apparent gene deletions
in plant genomes are flanked by direct repeats, suggesting that illegitimate recombination was
involved (155, 165, 170, 180). Studies have also found that illegitimate recombination can occur
between homoeologs in allopolyploids, resulting in deletions (55) and gene conversion (94). Possi-
bly related to fractionation, illegitimate recombination is considered to be the primary mechanism
for transposable element (TE) removal, with similar flanking direct repeats as a classic signature
of excised TEs (13, 39, 69, 140, 168). Variation in the presence of active TE families in plant
genomes could impact gene loss and fractionation (179). TEs are often silenced by methylation,
but this also reduces the expression of neighboring genes (74). This attenuation of neighboring
gene expression may lead to selection to eliminate these TEs while increasing the chance that
nearby genes could be deleted (26, 179). Gene deletion by errors in recombination, involving TEs
or not, appears to play a significant role in gene fractionation following WGDs.

What about areas of the genome that experience low recombination rates? Gene loss in regions
of relatively low recombination has only recently been studied in plant genomes. Unlike areas of
genomes that experience high recombination, in areas of low recombination, genes may persist
and accumulate deleterious substitutions. This accumulation of mutations could lead to a higher
frequency of pseudogenization in these areas. In contrast to fractionation caused by illegitimate
recombination, pseudogenes are not physically deleted from the genome and may persist for long
periods of time after nonfunctionalization (181, 182, 189). Pseudogenes are often considered to
be relatively rare in plant genomes (27, 45, 47, 53, 142, 149), but they are poorly characterized for
a clade with a high frequency of duplication events. A recent study sought to better characterize
pseudogenes in plant genomes and estimated that the number of pseudogenes is highly lineage-
specific in angiosperm genomes, ranging from 5,000 to over 73,000 (182). These results suggest
that pseudogenization may be more common in plant genomes than previously thought. As ex-
pected, a deeper analysis in a few genomes with recombination data, in particular soybean, found
that pseudogenes were enriched in low recombination areas near centromeres (182). Thus, vari-
ation in recombination rates and genomic locations may significantly influence the mechanism
of genic diploidization in plant genomes. Improved recombination maps for more plant genomes
and better characterization of pseudogenes are needed to explore this relationship further.

In many plant genomes, fractionation has also been observed to be nonrandom (22, 58, 131,
171). This biased fractionation can result in subgenome dominance in which one subgenome is
retained more than the other. This phenomenon has been widely observed across angiosperm lin-
eages (27, 45, 47, 53, 142, 149). In general, genes from the more highly retained subgenome are
expressed at a higher level than their homoeologs (27, 149). One possible mechanism that could
drive this subgenome dominance is the distribution of TEs in each subgenome. Methylation of
TEs reduces the expression of the TE itself but may also decrease the expression of nearby genes
(74, 75). In allopolyploids, one parental genome may have a higher TE density and higher level of
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methylation compared to the other parental genome. Researchers have hypothesized that genes
from the subgenome with higher TE density and methylation may be expressed at a lower level,
resulting in more fractionation compared to the other subgenome (179). Under this hypothesis,
there is more opportunity for subgenome dominance to occur with allopolyploid species (179).
This hypothesis has also been extended to paleopolyploidy events (56). It has been proposed that
genomes with evidence of biased fractionation and subgenome dominance are more likely to be
ancient allopolyploids (56). However, studies have shown that allopolyploid genomes do not al-
ways demonstrate subgenome dominance. For example, in allopolyploids such as B. napus, wheat,
and cotton, subgenome dominance is not observed (25, 64, 132, 185). In soybean, subgenome
dominance is not found, and the nature of its paleopolyploid event is still unresolved (190).
These observations suggest that the degree of genome differentiation prior to polyploidy may
determine the amount of subgenome dominance. It remains to be studied why this pattern varies
across the phylogeny.Recent studies have provided progress on understanding the potential mech-
anisms that may drive subgenome dominance and biased fractionation. In the lotus genome, re-
searchers found that subgenome dominance and biased fractionation are associated with higher
gene body methylation, degree of protein-protein interactions, and gene expression levels (157).
Recent studies also suggested homoeologous exchanges in allopolyploidy are likely to impact the
pattern of subgenome dominance (3, 17, 46, 55). The phylogenetic distribution and relative con-
tributions of thesemechanisms to the evolution of subgenome dominance and biased fractionation
are not yet clear, but additional analyses leveraging population genomics and resynthesized poly-
ploids as well as other analyses of genetics and fitness will provide further insight into their roles
in the polyploid genome evolution.

The drastic and biased gene loss that accompanies diploidization can also result in significant
genome reorganization, which may occur to resolve genomic conflicts or dosage balance issues
that would otherwise reduce polyploid fitness (134, 172). It has been shown that paralogs with
more interaction partners, such as transcription factors, are more likely to be retained following
WGD to maintain protein product stoichiometry or dosage (38, 51, 167). This dosage balance
hypothesis (DBH) also predicts that dosage-sensitive genes will be preferentially lost following
small-scale gene duplication events to prevent dosage disruptions, as their interaction partners are
not doubled (15, 38, 51, 91). An alternative to the DBH attributes retention of paralogs to func-
tional diversification, especially neofunctionalization (i.e., a gene copy acquiring a novel function)
(123) or subfunctionalization (i.e., each gene copy retaining part of the original function) (98).
A previous study suggests that subfunctionalization may also drive cytological diploidization by
maintaining appropriate chromosome pairs and promoting bivalent chromosome pairing and dis-
omic inheritance (85). However, neo- and subfunctionalization cannot explain the parallel pattern
of gene retention following different WGDs (11, 37, 104). Among these hypotheses for duplicate
gene retention (51, 81), the DBH is the only hypothesis that explicitly predicts the parallel reten-
tion and loss of functionally related genes across species following WGD (35, 51, 167). A recent
study of tandem duplicate genes in mammals suggests that the DBHmight explain the initial sur-
vival of these gene duplicates and neo- or subfunctionalization may be more important for the
long-term retention of paralogs (82). It remains to be understood what determines the portion of
retained duplicate genes that are explained by the DBH, neo- and subfunctionalization, and other
processes, and how this pattern varies across different lineages of plants.

In general, genic diploidization/fractionation occurs after all WGDs. Although the complete
set of forces and mechanisms that drive fractionation are not yet understood, there is plenty of
evidence that the process is generally not random with regard to the subgenomes and types of
genes that are retained and lost (22, 58, 131, 171). Future studies should aim to better understand
how much fractionation is determined by the nature of polyploidy or other factors such as level
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of methylation in parental genomes. We also need to understand how genic diploidization and
fractionation contribute to resolving genomic conflicts or dosage balance issues. This will help
improve our understanding of the fate of duplicate genes from WGD. Given that diverse mech-
anisms and forces appear to drive fractionation, the processes of genic diploidization may vary
considerably among lineages.

RATE OF DIPLOIDIZATION IN PLANTS

The processes of diploidization involve many mechanisms and forces, and it is not yet clear how
they operate in different lineages of plants. Most studies on genetic and cytological diploidization
have focused on the angiosperms. In Tragopogon, it has been shown that the parallel pattern of
gene loss and chromosomal rearrangements can be established in only 40 generations (23). Sim-
ilarly, Xiong et al. (183) studied 10 generations of the resynthesized allopolyploid B. napus and
found evidence for many chromosomal rearrangements and aneuploidies. Although there is evi-
dence for rapid chromosomal evolution following polyploidy, a recent study demonstrated that the
rate of diploidization following WGD can vary among related lineages (104). In 13 independent
Brassicaceaemesopolyploidies,multiple species displayed different degrees of diploidization yield-
ing a range of chromosome numbers and rearrangements across lineages. The different levels of
diploidization are not clearly predicted by the age of these polyploidy events (104).More striking,
in a recent cytological study of a Brassicaceae tribe largely endemic to Australia, different lineages
descending from a common allopolyploid ancestor can have different rates of diploidization (106).
The difference in rate is mainly driven by the number of chromosomal rearrangements observed
in each species (106). Given that the rate of diploidization can vary dramatically in the descen-
dants of a singleWGD, the rate of diploidization likely varies across different lineages of flowering
plants. However, it is not yet clear how much the rates of different aspects of diploidization vary
across the land plant phylogeny, and the forces driving these differences in rate are still unknown.

Relatively little is known about diploidization outside of angiosperms. A recent study in Se-
quoia confirms that an autopolyploidization event occurred around 33 Mya (153). However, Se-
quoia has apparently maintained multivalent pairing since this paleopolyploidy (162), suggesting
a slow diploidization process in comparison to flowering plants (153). Although they are debated
(146, 191), genomic analyses have inferred at least three other ancientWGDs in the gymnosperms
(89, 90, 124). Other recent studies have found evidence of neopolyploidy in Ginkgo (158, 159) and
Juniperus (49). These ancient and recent WGDs provide opportunities to estimate the rate of
genic and cytological diploidization in gymnosperms. Better understanding of diploidization in
gymnosperms may provide a new angle to understand why polyploidy is relatively rare in most
of the gymnosperms (2). As in the gymnosperms, diploidization remains to be studied in ferns. It
has been hypothesized that ferns experienced multiple rounds of ancient WGDs without losing
their chromosomes (12, 67, 68). In contrast to the flowering plants, diploidization in the ferns
has been hypothesized to be predominantly driven by gene silencing or pseudogenization rather
than by gene deletion (7, 67, 119, 120). A few studies have identified multiple silenced copies
of nuclear genes in putatively diploid homosporous fern genomes (110, 111, 133) and the active
process of gene silencing without chromosome loss in a polyploid genome (57). Unlike in an-
giosperms, chromosome number and genome size are correlated in ferns (7, 30, 119), and there
is evidence of constraint on average chromosome size (95). However, the molecular mechanism
of gene fractionation and the rate of diploidization in ferns are still unknown. Two heterosporous
fern genomes have been published (87), but these two genomes might experience different pro-
cesses of diploidization compared to the homosporous ferns, which have much higher average
chromosome numbers. Similar to diploidization in the gymnosperms and ferns, relatively little is

www.annualreviews.org • Diploidization in Land Plants 397



a

f

b

g

c

h

d

i

e

j

Bryophytes

Ks

Fr
ac

ti
on

 o
f p

al
eo

lo
gs

Bryophytes

Ks (contrast)

Fr
ac

ti
on

 o
f p

al
eo

lo
gs

(c
on

tr
as

t)

Lycophytes

Gymnosperms

Gymnosperms

Angiosperms

Angiosperms

Ferns

Ferns

Lycophytes

0.1
0.2
0.3
0.4
0.5
0.6
0.7

–0.08

–0.04

0.02

0

0.35

0.25

0.15

0.10

0.20

0.30

0

–0.02

0.02

0.04

0.25

0.15

0.10

0.20

0.35

0.25

0.15

0.05

0

–0.015

0.010

0.1

0.05

0

–0.05

–0.10

0.2

0.3

0.4

0.5

0.4 0.8 1.2

–0.05 0.05 0.15

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

−0.3 −0.1 0.1

0.4 0.6 0.8 1.0 1.2

–0.06 –0.02 0.02

0 0.5 1.0 1.5 2.0 2.5

–1.0 –0.5 0 0.5

–0.005

0.005

0.015

0.025

−0.02 0.02 0.06

Figure 4

The fraction of genes retained from a WGD over the estimated median Ks value of a WGD in land plants with and without PICs.
(a–e) The x-axis represents the Ks value of a WGD inferred by a mixture model in gene age distribution analysis. The y-axis represents
the fraction of genes retained from a WGD, which is estimated as the number of paralogs retained from a WGD divided by the total
number of unigenes of a transcriptome. ( f–j) The phylogenetically corrected rate of post-WGD paralog loss in land plants. Both the
fraction of genes retained from a WGD (y-axis) and estimated median Ks value of a WGD (x-axis) in land plants were corrected using
PICs. This study is based on 815 species of land plants: (a, f ) bryophytes, 52 species; (b,g) lycophytes, 13 species; (c,h) ferns, 66 species;
(d,i) gymnosperms, 73 species; (e, j ) angiosperms, 610 species (see also Supplemental Table 2). Abbreviations: Ks, synonymous
divergence; PICs, phylogenetic independent contrasts; WGD, whole-genome duplication.

known about diploidization in the other lineages of land plants. Future studies should estimate the
patterns and processes of diploidization with chromosome-level genome assemblies of these lin-
eages, especially mosses, Lycopodiaceae, Isoetaceae, and the homosporous ferns where polyploidy
seems to be prominent (124).

Estimating the rate of genic and cytological diploidization in plants can be challenging be-
cause the process occurs across large timescales and requires substantial genomic data. Additional
phylogenetic and cytological analyses could be used to develop greater insight into the rate of
cytological diploidization (Figure 4). Similarly, the rate of gene loss following polyploidy can be
estimated from recent studies on the incidence of paleopolyploidy across the plant phylogeny.
With genomic and transcriptomic data, the rate of duplicated gene loss in ancient polyploids can
be estimated by comparing the fraction of paralogs in a genome derived from aWGD and the age
of theWGD across multiple events and species. In general, studies have used synteny or duplicate
gene age distribution analyses to infer duplicate genes derived from the polyploidy events (61,
136, 141). The relative age of a WGD can be estimated using the synonymous divergence (Ks) of
the paralogs in theWGD peak from a Ks plot. By plotting the fraction of retainedWGD paralogs
in the genome (% paleologs) against the median paralog divergence for a WGD, we can obtain
an estimate of the variation in the rate of genic diploidization following ancient WGDs.

Previous research has found that the fraction of genes retained from WGDs decreases expo-
nentially over time in flowering plants (61, 136, 141). To estimate variation in the rate of gene loss
across land plants, we analyzed land plant transcriptomic data of 815 species that are inferred to
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have at least one round of ancient polyploidy from the One Thousand Plant (1KP) transcriptomes
project (124). These species were organized into five major lineages of land plants: bryophytes,
lycophytes, ferns, gymnosperms, and angiosperms (Supplemental Table 2). We used mixture
modeling to identify genes retained from the most recent ancient WGD that each species expe-
rienced based on the WGD peak in the Ks plot (90). The paralog divergence of the WGD was
estimated by the median Ks value of the WGD peak. We estimated the fraction of paleologs by
using the total number of genes retained from an ancient WGD divided by the total number of
unigenes in the transcriptome (Supplemental Table 2).We then plotted the fraction of paleologs
with paralog divergence (Ks) of the WGD for each species (Figure 4). To infer if there was a sig-
nificant trend in the data, we fit linear and exponential models to the distribution (Supplemental
Table 3). Consistent with previous research (136, 141), we found a decrease in the fraction of
retained paleologs over time in the angiosperms (Figure 4; Supplemental Table 3).We also ob-
served higher variation in the fraction of retained paralogs among relatively youngWGDs (lower
Ks values) compared to older WGDs (higher Ks values). In contrast, we observed an increase in
the fraction of paleologs over time in the gymnosperms (Figure 4; Supplemental Table 3). The
bryophytes, lycophytes, and ferns did not have a significant increase or decrease in the fraction of
retained WGD paralogs over time (Figure 4).

One issue with analyses of ancient polyploidy is that many taxa may be closely related, and
some taxa may share the same ancient duplication event. To test whether there was any phyloge-
netic signal for the fraction of retained paralogs and the relative age of the polyploidy, we used
the phylosig function in the phytools R package (143).We found evidence of significant phyloge-
netic signal for all categories except fractions of paleologs in the ferns and lycophytes. To address
the potential impact of these closely related species and phylogenetically shared WGDs on the
observed relationship betweenWGD age and paleolog retention, we used phylogenetic indepen-
dent contrasts (PICs) to account for the phylogenetic relatedness among lineages in our dataset.
Specifically, we transformed raw values of the fraction of genes retained from each WGD and
Ks value of a WGD and the phylogeny from the 1KP project using the pic function in the ape
(analyses of phylogenetics and evolution) R package (135). Similar to the results above, our phy-
logenetically corrected analyses did not recover a significant relationship between gene loss and
the relative age of theWGD event in bryophytes, lycophytes, and ferns (Figure 4; Supplemental
Table 3). The significant positive relationship observed in the gymnosperms was not significant
after taking phylogeny into account (Figure 4i; Supplemental Table 3). Our phylogenetically
corrected analyses recover a significant linear fit (p< 0.001, adjusted R-squared= 0.09593, slope=
−0.04506) and a significant exponential fit (p < 0.001, b = −0.2032) in angiosperms (Figure 4j;
Supplemental Table 3). Similar to studies that did not take phylogeny into account (136, 141),
our study found that paleologs were lost over time. We found that the relative age of the WGDs
explains about 10% of the variation in the amount of gene loss in the linear model fit after PICs
(Supplemental Table 3). Our study provides the first observation of the rate of gene loss in other
lineages of land plants. Unlike flowering plants, the amount of gene loss from a WGD does not
appear to be correlated with the relative age of the WGDs in these lineages. Our results suggest
the dominant mechanism of fractionation may vary across land plants and appears to be different
in angiosperms compared to other land plants. Considering that the relative age of the WGD
explained a relatively small amount of the variation in gene loss in angiosperms, other mecha-
nisms are clearly important. It may be that each WGD ultimately experiences different patterns
of fractionation. Every post-WGD lineage experiences different demography, selection pressures,
and other population genetic differences that could drive unique rates of gene loss. Variation in
all of these dimensions likely contributes to the differences in the patterns of fractionation that
we observed across the land plant phylogeny.
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Our results highlight that there is still much we do not understand about diploidization. Al-
though other analyses also suggest that the rate of diploidization is likely to vary across the phy-
logeny of plants (106), it is not clear why we observed no relationship between the age of a WGD
(as inferred by paralog divergence) and the fraction of retained paralogs for most clades of land
plants. Future studies are needed to understand if the angiosperms have evolved novel mecha-
nisms of gene fractionation distinct from those found in other land plants. Sample size in other
lineages may contribute to some of the differences we observed, but the bryophytes, ferns, and
gymnosperms were all represented by more than 50 species. Given the potential importance of
eliminating genes after WGD (16, 38, 51, 167), the apparently efficient gene fractionation in an-
giosperms may be a part of their evolutionary success. Similarly, more comprehensive analyses of
pseudogenization across land plants are needed to understand variation in gene loss among lin-
eages. It also remains to be resolved how allo- and autopolyploidy influence the rate of gene loss
and chromosomal evolution. Analyses leveraging comparative genomic approaches from emerg-
ing chromosome-level gymnosperm and homosporous fern genomes will be important to address
why these rates of diploidization differ across land plants. Similarly, deeper analyses of popula-
tions and species descended from the same WGD are needed to understand the forces that drive
diploidization. Our analyses and others (61, 136, 141) indicate that there is ample variation in the
rates of diploidization to begin understanding these forces.

DIFFERENCES IN DIPLOIDIZATION BETWEEN PLANTS
AND ANIMALS

Variation in the patterns and rates of diploidization is also evident between plants and animals.
In angiosperms, most of the gene loss that occurs during fractionation is attributed to intrachro-
mosomal recombination (53, 148, 165, 180). However, in animals many gene losses appear to be
caused by pseudogenization (27, 45, 47, 53, 142, 149). Vertebrate genomes do not seem to rapidly
remove functionless nonrepetitive DNA, and pseudogenes can be carried for tens of millions of
years (14, 93, 112, 151).

Patterns of gene loss following paleopolyploidy have been studied in many flowering plants
such as A. thaliana (22), Brassica (22, 58, 131, 171), and maize (22, 58, 131, 171), as well as more re-
cent cotton allopolyploids (173).A general pattern that has been found across these flowering plant
genomes is that most of the gene losses are due to illegitimate recombination rather than gene
pseudogenization (53, 148, 165, 180). In maize, around 10% of the paleologs have been removed
after a whole-genome duplication that occurred around 12 Mya. These paralogs were deleted by
intrachromosomal recombination facilitated by direct repeats flanking the gene or exons (180).
In Brassica rapa, gene loss following the Brassiceae paleohexaploidy was driven by the same gene
deletion mechanism (165).

In contrast to plant genomes with rapid gene deletion caused by intrachromosomal recombi-
nation, pseudogenization appears to be the major gene loss mechanism in vertebrates (14, 93, 112,
151). The most common type of pseudogenization occurs when a gene is disrupted by mutations
and becomes unexpressed or nonfunctional (188). For example, all of the nearly 200 genes lost
since humans diverged from chimpanzees are present as pseudogenes in our genome (151). An-
other excellent example of slow gene deletion in vertebrates comes from the recently sequenced
rainbow trout genome (14). Analyses of the genome revealed an ancient WGD shared by the
salmonid family. After nearly 100 million years of evolution, syntenic analyses found that the two
subgenomes are still highly collinear. Nearly half of the protein-coding genes are retained in the
genome, and most of the gene loss is due to pseudogenization. They also estimated that the av-
erage rate of gene inactivation is ∼170 genes per million years (14). Similarly, carp experienced
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a WGD 8–18 Mya. Analyses of the common carp genome found a slow rate of gene loss, with
92% of the paralogs from the polyploid event still retained in both copies (88). In Xenopus frogs,
there is significant pseudogene accumulation following an allopolyploidy event that occurred 17–
18 Mya. Comparable to those in rainbow trout, around 64% of paralogs from the WGD expe-
rienced gene loss by pseudogenization (154). Different from the patterns observed in flowering
plants, few large-scale gene deletions have been observed in animals.Most genes are deleted inde-
pendently from neighboring genes by single-gene deletion (154). Notably, vertebrates represent
all of the currently studied postpolyploid animal genomes. It is not clear if this pattern of gene
deletion following WGDs is shared by all animals (14, 93).

The slow rate of gene removal in animals contrasts with the flowering plant–centric perspec-
tive that genes are rapidly deleted and genomes highly reorganized following WGDs. Slow gene
deletion may impede the rate at which dosage balance problems are resolved following WGDs
as well as reduce the rate of diploidization. The rapid gene deletion in flowering plants may al-
low them to resolve dosage balance problems much faster than animals. This hypothesis might
help explain why polyploidy is rarer in animals compared to plants (102, 117, 125). Future studies
should confirm if this pattern of gene deletion is shared by all animals. Recent genomic analy-
ses revealed multiple paleopolyploidies in the ancestry of various invertebrate lineages, such as
insects, horseshoe crabs, spiders, and mollusks (31, 62, 92, 122, 186). These ancient polyploids
can be used to test if this pattern of gene deletion is shared by invertebrates. To test this hy-
pothesis, one needs to assess the average rate of pseudogenization and gene deletion following
polyploidy in animals and compare it to that in plants. Synteny analyses on high-quality animal
and plant genomes are needed to estimate the average rate of gene loss. Variation in the rates and
mechanisms of diploidization will likely be found. For example, a recent study using 13 Parame-
cium genomes shows a slower post-WGD gene loss rate compared to plants and vertebrates (61).
Future studies are needed to further investigate the mechanisms and patterns of gene deletion
following WGDs across eukaryotes.

Differences in the rate of diploidization between plants and animals may also impact diversifi-
cation dynamics following polyploidy. A lag time between ancient WGD and diversification has
been hypothesized to occur in plants (150). A recent study in salmonids suggests that potential
lineage-specific ohnologue resolution (LORe)—which is mechanistically similar to the previously
proposed divergent resolution hypothesis of Werth & Windham (174)—may result in delayed
diploidization among lineages and could explain the lag time model in plants (24, 145). It is pos-
sible that the exceptionally slow rate of diploidization in salmonids may provide enough time for
divergent resolution to occur in distinct lineages and contribute to diversification and adaptation.
However, the evidence for divergent resolution is limited in plants. Previous studies have found
that descendant lineages share similar genome organization with no evidence of significant dif-
ferential and reciprocal genome evolution (44, 148). Further, Muir & Hahn (116) modeled the
dynamics of divergent resolution and diversification following polyploidy. They found that diver-
gent resolution required a stringent set of conditions to drive speciation,with population dynamics
rather than genetics driving speciation dynamics (116). Better empirical estimates of diploidiza-
tion rates are needed to model and assess if mechanisms such as divergent resolution can explain
variation in speciation rates and genomic differentiation. This example highlights the need for
understanding differences in the rate of diploidization between plants and animals.

FINAL THOUGHTS AND FUTURE DIRECTIONS

Diploidization involves a diversity of mechanisms to return polyploid genomes to an effec-
tively diploid state. New comparative and population genomic data combined with cytogenetic
and molecular biological approaches will continue to uncover the genetics and biology of the
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mechanisms involved in diploidization. Perhaps the most important next step in improving our
understanding of diploidization is developing a more rigorous and objective framework for
testing hypotheses about diploidization. Many studies of diploidization are largely descriptive.
This is fair because we are still in the relatively early days of discovering ancient WGDs and
their legacies in eukaryotic genomes. As we move forward and more data become available, we
need to work toward more explicit hypothesis testing of diploidization. There has been progress
in this area for some aspects of diploidization, such as hypotheses on subgenome dominance
(17). Developing model and simulation-based approaches to evaluate and test diploidization
hypotheses would push the field forward. For example, model-based analyses of chromosomal
evolution first introduced with chromEvol provided a new phylogenetic framework to test
hypotheses of cytological evolution (108). Similar modeling and simulation approaches would
permit researchers to more rigorously test hypotheses and develop more informed expectations
about the outcomes of diploidization caused by different mechanisms and forces. Ultimately, the
scale of data will demand more rigorous approaches as single-genome analyses make way for
phylogenomic and population genomic investigations.

More rigorous analyses of diploidization will also allow us to address perhaps the most inter-
esting question about the entire process: Why diploidize at all? Given the prevalence of diploidy
among eukaryotes and the frequency of polyploid speciation in plants, we can deduce that poly-
ploid species either diploidize or go extinct (4, 5).Why do polyploid species ultimately diploidize?
It may be that bivalent pairing is inherently more stable than multivalent pairing and increases
fitness. Perhaps bivalent pairing eventually leads to disomic inheritance and chromosomal differ-
entiation by drift (85). Alternatively, diploidization may be driven to more efficiently purge dele-
terious substitutions in polyploid genomes (126). It may be that natural selection is more efficient
in diploid genomes (113, 127), and selection in the environment, rather than the genome, drives
diploidization.Model and simulation-based analyses of these and other hypotheses would provide
new ways to explicitly test the ultimate causes and drivers of diploidization. Coupling comparative
genomic analyses and data with studies that are explicitly aimed at measuring the fitness of the
changes associated with diploidization are also needed. A challenge of studying diploidization is
that many of the processes happen in that shadowy area of inference where the power of popu-
lation genetics starts to fade but comparative phylogenetics may not be possible because of too
few species. Moving forward, a combination of explicit models and simulations with data from
carefully selected systems will help shine a light on the shadow of polyploidy.
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