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Abstract

Photosynthesis is an important remaining opportunity for further improve-
ment in the genetic yield potential of our major crops. Measurement, anal-
ysis, and improvement of leaf CO2 assimilation (A) have focused largely
on photosynthetic rates under light-saturated steady-state conditions.How-
ever, in modern crop canopies of several leaf layers, light is rarely constant,
and the majority of leaves experience marked light fluctuations throughout
the day. It takes several minutes for photosynthesis to regain efficiency in
both sun-shade and shade-sun transitions, costing a calculated 10–40% of
potential crop CO2 assimilation. Transgenic manipulations to accelerate the
adjustment in sun-shade transitions have already shown a substantial pro-
ductivity increase in field trials.Here, we explore means to further accelerate
these adjustments and minimize these losses through transgenic manipula-
tion, gene editing, and exploitation of natural variation. Measurement and
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Sink capacity:
the plant’s capability
to utilize
photosynthetically
assimilated carbon in
respiration and
growth, including the
formation of seed,
fruit, and storage
organs such as tubers

In silico:
experimentation
performed by
computer simulation

Leaf CO2
assimilation (A):
the net rate of CO2
uptake per unit leaf
area (μmol m−2 s−1)

analysis of photosynthesis in sun-shade and shade-sun transitions are explained. Factors limiting
speeds of adjustment and how they could be modified to effect improved efficiency are reviewed,
specifically nonphotochemical quenching (NPQ), Rubisco activation, and stomatal responses.
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1. INTRODUCTION

Our title, “Into the Shadows and Back into Sunlight,” describes the progression of this review of
photosynthetic efficiency in fluctuating light but is also a metaphor for the attention that photo-
synthesis has received in crop improvement over the last few decades. Photosynthesis was viewed
as a means to improve both food and energy supply in the 1960s and 1970s (196). However, fail-
ure to make progress, plus the views that the ability of a plant to utilize additional photosynthate,
i.e., sink capacity, was likely limiting and that highly selected elite cultivars showed no better
leaf photosynthetic rates than wild ancestors, placed a shadow over further work (68, 79, 188).
In the intervening period, rapid progress in understanding limitations to photosynthesis at the
biochemical and molecular levels, in addition to improved tools for measuring and analyzing pho-
tosynthesis in vivo and the emergence of the ability to probe the process in silico through high
performance computing (16, 18, 66, 67, 166, 246, 253, 256, 266, 282, 288, 295, 305), opened the
door to new approaches to engineering improved photosynthetic efficiency (163, 177, 242, 244).
The bioengineered improvements in photosynthetic efficiency that have increased productivity
and sustainability in replicated field trials (137, 165, 254, 298) have given further vigor to this ef-
fort. New among current approaches is a focus on nonsteady-state photosynthesis (191, 193, 249,
260, 307). Overwhelmingly, measurement and analysis of leaf CO2 assimilation (A) have focused
on steady-state photosynthesis under conditions of constant high light. For leaves within a crop
canopy in the field, light is never constant.Here, leaves are subject to rapid changes in light due to
intermittent cloud cover, dynamic self-shading caused by the movement of overlying leaves, and
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Figure 1

(a) Light at a point on a leaf in the second layer of a crop canopy. (b) Solid line shows the predicted leaf CO2 uptake rate (A) from the
light levels illustrated in panel a, assuming an instantaneous response. Dashed lines illustrate the typical lags in response. The
differences between the solid and dashed lines represent the loss in photosynthetic efficiency during light fluctuations. Accumulated
over one day for a crop canopy, these losses may amount to 10–40% (263, 281, 307). Data shown in graphs are from Reference 307.

the passage of the sun across the sky (249, 260, 281, 307). Adjustment to fluctuations in light is at
the level of the individual chloroplast and stoma. At this resolution, fluctuations in light are almost
instantaneous. In a canopy on a clear sky day, as the sun crosses the sky, one second a stoma or
chloroplast is in full sunlight, the next in the shade of an overlying leaf. Yet adjustment of CO2

assimilation to the change will take minutes (Figure 1). A leaf in the shadow of a single overly-
ing leaf will typically receive only one-tenth of direct sunlight. Because of the slow adjustment
of photosynthesis and stomata to these changes, leaves and canopies operate at an efficiency well
below that achieved at steady state. Addressing this opens new opportunities for improving crop
photosynthesis and sustainability in terms of water use and crop yield; some of these opportunities
have now been achieved in field trials of engineered plants (137). This, however, is just a starting
point, and the purpose of this review is to highlight further opportunities.

Why is this increased crop productivity needed? From the 1970s until 2014, the proportion
of the global population that was calorie insufficient declined steadily. In 2014, this reversed and
has steadily risen since, approaching one billion malnourished people, nearly 10% of the world
population, in 2021. While such food shortages could be expected in conflict zones, numbers
are also rising in nonconflict zones (64). The world is forecast to need 60% more food in 2050
than today, and, at current rates of increase in food crop yields per hectare, there could be a very
substantial shortfall in supply (226, 227). Particularly affected are countries of sub-Saharan Africa
and lower-income countries in Southeast Asia. Ironically, these are among the countries forecast to
experience some of the greatest population growth and where agricultural production has already
been most impacted by climate change (203). A further irony is that many of the food insufficient
are farmers, feeding their families from a quarter- to half-hectare plot. One reliable way to ensure
future supply and reverse the current rise in food insufficiency is to provide these farmers with
seed that will increase sustainable yields per hectare (63, 267).

The 1950s and early 1960s saw large-scale famines, some due to conflict and poor policies, but
others because regions simply could not produce enough food to support growing populations and
demand. The Green Revolution provided the means to grow sufficient food and was the major
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contributor to ensuring supply could meet demand for the next few decades. It was a genetic
revolution, providing farmers with seed with a higher genetic yield potential and agronomy to
realize the increased potential (62, 211). However, the technologies of the Green Revolution are
meeting their biological limits (227). The major advance of the Green Revolution was breeding
cultivars that partitioned more of their biomass into the part of the crop that is eaten, for example,
the grains of major cereals. Much was achieved by dwarfing cultivars to invest less in stems and
more in grain (211). Before the Green Revolution, the major grains had a harvest index of about
30% (i.e., 30% of their shoot biomass was grain). By the turn of this century, more typical harvest
indices were 50–65%. If grain is to continue to be supported by some form of stem and structure,
it is hard to see how much further improvement in harvest index can be achieved (61). In his 1997
address to the Royal Society, wheat physiologist Lloyd Evans looked at the prospect of doubling
the food supply by the middle of this century and noted that “it is not apparent how a doubling
of yield potential can be achieved unless crop photosynthesis can be substantially enhanced by
genetic engineering” (61, p. 901). Photosynthesis, directly or indirectly the source of all of our
food, is an obvious target. However, photosynthetic efficiency, even in the best elite cultivars,
is less than one-third of its theoretical efficiency (306), so we are far from its biological limits.
Further, the photosynthetic efficiency of elite cultivars today is not substantially different from
that of their wild relatives and pre–Green Revolution cultivars, indicating that breeder selection
has done little to improve this (79, 131). So why is there now a chance to improve photosynthesis?

While the pathways of photosynthetic electron transport ( J), carbonmetabolism, and nitrogen
metabolism were largely elucidated more than half a century ago, innovations of the last two to
three decades have allowed the identification of points of limitation and means to address these.
Sufficient data have accrued to allowmathematical descriptions of all of the discrete steps, compu-
tational simulations, and in silico optimizations (120, 305, 308). In parallel, genomics, transcrip-
tomics, metabolomics, and fluxomics have also provided insight into limitations and the means to
address them (13, 25, 58, 120).Here, we assess the progress and potential in engineering improved
photosynthetic efficiency within the leaf, first in sun-shade transitions and then in shade-sun tran-
sitions (Figure 1b). We then consider the action of stomata, which frequently co-limit speeds of
induction of photosynthesis on shade-sun transitions, while their slow rate of closure following
sun-shade transitions lowers water-use efficiency.

2. INTO THE SHADOWS

2.1. Nonphotochemical Quenching

In full sunlight, leaves receive more light energy than may be used in photosynthesis. If this excess
energy is not dissipated, then a buildup of excited chlorophylls and highly reduced electron car-
riers in the photosynthetic electron transport chain occurs, leading to the formation of harmful
reactive oxygen species (ROS) (136, 183, 259). Mechanisms collectively referred to as nonpho-
tochemical quenching (NPQ) have evolved to dissipate this excess energy as heat, protecting the
photosynthetic apparatus from such damage (44, 101, 159, 189, 194, 199, 230). The major form of
and fastest-relaxing NPQ is energy-dependent quenching (qE) (135). Other processes contribut-
ing to NPQ that relax progressively more slowly (Figure 2) are zeaxanthin-dependent quench-
ing (qZ) (198), state transitions (qT) (221), photoinhibition (qI) and photoinhibition-independent
quenching processes such as qH (8, 170).

In a field canopy, qE is activated when the amount of incoming energy exceeds the capacity of
electron sinks, as occurs during sunflecks. The threshold light level inducing this process is low-
ered when stresses, such as drought, nutrient deficiency, or temperature extremes, further limit
photosynthesis (162). qE is therefore important for plant fitness (139), and its enhancement will
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Calculating nonphotochemical quenching (NPQ) relaxation parameters. The graph depicts the relaxation of
NPQ during 50 min of dark relaxation following high light treatment. Relaxation kinetics can be calculated
by fitting a double exponential function (blue line), where components describe connected biological
processes, with Aq1 corresponding to fast-relaxing energy-dependent quenching (qE), Aq2 capturing qZ and
qT, and the constant Aq3 representing long-term quenching, including qI. The half-lives of relaxation of Aq1

and Aq2 are determined by the parameters τq1 and τq2, such that NPQ = Aq1(−
1

τq1 ) + Aq2(−
1

τq2 ) + Aq3.

reduce photoinhibition (qI) (123, 158) and increase biomass production (102).However, too much
qE can compromise photosynthesis by converting excitation energy that could be used for CO2

assimilation into heat (102, 190, 193, 194, 224). The ancestors of today’s crops largely evolved
in resource-limited open habitats where there would be little self-shading. Today, most crops are
grown at high population densities and produce canopies of several layers, such that most leaves
will experience considerable intermittent self-shading (Figure 1a). As a result, optimizing the
amount of NPQ and the speed of its response to fluctuating light is an effective strategy to im-
prove crop performance (190, 307). Figure 1b illustrates the cost this has on A during sun-shade
transitions. Modeling of canopy lighting suggests an accumulated 10–40% loss of potential crop
canopy CO2 assimilation over the course of a day, compared to an instantaneous cessation of NPQ
on the transition (281, 308).

2.2. Mechanism of Nonphotochemical Quenching

Detailed understanding of the mechanisms of NPQ is required to guide engineering approaches.
The precise mechanism of qE remains controversial. However, knowledge of the molecular
components involved in qE is sufficient to enable initial efforts at optimizing performance. qE
is mediated by photosystem II subunit S (PsbS) (157), lumen pH, and a VAZ cycle involving
interconversion of the xanthophylls: violaxanthin, antheraxanthin, and zeaxanthin. Activation and
relaxation are modulated by changes in the thylakoid proton motive force, composed of a proton
gradient (�pH) and electric field (�ψ) (257). Accordingly, proton motive force is controlled
by the activity of the proton-pumping chloroplast adenosine triphosphate (ATP) synthase (119)
and thylakoid ion transporters including K+ efflux antiporter 3 (KEA3) (9), Voltage-dependent
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Violaxanthin
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chloride channel 1 (VCCN1) and VCCN2 (52), Chloride channel e (ClCe) (93), and Phosphate
transporter 4 family member 1 (PHT4;1) (10, 122, 219, 255). A�pH develops across the thylakoid
lumen (27) on illumination, leading to protonation of PsbS (158) and activation of violaxanthin
de-epoxidase (VDE) (83), in turn triggering the conversion of violaxanthin to zeaxanthin via
antheraxanthin to activate quenching (42, 108).

Manipulation of ion transporters has therefore been suggested as a means of optimizing NPQ
in a fluctuating light environment. Accordingly, overexpression of ion transporter KEA3 increased
the rate of NPQ relaxation by accelerating the dissipation of �pH through the export of protons
from the lumen (11). However, a constitutive increase in ion flow would reduce NPQ and linear
electron flow by reducing �pH, decreasing protonation of PsbS and slowing proton pumping by
the ATP synthase complex (37).Consequently, deregulation of KEA3 increased short-term carbon
assimilation by reducing NPQ, but at the cost of photodamage during prolonged exposure to high
light (271). It is therefore unclear thatmanipulation of the rate of formation of protonmotive force
could benefit crop growth, and these data emphasize the importance of continuing to advance
modeling in concert with experimentation andmeasurement ofNPQ to guide engineering efforts.

2.3. Measuring Nonphotochemical Quenching

A variety of spectroscopic methods have been developed to probe NPQ (19, 119, 181, 192). Most
commonly, the different NPQ components (qE, qT, and qI) are determined by applying repeti-
tive saturating light pulses during the transition from high light to dark and observing the decay
kinetics during the quenching relaxation (Figure 2). Measurements of NPQ components are fre-
quently based on the Stern-Volmer equation since this method is preferred in studies that evaluate
plant stress physiology (134). Suchmeasurements are traditionally done with the pulse-amplitude-
modulated fluorometers that can work alone or be coupled with portable gas exchange systems,
allowing the acquisition of chlorophyll fluorescence and gas exchange parameters simultaneously
(137).However, these approaches are low throughput, and the increased need for high-throughput
phenotyping to screen germplasm or multiple genetic transformation events has driven the devel-
opment of chlorophyll fluorescence imaging techniques, which include systems based on pulse-
amplitude-modulated imaging (204, 243), such as FluorCam (197), CF Imager (192), and other
light-emitting diode (LED)-induced fluorescence imaging systems (109, 138).

2.4. Modeling Nonphotochemical Quenching

Modeling approaches have been used to clarify the mechanism of NPQ, simulate the influence of
NPQ on photosynthetic efficiency, and estimate the loss of carbon assimilation by crop canopies.
Mechanistic models have been used to simulate short-termNPQ,which induce and relax within a
few minutes (Figure 2).Models found this type of NPQ to be associated with the content of PsbS
(157), zeaxanthin, antheraxanthin (47, 162), lumen pH (112), and accumulation of lutein (176).
However, some of the molecular mechanisms, and the interactions between components, remain
unclear. Several mechanistic models were developed to study photosynthetic electron transport
and short-term NPQ dynamics using differential equations (53, 141, 176, 250, 299, 308), where
qE is assumed to be activated by zeaxanthin (52), de-epoxidized xanthophylls (zeaxanthin + an-
theraxanthin), protonated PsbS (52, 179, 299), and components triggered by lumen pH, including
PsbS and VDE, described by a Hill equation. These models indicate that PsbS contributes to the
fast response of NPQ to light fluctuations, while the xanthophyll cycle is more closely related
to the slower, intermediate phase of NPQ (Figure 2). The further addition of lutein-dependent
NPQ into a simplified biochemical model (155) suggested that both zeaxanthin and lutein affect
NPQ independently.
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As structural details of the photosystem II supercomplex were revealed, qE was incorporated
within a membrane structure model of excitation transfer (20), which demonstrated that two-
dimensional diffusion is needed to accurately simulate qE and the quantum yield of photosystem II
primary photochemistry, where excitation energy is converted into chemical energy by charge
separation. Although these models effectively explain dynamic chlorophyll fluorescence signals,
without the restrictions on the use of electron transport products, ATP, and reduced nicotinamide
adenine dinucleotide phosphate (NADPH) by carbon metabolism, the models were not able to
directly estimate the effect of NPQ on CO2 assimilation. Therefore, more comprehensive mod-
els (141, 180, 185, 186, 308) integrating the NPQ process into the whole photosynthetic system
establish the relationship between NPQ and leaf CO2 assimilation required to predict the effects
on crop carbon gain and productivity.

Although some mechanisms are not fully understood, such as how lumen pH, PsbS, and lutein
affect NPQ kinetics and how slower components emerge after qE, with better understanding of
NPQ, mechanistic models continue to improve. Empirical models of qI and hypothetical canopy
models have been used to estimate the loss of crop canopy CO2 assimilation due to the slow relax-
ation of NPQ on sun-shade transitions. They suggest that qI reduces carbon fixation between 5%
and 30% over a diurnal course (162, 285, 307). The significant limitation indicates a large poten-
tial for increasing canopy photosynthesis by optimizing NPQ.However, the accuracy of previous
estimates was limited by simplified canopy structures and light distributions, and short-termNPQ
dynamics were not incorporated. More recently, an actual three-dimensional canopy structure of
soybean was integrated with forward ray tracing to predict the spatial dynamics of lighting across
the canopy. With this dynamic lighting, combined short-term NPQ and qI limitations resulted
in a predicted 9% and 11% reduction in canopy carbon assimilation on cloudy and sunny days,
respectively (281). The three-dimensional canopy structure was also used to evaluate the role of
PsbS in a rice canopy, accounting for altered canopy structure and the light environment (72).
The simulation predicted an early growth advantage of PsbS overexpression and that manipu-
lating photoprotective mechanisms can impact whole-canopy function. These models show that
acceleration of the relaxation of NPQ on sun-shade transitions would potentially give large gains
in crop canopy CO2 assimilation.

2.5. Variation in Nonphotochemical Quenching as a Source
for Crop Improvement

Models and measurements show that NPQ is sustained longer than necessary in the shade after
a transition from direct sunlight at the cost of photosynthetic efficiency (306, 307). This may be
overcome by accelerating the rate of NPQ relaxation through increase in the rate of conversion
of zeaxanthin to violaxanthin on the transition from sun to shade. This could be achieved by in-
creasing the activity of zeaxanthin epoxidase (ZEP). However, such an increase would also lower
zeaxanthin content in full sunlight, remove protection against photodamage, and lessen capacity
for scavenging of ROS. Researchers therefore reasoned that VDE and PsbS would also need to be
upregulated to maintain protection in high light, while allowing faster relaxation of NPQ during
sun-shade transitions (137). Subsequent combined overexpression of ZEP, PsbS and VDE inNico-
tiana tabacum proved to accelerate both the induction of NPQ during a shade-sun transition and
its relaxation during a sun-shade transition, resulting in an approximately 15% improvement in
photosynthetic efficiency, measured as mol CO2 assimilated per mol photon absorbed. In a repli-
cated field trial, three independent transformation events showed significant 14–21% increases in
productivity (137). This proof of principle spurred further interest in engineering this change in
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crops and was subsequently demonstrated to provide substantial yield increases in maize, rice, and
soybean (269). It has also raised the question of whether there is natural variation in the speed of
NPQ relaxation that can potentially be exploited in breeding (279).

Studies on diverse genotypes of rice (123, 279),Arabidopsis (113, 116, 231, 272), and soybean (94,
95) have demonstrated the existence of substantial intraspecific variation in NPQ. In a genome-
wide association study of NPQ capacity across a rice diversity set of 529 accessions, OsPsbS1 ac-
counted for 40% of the variation inNPQ (279) with amutator-like transposable element (MULE)
in the promoter region associated with increased transcription appearing as a major factor (123,
201). However, differences in PsbS are insufficient to account for variation in other populations,
and manipulating the VAZ cycle may not always result in increased performance (77). A greater
understanding of the diversity of mechanisms driving variation and the conditions where VAZ
manipulation would be beneficial is therefore required to assess the potential for this approach to
improve crop plants (137). Given the dual role of de-epoxidated xanthophylls in both NPQ and
ROS scavenging, impacts of manipulation on the latter role need to be understood.

2.6. Diversity of Nonphotochemical Quenching Mechanisms

A wide diversity of NPQmechanisms and responses have been described between photosynthetic
organisms, allowing adaptation to ecological niches (15, 43, 45, 46, 127). In some plants, a second
xanthophyll cycle, the lutein epoxide cycle (LxL cycle), operates in tandemwith the universal VAZ
cycle (29, 78, 124, 175, 176). Similar to the VAZ cycle, the LxL cycle is regulated by the antagonis-
tic activities of VDE and ZEP, which also drive the interconversion between lutein epoxide (Lx)
and lutein (98, 293). Both xanthophyll cycles respond to changes in photosynthetic photon flux
density (PPFD) by modulating light harvesting and energy dissipation in photosynthetic antenna
complexes; however, the LxL cycle operates on a much slower timescale, and its contribution to
these processes is difficult to untangle from rapid VAZ-mediated responses (173). Introduction
of the LxL cycle to Arabidopsis mutants lacking the VAZ cycle demonstrated the role of lutein
in photoprotection and showed the role of Lx-enhanced light harvesting in low light (154, 155).
Natural variations of the LxL cycle exist in a range of shade-tolerant, taxonomically diverse plants
(175, 176), but most crops appear to lack an active LxL cycle and incorporate lutein in their pho-
tosystems despite the deep shade of their lower canopy. This inability to relax lutein-mediated
photoprotection in low light reduces the efficiency of energy transfer to photosystem II reaction
centers, causing dissipation of excitation energy that could be used in photosynthesis in the lower
canopy (60, 110, 174). Engineering crops to accumulate Lx in the lower canopy to promote relax-
ation of photoprotective mechanisms conferred by lutein accumulation is therefore a promising
target for further efforts to improve photosynthetic efficiency.

3. BACK INTO THE SUNSHINE: INDUCTION OF PHOTOSYNTHESIS
ON SHADE-SUN TRANSITIONS

Induction describes the rise in photosynthesis to a new steady state as a leaf goes back into the sun
after darkness or a period of shading (Figures 1b and 3a).During this phase, by definition,A is less
than it is at steady state and therefore represents a loss of potential efficiency that may be described
as forgone CO2 assimilation. The speed of induction is affected by many processes, requiring in-
creases in ribulose-1,5-biphosphate (RuBP) regeneration,RuBP carboxylase/oxygenase (Rubisco)
activity, stomatal conductance (gs) and mesophyll conductance (gm). Simultaneously, there is need
to avoid the damaging consequences of overexcitation of the photosynthetic apparatus. So here,
induction of NPQ and capacity for removing ROS to a level sufficient to deal with the effects
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of excess absorbed light energy are also critical (32, 114, 115, 210). Induction is a particularly
vulnerable period since photosynthesis is removing less of the absorbed light energy than at steady
state, and therefore speeding induction in itself will improve photoprotection. Rapid induction
improves the margin of net CO2 gain from intercepted quanta, i.e., radiation-use efficiency (306),
by minimizing the CO2 assimilation that is forgone when induction is slower (290).

3.1. Measuring and Analyzing Limitations in Induction

Photosynthetic induction can be conceived as the repeatable set of responses to an increase in
PPFD and is usually measured in the context of step changes in PPFD from strongly light-limited
(darkness or shade) to light-saturated (sun) photosynthesis (Figure 3a,b; Tables 1–3).

Comparative measures of the impact of forgone A can be obtained from time series by
establishing the time dependence of A as it responds to a step change in PPFD from shade to
sun (Figure 3). Forgone A can be integrated across the induction, or comparisons can be made
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Figure 3

Induction (a) measured as a time series following a step change in photosynthetic photon flux density
(PPFD) and indicating the concept of forgone assimilation that could have been achieved through
instantaneous physiological adjustment. (b) The same induction sequence is shown but plotted onto the plane
of the steady-state light response, where open symbols show the rate achieved at completion of induction at
each light level. (c) The same induction replotted on the plane of the leaf CO2 uptake (A)/intercellular CO2
concentration (ci) response. In this example, the initial, rapid phase of the sequence runs along a diagonal line
that if drawn through the data would intersect the x axis at a CO2 partial pressure in Pascals (Pa) equivalent
to that outside the leaf, the supply function. The open symbols show the photosynthetic rate achieved at
steady state for each ci (67). Arrows show how this indicates a biochemical control over induction with little
influence of stomatal conductance. Following the initial rapid phase, there is an extended period in which
biochemistry and stomatal conductance act in conjunction to control the trajectory of the return to steady
state. (d) Measurements made on a separate leaf demonstrate the shift in the A/ci response, with
measurements made at 2 min intervals from 2–20 min after shade, color coded to match timings in
panels a–c. Data are for Brassica oleracea, from Reference 264.
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Table 1 Analyses of crop plant induction using dynamic A/ci approaches with parameters obtained

Reference Species Accessions per species Preshade treatment A/ci parameters reported
252 Glycine max 2 Dark Vc,max, Jmax, ci, ls
251 Glycine max 3 Dark Vc,max

263 Triticum aestivum 1 Fully induced Vc,max, J, Ls, ci,trans
236 Triticum aestivum 10 Fully induced Vc,max, J, ci,trans
264 Brassica napus, Brassica

oleracea, Brassica rapa
1 Fully induced Vc,max, ci,trans

2 Oryza sativa 3 Dark Vc,max, LSN
39 Manihot esculenta 3 Dark Vc,max, ls

Abbreviations: A, leaf net CO2 assimilation; ci , intercellular [CO2]; ci,trans, ci at which limitation transitions away from Vc,max; J, rate of electron transport;
Jmax, maximum rate of electron transport; ls, stomatal limitation by differential method; Ls, stomatal limitation following Reference 67; LSN, partitioning
of stomatal and nonstomatal limitation following Reference 114; Vc,max, maximum Rubisco carboxylation rate.

based on the time taken to obtain, e.g., 50% or 90% of the steady-state A. Point comparisons are
commonly expressed as induction states; however, alongside differences in experimental proto-
cols, alternative normalizations to final A or the difference between sun and shade values of A (7,
210) make values for forgone A and induction states difficult to compare across studies. Induction
can also be probed to evaluate its constituent processes. Key approaches using gas exchange
measurements are partitioning of forgone A between stomatal and biochemical components (41,
270) and probing limitations due to Rubisco versus RuBP regeneration using induction under

Table 2 Studies and methodologies used to evaluate the contributions of biochemical and stomatal limitations during
induction in crops

Reference Crop species
PPFD sequence
(µmol m−2 s−1) Analytical method

202 Hordeum vulgare 25 (>120 min); 800 Assumes a linear A/ci response in calculating photosynthetic
CO2-use efficiency: (A + Rd)/(ci − �∗)

171 Coffea arabica Dark (360 min); 20
(5 min); 1,500

Assumes a linear A/ci response to correct A to ci observed at
full induction using A∗ = [(A + Rd)(ci,f − �∗)]/(ci − �∗) −
Rd. Diffusional limitation (A∗ − A) and biochemical
limitation (Af – A∗) are normalized to steady-state gross
assimilation (Af + Rd)

114 Solanum lycopersicum Dark (60–120 min); 1,000 Nonlinear steady-state A/ci response used to correct A to
atmospheric [CO2] (diffusional limitation) or final
steady-state ci (biochemical limitation), normalized to the
change in A during induction (Af − Ai)

277 Helianthus annuus Dark (not specified, likely
various); 1,000

Follows Reference 202

40; see also 41 Gossypium hirsutum,
Spinacia oleracea, Vicia
faba, Vitis vinifera

Dark (overnight); 25 (until
steady state); 1,000

Differential method, partitioning limitation due to Vc,max

(one-point estimate assuming infinite gm and Rubisco
limited A) and gsc

3 Oryza sativa Dark (30 min); 50 (9 min);
1,500

Graphical comparison of A∗ = A(300/ci). Simplified method
assuming a linear A/ci response through origin

Abbreviations: A, leaf net CO2 assimilation; A∗, A corrected for limitation by stomatal diffusion; Af, final A at the end of the induction period; Ai , initial A
at the start of the induction; ci , intercellular CO2 concentration; ci,f , final ci at the end of the induction period; [CO2], CO2 concentration; �∗, CO2

compensation point in the absence of Rd; gm, mesophyll conductance; gsc, stomatal conductance to CO2; PPFD, photosynthetic photon flux density; Rd,
day respiration; Vc,max; maximum Rubisco carboxylation rate.
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Intercellular CO2
concentration (ci):
the CO2 concentration
within the air spaces of
the leaf

Maximum rate of
carboxylation at
Rubisco in vivo
(Vc,max): the highest
rate of CO2
assimilation at Rubisco
that a unit of leaf area
can support in vivo
under a given set of
conditions
(μmol m−2 s−1)

Rubisco activase
(Rca): the enzyme that
activates Rubisco by
removing sugar
phosphate inhibitors
from its catalytic sites

different CO2 concentrations ([CO2]) (35, 130). Common to these approaches is an interpretation
of induction as a dynamic change in the response of A to intercellular CO2 concentration (ci),
hereafter referred to as an A/ci response (17, 128, 130, 202) (Figure 3c; Tables 1 and 2).

Gas exchange measurements that directly evaluate how the A/ci response changes during
induction (35) have recently been implemented in several crop species (Table 1). Details vary be-
tween experiments, but the common approach is to make a series of inductionmeasurements, each
at a different chamber inlet [CO2], allowing the construction of so-called dynamic A/ci responses
for different time points through induction (Figure 3c,d). The approach enables the separation
of stomatal limitations from those within the mesophyll through the induction, where biochem-
ical limitations can be separated between the maximum rate of carboxylation [CO2] (Vc,max)
equating to the maximum in vivo Rubisco activity, J, and triose-phosphate utilization (TP) (263).
The benefit of identifying such subprocesses or separating stomatal and biochemical limitations
is that physiological targets for intervention are narrowed. This approach has shown differences
between and within crop species in the key factors limiting speed of induction (202, 264).

Dynamic A/ci measurements, while conceptually simple and providing a rich parameterization
for understanding induction responses, are arduous to implement (252, 263). Where the primary
biochemical limitation can be inferred or assumed, gas exchange time series can alternatively be
used to good effect.Applications in crop species include partitioning or comparison of biochemical
and stomatal limitations (Table 2). The slow phase biochemical limitation affecting photosynthe-
sis during induction (Table 3) that is linked with the activity of the molecular chaperone Rubisco
activase (Rca) (32, 85) can be modeled by predicting diffusion-corrected values for A. Classic,
simplified approaches that obtain diffusion-corrected A by assuming linearity of the A/ci response
(85) have shown a reasonable match to dynamic A/ci and Rubisco activity assays (263, 290). More
accurate and powerful approaches are now being implemented by inversion of leaf photosynthesis
models (41).

Practically, three significant complications impact data quality from leaf gas exchangemeasure-
ments during induction. First, large step changes in irradiance affect the energy input to the leaf
and therefore leaf temperature. This destabilizes both leaf temperature and the calculated vapor
pressure deficit, with consequences for gas exchange system control loop feedback and estimates
of gs and, in turn, accuracy of ci determination. Second, standard simplifications used to establish
ci based on leaf conductance to CO2 assume that stomata are the primary pathway of both CO2

and H2O exchange, conditions that may be violated by stomatal closure during shade (87). Finally,
in commonly used commercial open gas exchange systems, standard equation sets are used that
assume a steady state in terms of gas concentrations measured from the leaf cuvette and/or refer-
ence air stream. During fast phases of induction, in particular the initial rise in assimilation that
has been attributed to recovery of RuBP concentration (130, 239, 240), the [CO2] inside the gas
exchange system cuvette can change so rapidly that longer system averaging times will smooth
out substantial change and introduce lags in apparent cuvette [CO2] because of incomplete air
turnover.Chamber air turnover in particular can be an issue where chamber volumes are relatively
large, flow rates are low, and leaves are small or have low rates of CO2 assimilation. Remedies in-
clude adjustment to limit the magnitude of PPFD change during sun-shade transitions while still
ensuring a shift from subsaturating to saturating irradiance, which has the additional benefit that
photoinhibition will be limited (114); calculation of chamber turnover times; and adjustment of
protocols, including use of appropriate time windows in postprocessing to emphasize the process
of interest. The duration, PPFD, and [CO2] during shade all affect initial gs during induction. In
protocols focused on biochemical limitations, adjusting these factors can be useful in establish-
ing good initial conditions of adequate gs for accurate and meaningful measurements (263, 264).
Errors will be least when large leaf areas and minimal chamber volumes are used.
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Time series measured during induction provide a wealth of physiological information. How-
ever, understanding speed of recovery on a shade-sun transition also requires understanding of
speeds of deactivation on sun-shade transitions. On transfer back to shade, photosynthesis is no
longer limited by the processes affecting light-saturated photosynthesis, yet changes in the capac-
ity of these processes need to be measured to predict speeds of recovery after different durations
of shade. For example, to quantify the rate of decrease in Rubisco activity or capacity for RuBP
regeneration during shade, gas exchange measurements need to be made for a series of shade du-
rations, and the post-shade induction state must be used to infer declines in the relevant processes
(129, 290). Gas exchange equipment is more widely available to the plant physiology community,
but in lab settings where enzyme activity assays are available, destructive sampling during shade
may provide more direct data with similar efficiency (240). A recent study using high-throughput
in vitro measurement of Rubisco activity in multiple leaf discs sampled with time after transfer
to shade has shown the deactivation of Rubisco to be between two and seven times faster than
previously assumed from indirect gas exchange measurements (262, 263). This suggests underes-
timation of the forgone A due to slow induction, since it shows that Rubisco deactivation occurs
on a shorter timescale than previously realized, meaning that even with one minute of shade, A
will require a significant time to recover on return to high light.

A significant limitation to direct estimates of in vivo induction of Rubisco activity has been
the availability of methods for establishing gm and therefore the response of A to chloroplast
[CO2] under dynamic conditions. Low precision and other methodological challenges mean that
attempts to constrain gm during induction using combined gas exchange and chlorophyll fluo-
rescence through the variable J method (114) have so far lacked the accuracy needed to clearly
identify induction dynamics. More promisingly, the use of isotope discrimination has recently
provided a detailed analysis of gm during shade-sun transitions in tobacco and Arabidopsis (233).
Because methods of preconditioning are diverse, and bifurcate in particular within dynamic A/ci
studies (Table 1), it is particularly interesting that gm responses measured by isotope discrimi-
nation were strongly affected by the preceding light environment. Relatively weak responses are
observed when previously sun-exposed leaves are shaded, and strong gm responses are observed in
dark-adapted leaves that transition to shade before measuring induction (233).

3.2. Activation of Rubisco

The complex regulation of Rubisco activity involves carbamylation of catalytic sites, inhibition
by certain sugar phosphates, and activation by Rca. In this section, the changes in the chloroplast
stroma that occur when a leaf transitions from shade-sun-shade that directly impact Rubisco ac-
tivity are discussed. Early in vitro studies showed that to efficiently catalyze the carboxylation and
oxygenation of RuBP, Rubisco must be carbamylated. Carbamylation depends on the pH, [CO2],
and magnesium concentration ([Mg2+]) of the chloroplast stroma (140, 166). The first step of car-
bamylation is binding of CO2 to the ε-amino group of lysine 201 in the Rubisco catalytic site (168).
CO2 binding to this amino group is highly pH dependent, with binding almost nonexistent at pH
7.0 yet optimal above pH 8.0, thus corresponding to the pH changes of the stroma on transition
from darkness to full sunlight (14, 167). It is unlikely that [CO2] for carbamylation is limiting in
the shade, since ci is constant or rises slightly with decreasing light levels (286). This bound CO2

is referred to as activator CO2, distinct from the substrate CO2. The carbamate formed by CO2

binding creates an anionic amino group to which Mg2+ binds rapidly and stabilizes the otherwise
unstable carbamate. Binding of both CO2 and Mg2+ forms the catalytically competent carbamy-
lated form of Rubisco. This is referred to as ECM, the enzyme catalytic site bound to activator
CO2 andMg2+, and is functionally distinct from the catalytic site free of CO2 andMg2+ (E).When
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2-Carboxy-D-
arabinitol
1-phosphate (CA1P):
a sugar phosphate that
inhibits the activity of
Rubisco and plays a
key role in its
regulation

Water vapor
pressure deficit
(VPD): the difference
(deficit) between the
amount of moisture in
the air and the amount
the air at leaf
temperature can hold

a leaf transitions from shade to sun, there is an increase in proton pumping from the chloroplast
stroma to the thylakoid lumen, coupled with an increased flux of counterionMg2+ from the lumen
to the stroma (104, 133, 142, 156, 205, 215, 216, 245). These ion fluxes result in a more alkaline
pH and increased [Mg2+] local to Rubisco, promoting formation of ECM. These conditions are
rapidly reversed, promoting decarbamylation to produce E, upon transition to low light (54, 262,
304). Importantly, the carbamylation of Rubisco catalytic sites in vivo is also dependent on RuBP
concentration ([RuBP]) and the activity of Rca (218).

In addition to binding ECM prior to catalysis, the sugar phosphate substrate RuBP binds
tightly and unproductively to the uncarbamylated catalytic site of E. Its concentration is satu-
rating at moderate to high light but declines to subsaturating levels at low light and in darkness
(32, 212). Subsaturating [RuBP] promotes Rubisco deactivation through dissociation of Mg2+ and
CO2 from catalytic sites (172, 217, 237). Tight binding of certain phosphorylated compounds to
catalytic sites also inhibits Rubisco activity (reviewed in 26, 208). The best-known of these in-
hibitors is 2-carboxy-d-arabinitol 1-phosphate (CA1P), which in some species accumulates after
at least one-hour exposure to low light and darkness (82, 184, 232). However, CA1P is not ubiqui-
tous and is unlikely to accumulate to levels that cause significant inhibition of Rubisco when leaves
are exposed to shade for shorter periods (<30 min). Thus, Rubisco can deactivate by decarbamy-
lation (E) or formation of a dead-end complex by tight binding of RuBP to the uncarbamylated
enzyme (E + RuBP = ER), depending on the balance between [RuBP] and [Mg2+] and the ability
of Rca to activate Rubisco.

Rca catalyzes the ATP-dependent removal of inhibitory compounds, such as RuBP or CA1P,
from Rubisco catalytic sites that can then be carbamylated (228). The activity of Rca is regulated
by the redox potential, adenosine diphosphate (ADP) to ATP ratio, and [Mg2+] of the chloroplast
stroma (90, 229, 301, 302), all of which change in response to the prevailing light level.Most plant
species characterized to date contain more than one isoform of Rca (238). In both Arabidopsis
and wheat, the Rca isoforms differ in their regulatory properties (32, 213, 241). Arabidopsis plants
expressing only the Rca isoforms that are insensitive to redox modulation or inhibition by ADP
(33, 300) and rice plants overexpressing Rca (76, 294) showed faster photosynthetic induction in
low-to-high light transitions and grew faster under fluctuating light conditions than the wild-type
forms from which they were derived.

The rate of CO2 assimilation by Rubisco in a leaf is determined by its catalytic properties,
abundance, and regulation. Previous efforts to enhance photosynthetic capacity by overexpressing
Rubisco (235, 258), Rca (75, 76), or a CA1P phosphatase that dephosphorylates Rubisco inhibitors
(160) have shown limited success, likely due in part to the negative correlation between Rubisco
abundance and activation state (33).However, overexpression of both Rubisco and Rca resulted in
enhanced photosynthesis and biomass production in rice at high temperature (220, 258). Careful
selection of the Rca isoforms to overexpress will be necessary to efficiently activate Rubisco and
increase photosynthesis in the fluctuating light of a crop canopy.

4. OPEN AND CLOSE THOSE DOORS FASTER BUT NOT SO WIDE

Stomata are the doors to gaseous exchange between a plant and the atmosphere, and they adjust
aperture in response to both external and internal cues. Increasing light, lowering [CO2], and low-
ering water vapor pressure deficit (VPD) are some of the stimuli that encourage stomatal opening.
Closure is driven by low or decreasing light levels, high [CO2] (5), and high VPD, as well as plant
hormones such as abscisic acid, ROS, nitric oxide, Ca2+, and pH signals (5, 30, 97, 146, 280, 296).
However, these triggers rarely occur in isolation; therefore, stomatal responses are the results of an
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Intrinsic water-use
efficiency (iWUE):
the CO2 gained by a
leaf relative to water
lost through the
stomata, where
iWUE = A/gs
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Figure 4

(a) Stomatal conductance (gs) and (b) photosynthesis (A) in wheat (blue circles) and tobacco (red squares) in response to a step change in
photosynthetic photon flux density (PPFD). Tobacco leaves were subjected to a step change in light from 100 μmol m−2 s−1 PPFD to
1,500 μmol m−2 s−1, while wheat leaves were subjected to a step change in light from 100 μmol m−2 s−1 PPFD to 1,000 μmol m−2

s−1. n = 5; error bars represent standard error. Guard cells (purple) and subsidiary cells (green) in the leaf epidermis of wheat and
tobacco are shown.

integration of multiple signals in a hierarchical manner (143, 147, 151). Additionally, considerable
variation in response times and magnitude of change exists both between and within species and
leaves within the plant (1, 2, 39, 182). As noted above, stomata along with activation of Rubisco
appear to be the major factors limiting the speed of induction of photosynthesis on shade-sun
transitions and are thus the major causes of forgone CO2 assimilation due to light fluctuation in
crop canopies (Figure 4). Further, balancing stomatal opening with induction of photosynthesis
within the mesophyll is clearly critical to water-use efficiency. If stomata open more rapidly than
photosynthetic induction within the mesophyll, then more water will be lost than necessary; if
too slowly, CO2 assimilation will be forgone. Crops and their cultivars clearly differ in the extent
to which stomatal opening limits photosynthetic induction (1, 2, 39, 182). The speed of stomatal
closure on a sun-shade transition is typically an order of magnitude slower than the drop in CO2

assimilation. This therefore has no effect on CO2 assimilation but will sharply lower water-use
efficiency in a crop canopy in the field.

Changes in stomatal aperture, and hence gs, are brought about by modifications in guard cell
turgor, driven by osmoregulatory pathways that move solutes and ions in and out of the cells, as
explained in detail in Section 4.1. This alters solute and water potential, facilitating the movement
of water into guard cells, causing them to swell and thus counteract the pressure exerted on them
by surrounding epidermal cells (74).Mechanically, the asymmetric thickening of their walls causes
paired guard cells to move away from each other, opening the stoma as their turgor pressure in-
creases and closing the stoma as turgor decreases. The capacity of stomata to allow CO2 and H2O
into and out of the leaf, expressed as gs, is influenced by both anatomical features and biochemi-
cal processes (146, 178). The close relationship between photosynthesis and gs is well established
(80, 287); however, in a dynamic environment, such as the field, stomatal responses to changing
conditions can be out of sync with photosynthesis (145, 209, 270). This will lower A (39, 182) and
erode intrinsic water-use efficiency (iWUE) (51, 73, 96, 150, 151, 182). Therefore, increasing the
rapidity of the response of gs and optimizing the coordination between gs and mesophyll demands
for CO2 in fluctuating light are gaining increasing attention as unexploited avenues to increase
photosynthesis, crop water-use efficiency and productivity.
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4.1. What Influences the Speed of Stomatal Responses?

The rapidity of stomatal responses is governed by a combination of biochemical, anatomical, and
structural components of the guard cells, as noted above. Changes in guard cell turgor are driven
by the uptake and release of solutes and ions, typically K+,malate, and sucrose,which alter osmotic
potential and water influx (22).The number and activity of transporters and/or ion channels deter-
mine the capacity for solute transport and therefore influence the rapidity of stomatal movements
(23, 24, 38, 84, 144, 219, 265). Anatomical features, including stomatal density (SD), the presence
or absence of subsidiary cells, and the size and geometry of guard cells, also impact stomatal re-
sponses (21, 88, 146). Smaller stomata, frequently associated with higher SD, often exhibit faster
responses than larger stomata (65, 73, 121), although this is most evident when comparing closely
related species (57, 182). The relationship between size and speed is based on a greater surface-
area-to-volume ratio in smaller stomata, which lowers the solute flux requirement for movement
(65, 73, 225).The dumbbell shape of grass guard cells also results in a high surface-area-to-volume
ratio, allowing faster movement than the kidney-shaped guard cells of dicotyledonous plants (31,
81, 96, 118, 182). Smaller guard cells in C4 crops may bring a double benefit. Unlike those of
C3 crops, leaves of C4 crops are saturated by the elevated [CO2] of today’s atmosphere, so gs can
be reduced to lower water loss without affecting CO2 uptake (164, 214). Engineering or breed-
ing for smaller stomata in these species would increase water-use efficiency in both steady-state
and nonsteady-state conditions (152). Adjacent subsidiary cells are key to faster movement in the
dumbbell-shaped guard cells of grasses, acting as a local reservoir of solutes and ions that can
move rapidly between the two cell types. This gives a rapid alteration of turgor pressure in the
guard cells while simultaneously removing the back pressure from the subsidiary cells (73, 222).
Finally, structural components, including actin filaments (56, 99, 103, 125) and cell wall proper-
ties (34, 292) that influence the shape of the guard cells, also affect the rapidity and magnitude of
change in gs. Carter et al. (34) argued that stomatal cell wall thickening at the poles is more impor-
tant for efficient stomatal opening than the commonly accepted view that radial thickening is the
key structural factor regulating stomatal aperture. Additionally, actin filaments within guard cells,
which control fusion of smaller vacuoles into a large vacuole, as found in some species and required
for osmoregulation, also influence the speed of stomatal responses and overall gs (106, 111).

4.2. Can the Speed of Stomatal Responses Be Manipulated?

Several laboratories have produced plants with differences in SD that have translated into differ-
ent gs responses to changing conditions (e.g., 21, 48, 92, 261); however, these studies have often
only considered steady-state gs, and only a handful have investigated the impact on stomatal ki-
netics in fluctuating light. By overexpressing epidermal patterning factor 9 (EPF9) or knocking
out EPF1 in rice, plants with greater stomatal densities and faster stomatal responses to changes
in light intensity were produced (234). Among EPFs, stomatal size was only reduced in the EPF9-
overexpressing plants, supporting the theory that smaller stomata are not a prerequisite for fast
responses (146, 182, 303). Alterations in SD can also influence stomatal patterning and clustering,
which can be detrimental to stomatal function and rapidity (50, 153, 207) due to decreased capacity
for solute fluxes (206), higher metabolic cost (144, 207, 225, 276), and water uptake requirements
(91). On the other hand, the stomata of the patterning mutant wer1-1, in which the surface loca-
tion of the guard cells is elevated above the subsidiary, open and close much faster than those of
the wild type (275). This was attributed to the ectopic nature of the guard cells, which removed
back pressure from adjacent cells. All of these studies suggest the existence of optimal SD, size,
and positioning to facilitate rapid stomatal movement. However, genetic manipulations that pro-
duced large changes in SD in Arabidopsis were counterbalanced by changes in aperture such that
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steady-state gs was unaffected (33). A reasonable assumption would be that such compensatory
mechanisms also hold true for the speed of response, and it may therefore be more appropriate
to focus on functional/metabolic targets. For example, Arabidopsis was engineered to overexpress
PATROL1 (126), which encodes a factor that regulates the localization of the guard cell plasma
membrane H+-ATPase (89). Because PATROL1 is essential for ion fluxes, its overexpression re-
sulted in faster stomatal responses to changes in PPFD.

Manipulation of solute transfer and ion channels within the stomatal complex represents an-
other possible target to improve the speed of stomatal responses. For example, knockout mutants
of the Slow anion channel 1 gene (SLAC1), which encodes a stomatal anion channel involved in
stomatal closure, exhibited higher rates of stomatal opening in rice (294). A further example in-
cludes monosaccharide/proton symporters in the plasma membrane in Arabidopsis, which are re-
quired for glucose imports from themesophyll into the guard cells and are linked to rapid stomatal
movements (70). However, the correlation between the speed of stomatal response and the speed
of solute flux and accumulation may not be direct (146). A systems modeling approach (36, 100,
273, 278, 283) has demonstrated that manipulating a single channel or transporter might not be
sufficient to achieve the desired changes in rapidity, as fluxes or transport of ionic species is often
linked to other channels and membrane voltage changes. Therefore, multiple channel manipula-
tion may be required, along with the consideration that increasing solute flux for rapid stomatal
movement also required a balanced and coordinated ionic exchange at both the plasma mem-
brane and tonoplast (144). This modeling approach provides a useful tool for identifying multiple
and/or novel targets for manipulation as well as a platform for testing potential synthetic biology
strategies. For example, guard cell expression of a synthetic light-gated K+ channel (BLINK1) re-
sulted in the production of plants with faster stomatal opening and, in turn, faster photosynthetic
induction (207).

In subsidiary cells, K+ channels in the plasma membrane inversely polarized with guard cells
facilitate rapid K+ fluxes during stomatal movements (169). Reciprocal concentration gradients
of abscisic acid between the two cell types also appear to be involved in the more rapid stomatal
responses of grasses to changes in light intensity (200, 223). Subsidiary cells also play an important
role in signaling, for example, via stomatal closure in maize leaves through drought-inducedH2O2

accumulation (297), while another study showed feedback regulation between stomatal move-
ments and photosynthesis via a subsidiary cell glucose transporter (CST1) (278). These studies
suggest that alterations to fluxes or signaling pathways linking guard and subsidiary cells repre-
sent another unexploited target to increase the speed of gs response in induction of photosynthesis
(28, 146, 200, 222).

Several studies have shown that photorespiratory processes are involved in modifying gs (55,
69, 268), suggesting that manipulation of the photorespiratory pathway could be useful to explore
stomatal kinetics and coordination between gs and A. Direct manipulation of guard cell–specific
metabolism may increase the speed of gs, as demonstrated by modified starch breakdown in guard
cells, which has been shown to be essential for rapid, blue-light-dependent opening early in the
day (71). Blue light is 20 times more effective in inducing opening compared to red light, and
recent work has demonstrated that it not only causes faster opening but also effects a wider open-
ing (247, 274). However, this may not be the case for all species (49, 274). These findings suggest
strengthening the blue light response as a route to increasing the speed of stomatal opening, al-
though the biological components of these pathways and species-specific regulatory mechanisms
may first need to be understood before these approaches can be exploited.

In summary, there are several routes for the potential manipulation of stomatal behavior, in
terms of both themagnitude and rapidity of response, to improve photosynthetic induction.These
involve adjustments to guard cell or stomatal anatomy; solute flux; and signaling, biochemical, and
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osmoregulatory pathways. In addition, the underlying mesophyll photosynthetic capacity needs
consideration because the mesophyll itself could provide a signal and trigger for stomatal re-
sponses (80, 149), along with guard cell photosynthesis (148). The close coordination between
mesophyll demands for CO2 and stomatal behavior is critical for both carbon capture and water-
use efficiency. Improving the rapidity of stomatal responses to changing stimuli is a novel and
mostly unexploited target for improving crop production and resource use; however, further re-
search is needed on which target or combination of targets is required to fully exploit this in
bioengineering and breeding.

5. CONCLUSION

Early research described the induction of photosynthesis on dark/shade-sun transitions, and pro-
vided means to analyze some of the limitations. However, only recently has the importance of
nonsteady-state responses to light intensity fluctuations for improving crop photosynthesis and
resource-use efficiency been recognized.Manipulations, some resulting in successful field demon-
strations of productivity, are now proving the value of this recognition.The previous sections have
highlighted the many opportunities to be exploited. Most so far have involved the transgenic up-
regulation of enzymes and other proteins. With rapid improvements in in silico engineering of
proteins through atomistic simulation (6), coupled with accelerating editing capabilities (12, 195,
284), improving the kinetics and properties of native proteins may replace upregulation of gene
expression. Investigation of natural variation may deliver two benefits. First, the application of
genome-wide association studies can identify genetic elements affecting increased speeds of ad-
justment of photosynthesis to sun-shade and shade-sun transitions. Second, by identifying such
elements, research will facilitate genomic selection of improved germplasm.

To further advance improvements in efficiency under nonsteady-state light conditions, impor-
tant knowledge gaps need to be filled. The slow phases of NPQ relaxation account for a long tail
on the recovery of CO2 assimilation to its steady-state level in the shade.Determining the key pro-
cesses, particularly in crops, will be important to further improvements. In partially limiting the
speed of induction of CO2 assimilation (233), gm appears important, but from a very limited num-
ber of studies focused on model systems. Its importance in crops and degree of variation within
crop germplasm needs to be established. At the same time, a better fundamental understanding
of the dominant control, within the mesophyll, affecting gm is needed if it is to be manipulated in
crops. Rca clearly plays a key role in induction, and considerable progress has been made in un-
derstanding its isoforms and how these might be manipulated. Its efficacy clearly varies between
and within species.Understanding the basis of efficacy differences will again inform editing.What
makes faster stomata and the genes that affect stomatal size and number are understood but now
need to be tested in crops.

Finally, to return to why photosynthesis as a means to improve crop production fell into the
shadows, improved efficiency of carbon assimilation is only of benefit if the crop can use it to
make more of the harvested product (248). Evidence that modern cultivars would benefit strongly
from an increased supply of photosynthate comes from season-long open-air [CO2] enrichment
experiments, in free-air CO2 enrichment (FACE) facilities. Because C3 photosynthesis is CO2

limited, the elevation of [CO2] increases net photosynthesis (161). In both rice and soybean, a
general trend was found in that older varieties did indeed appear to be sink limited with little
yield response, while the most recent and productive varieties showed strong yield responses with
approximately 20% increases in grain per unit ground area (reviewed in 4). This provides strong
evidence that breeders have, or are able, to develop yield potential to utilize increased photosyn-
thate supply. Obtaining yield potential, the maximum yield a crop can produce at a location when
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in the absence of biotic and abiotic stresses, is perhaps a rare situation.However, the experience of
the Green Revolution and beyond is that raising genetic yield potential on average raises achieved
yields, not only in years with the best growing conditions but also in the worst years (e.g., 132). In
summary, addressing the efficiency of crop photosynthesis in conditions of fluctuating light has
much previously overlooked promise in providing improved sustainable crop yields.
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