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Abstract

Plant hormones are a group of small signaling molecules produced by plants
at very low concentrations that have the ability to move and function at
distal sites. Hormone homeostasis is critical to balance plant growth and
development and is regulated at multiple levels, including hormone biosyn-
thesis, catabolism, perception, and transduction. In addition, plants move
hormones over short and long distances to regulate various developmental
processes and responses to environmental factors. Transporters coordinate
these movements, resulting in hormone maxima, gradients, and cellular and
subcellular sinks. Here, we summarize the current knowledge of most of
the characterized plant hormone transporters with respect to biochemical,
physiological, and developmental activities.We further discuss the subcellu-
lar localizations of transporters, their substrate specificities, and the need for
multiple transporters for the same hormone in the context of plant growth
and development.
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INTRODUCTION

The sessile nature of plants limits their ability to escape fluctuations in ever-changing environ-
ments, including abiotic stresses such as drought, flood, cold, high temperature, and high salinity
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Auxin: the first
identified plant
hormone that
orchestrates many
processes, such as cell
division; elongation
and differentiation;
embryonic
development; and root
growth, development,
and tropisms

Abscisic acid (ABA):
a long-transported
plant hormone that
modulates multiple
aspects of plant
growth, development,
and stress responses

Cytokinin (CK):
a member of a class of
phytohormones that
promote cell division,
root and shoot
development, and
responses to biotic and
abiotic stresses

Gibberellin (GA):
a phytohormone that
regulates stem
elongation,
germination,
dormancy, flowering,
flower development,
suberin formation, and
leaf and fruit
senescence

Ethylene: a gas plant
hormone affecting
plant growth,
development, fruit
ripening, root
compactness, and
stress responses
throughout the plant
life cycle

Jasmonic acid (JA):
a plant hormone
regulating plant
responses to abiotic
and biotic stresses and
plant growth and
development

and biotic stresses such as pathogen infection and insect injury. To cope with inconsistent en-
vironments, plants have developed efficient mechanisms that allow them to sense and adapt to
environmental changes. Plant hormones are the major players in these mechanisms, with essen-
tial roles in plant growth, development, and responses to environmental stresses. Several levels
of regulation master the overall hormone responses, including hormone biosynthesis, transport,
catabolism, perception, and transduction. Notably, the combination of a plant’s ability to pro-
duce hormones in specific cell types or tissues with transport of the hormones when needed over
time and space results in hormone gradients and maxima that are critical for proper responses (79,
111).Hormone movement may involve cell-to-cell, long-distance shoot-to-root or root-to-shoot,
or subcellular transport; transport from one tissue to another; or an uptake process that results
in sinks. Hormone sinks may be required for induced responses but also may restrict a response
in a distal tissue or specific cell types (4). Research in recent years has shed light on where these
hormones are produced, where they move, what transporters allow the movement, and where the
hormones accumulate and act (4, 79, 111, 122). This review systemically summarizes the charac-
terized transporters for several hormones, including auxin, abscisic acid (ABA), cytokinin (CK),
gibberellin (GA), ethylene, and jasmonic acid ( JA), with descriptions of subcellular localizations,
expression patterns, transport activities, and physiological functions. Finally, we elaborate on hor-
mone transport assays, multisubstrate specificity, and the importance of mapping plant hormones
and their metabolites at the subcellular level.

ABSCISIC ACID

Abscisic Acid Background

ABA, a weak acid discovered over six decades ago, regulates many stages of plant growth and devel-
opment from germination to seed dormancy and modulates plant responses to changing environ-
mental factors (106, 151). ABAwas long thought to be transported by the xylem from root to aerial
plant tissues to initiate stomatal closure under stress conditions (56, 134, 166, 176).However, graft-
ing assays showed that ABA is synthesized in both the root and shoots (78, 96). Furthermore, aerial
organ-derived ABA promotes root growth and regulates plant responses to water deficit (91, 95).

Abscisic Acid Transporters and Distribution

Several ABA transporters have been characterized, shedding light on mechanisms of ABA homeo-
stasis and distribution in vivo (Figure 1). The first ABA transporters identified were Arabidopsis
ATP-binding cassette (ABC) G-family proteins ABCG25 and ABCG40 (64, 77). ABCG25 is a
plasma membrane–localized ABA exporter mainly expressed in the vascular veins of leaves. This
transporter regulates stomatal closure. ABCG40 is an ABA importer broadly expressed in roots
and guard cells of leaves. It is localized on the plasma membrane and regulates stomatal closure
(64).

ABA is involved in seed germination and dormancy. Kang et al. (66) showed that ABCG25
and ABCG31 transport ABA out of the endosperm and that ABCG30 and ABCG40 cooperate
to transport ABA into the embryo, promoting seed dormancy in Arabidopsis. ABA transporters
MtABCG20 and LR34res were characterized in Medicago truncatula and wheat, respectively.
MtABCG20 functions as an ABA exporter and regulates lateral root and nodule development
(115). The wheat LR34res allele is required for resistance against multiple fungal pathogens (74).
The ABA uptake activity of LR34res was confirmed in both a yeast system and Oryza sativa
seedlings. These reports show that ABCG ABA transporters manipulate ABA homeostasis and
distribution in vivo to regulate plant growth, development, and responses to surroundings.
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Figure 1

Overview of ABA transporters in plants. (Left) Illustration of an Arabidopsis plant with magnifications emphasizing different organs.
(Right) Overview of the characterized ABA transporters illustrated on the schematic of a cell. Blue arrows represent importers; red
arrows represent exporters. (Inset) Magnification of the indicated organelles. The proteins transport the bioactive ABA unless indicated
otherwise. The numbers in circles above transporter names indicate tissues in the illustration on the left (not all tissues express
transporters regulating this hormone). All transporters were characterized in Arabidopsis unless the transporter name is preceded by a
species abbreviation. Abbreviations: ABA, abscisic acid; ABA-GE, abscisic acid glucose ester; ER, endoplasmic reticulum; MATE,
multidrug and toxic compound extrusion; Mt,Medicago truncatula; NPF, nitrate transporter/peptide transporter; Os,Oryza sativa; Sl,
Solanum lycopersicum.

The nitrate transporter/peptide transporter (NPF) proteins are another family of ABA trans-
porters (21, 67). Arabidopsis ABA-IMPORTING TRANSPORTER 1 (AIT1), AIT2, AIT3, and
AIT4 (also known as NPF4.6, NPF4.5, NPF4.1, and NPF4.2, respectively) function as ABA
transporters in yeast transport assays, with the exception of AIT1, for which an ABA transport
function has not yet been confirmed in planta. The tomato NPF SlAIT1.1 imports ABA to regu-
late stomatal aperture and transpiration (142). Binenbaum and colleagues (11) recently identified
a monophyletic clade of NPF transporters required for GA and ABA translocation in Arabidop-
sis. Whereas NPF2.12 and NPF2.13 are plasma membrane–localized ABA importers, NPF2.14
functions as a tonoplast-localized ABA transporter (Figure 1). NPF2.12,NPF2.13, and NPF2.14,
together with NPF3, regulate GA and ABA movement from the vasculature to the endodermis to
induce suberin formation in the root mature zone (11).
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The multidrug and toxic compound extrusion (MATE)-type transporter Arabidopsis DTX50
has been shown to promote ABA efflux (120, 177). DTX50, which is localized to the plasma
membrane, exports ABA in Escherichia coli, Xenopus oocytes, and Arabidopsis protoplast transport
assays (178).

AWPM-19-like family member OsPM1 is a rice plasma membrane–localized ABA importer
that regulates stomatal closure to respond to drought responses and seed germination (175).

There are various ABA conjugates in plants. The predominant conjugate form, ABA glucose
ester (ABA-GE) (13), is detected in the xylem sap of various plants and may be the form of ABA
that is transported over long distances (45, 61, 79). Researchers have suggested that ABCC1 and
ABCC2, localized on tonoplasts, regulate ABA-GE uptake into the vacuoles for storage in an in-
active form (17, 18, 81, 171) (Figure 1).However, no significant phenotypes were observed in root
or shoot growth of abcc1 and abcc2 single or abcc1 abcc2 double mutants upon drought or osmotic
stress treatment. Further research is needed to determine the function of ABA-GE transport.

Several ABA reporters and sensors have been developed in the past few years, including the
ABA Förster resonance energy transfer (FRET) biosensors that allow tracking ABA distribution
and concentrations in real time (62, 129). More recently, Zhou et al. (185) have modified the
FRET-based ABA sensor ABAleon (161) to target the endoplasmic reticulum (ER) membrane
through the central ABA sensing module exposed to the cytosol and the ER lumen. The soluble
and ER membrane–targeted ABA sensors show an ER-specific increase in the level of ABA under
light, cold, and high-sulfate supply conditions compared with cytosolic ABA, suggesting that the
ER is of importance in the regulation of subcellular ABA homeostasis during plant growth and
stress responses. The use of these and future sensors with higher sensitivity is expected to reveal
further details about how ABA moves in the plant and where it accumulates (at whole-plant and
subcellular levels) under normal growth and during stress.

Physiological and Developmental Highlights of Abscisic Acid Transport

The discovery that two ABA biosynthetic genes, ABA2 and AAO3, are coexpressed in the phloem
companion cells together with ABCG25 suggests that these cells are the site of ABA synthesis
in the vasculature. ABA biosynthesis in the phloem companion cells is sufficient to induce guard
cell responses, which suggests that ABA synthesized in these cells is translocated to target cells in
a distal tissue to regulate plant responses (100). In addition, two recent studies have shown that
leaf-derived ABA controls distal physiological and developmental processes (25). The first study
demonstrated that long-distance ABA transport controls seed development in rice in an OsDG1-
dependent manner.The osdg1mutant has grain-filling defects caused by noticeably reduced starch
content in caryopses. Although ABA is synthesized in leaves of both wild-type and dg1mutant rice
seedlings, only wild-type caryopses accumulate leaf-derived ABA, which activates starch synthesis
genes (120). This process is enhanced at above-normal temperatures to impact seed development.
Given the observations that ABA biosynthesis occurs mainly in phloem companion cells (78), ABA
must first be loaded into the leaf phloem and then unloaded to the caryopses. DG1 expression
in the parenchyma cells allows intervascular ABA transfer by loading ABA into the phloem and
unloading it into caryopses (120).

In the second study, two ABA importers, ABCG17 and ABCG18, were characterized as regu-
lators of ABA homeostasis in guard cells (181) (Figure 1). Interestingly, ABCG17 and ABCG18
are not expressed in the guard cells themselves, suggesting that non-cell-autonomous activity reg-
ulates ABA movement. ABCG17 and ABCG18 are localized on the plasma membrane of leaf
mesophyll cells, where they promote ABA uptake. Once captured in the mesophyll cells at high
levels, much of the free ABA is likely converted to ABA-GE. The strong uptake of ABA into the
mesophyll cells by ABCG17 and ABCG18 leads to reduced ABA availability in the guard cells,
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tuning stomatal apertures. Importantly, upon abiotic stress, ABCG17 and ABCG18 are transcrip-
tionally repressed, resulting in reduced ABA accumulation in the shoot mesophyll cells. Thus,
ABA is free in the apoplast to reach the guard cells to control the stomatal aperture. In addi-
tion, ABCG17 and ABCG18 mediating ABA accumulation and storage in mesophyll cells affects
shoot-to-root ABA translocation to regulate lateral root emergence (181).

OsDG1, ABCG17, and ABCG18 are mediators of two types of ABA transport mechanisms
that restrict ABA long-distance translocation and accumulation to regulate distal processes. Im-
portantly, although OsDG1 controls a developmental process (grain filling and lateral root
emergence) and ABCG17 and ABCG18 control physiological traits (stomatal aperture), both are
gated by the environmental cues of high temperature and water availability (4).

Abscisic Acid: Open Questions

Transporters from different families, including ABCGs, NPFs, and MATEs, have been shown
to import or export ABA over short and long distances. However, it remains unclear which cell
types produce ABA in normal or stress conditions and whether ABA movement is required to
execute specific responses. For example, whether the cortex ABA-dependent root hydropatterning
response depends on an external ABA source from the phloem or whether it is produced locally
to initiate the response to drought remains unknown (28).

AUXIN

Auxin Background

Auxin, the most well-studied plant hormone, was also the first to be discovered and isolated. Auxin
is involved in almost all vegetative and reproductive processes, such as plant architecture, organ
patterning, vasculature development, and tropic responses to light and gravity (35). Indole-3-acetic
acid (IAA) is the most common bioactive auxin form in plants.

Auxin Transporters and Distribution

Auxin gradients created by the integration of auxin biosynthesis, catabolism, conjugation, and
translocation are indispensable for diverse auxin responses. Auxin moves by several mechanisms
through nondirectional passive movement, plasmodesmata, vasculature systems, directional cell-
to-cell polar auxin transport mediated by transporters, and other nonpolar transport-dependent
activity (38). For many years, auxin was thought to be predominantly synthesized in the shoot
apical meristem and moved basipetally to the root, but several independent studies have shown
that the root meristem maintenance relies on locally produced IAA (15, 20, 93).

To date, four families of auxin transporters have been identified: the auxin efflux transporters
PIN-FORMED (PIN) proteins, ATP-binding cassette subfamily B (ABCB) transporters, NPFs,
and the auxin influx transporters AUXIN RESISTANT1 (AUX1) and LIKE AUX1 (LAX) (37,
43, 150) (Figure 2). There are eight PINs in Arabidopsis, including five long PINs (PIN1–PIN4
and PIN7) and three short PINs (PIN5, PIN6, and PIN8) (2, 3, 44, 124). The long PINs are
localized to the plasma membrane, whereas two of the short PINs, PIN5 and PIN8, are reported
to localize to the ER (29, 105, 160). PIN6 is localized to both the plasma membrane and ER (18,
143) (Figure 2). A significant breakthrough in our understanding of PIN activity came from a
recent cryo-electron microscopy study that revealed the PIN1 (174), PIN3 (146), and PIN8 (159)
structures in an outward-facing state with and without bound IAA as well as in an inward-facing
state with bound auxin class hormone N-1-naphthylphthalamic acid. The homodimer structure,
with each monomer divided into transport and scaffold domains, has a defined auxin-binding
site. A proline–proline crossover allows structural changes that are associated with transport. The
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Overview of IAA transporters in plants. (Left) Illustration of an Arabidopsis plant with magnifications emphasizing different organs.
(Right) Overview of the characterized auxin transporters. Blue arrows represent importers; red arrows represent exporters. Inset boxes
are magnifications of the indicated organelles. The proteins transport bioactive IAA unless otherwise indicated. The numbers in circles
above transporter names indicate tissues in the illustration on the left (not all tissues express transporters regulating this hormone). All
transporters were characterized in Arabidopsis. Abbreviations: AUX, AUXIN RESISTANT; ER, endoplasmic reticulum; IAA,
indole-3-acetic acid; IBA, indole-3-butyric acid; LAX, LIKE AUX1; PIN, PIN-FORMED.

transport activity is independent of proton and ion gradients and is likely driven by the negative
charge of the auxin (43, 146, 159, 174).

Similar to the short PINs, the transporters of the PILS family localize on the ER (133). PILS6
is a negative regulator of organ growth, and its abundance increases at high temperatures. PILS6
repression by temperature sensitivity regulates the nuclear availability of auxin, contributing to
the increase of nuclear auxin signaling and root growth as temperature increases (33). A recent
study showed that brassinosteroid signaling transcriptionally and posttranslationally represses the
accumulation of PILS proteins at the ER, thereby increasing the nuclear abundance and enhancing
signaling mediated by auxin (148).

Several auxin transporters from the ABCB family, such as ABCB1 and ABCB19, are IAA
exporters (37, 60, 168). ABCB4 and ABCB21 function as dual IAA exporters and importers to
regulate auxin distribution (58). ABCB1, ABCB4, ABCB14, ABCB19, and ABCB21 are reported
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to play roles in polar auxin transport to cause an auxin gradient. Recent mathematical modeling
suggested that ABCBs enable auxin efflux independently of PINs; however, PIN-mediated auxin
efflux takes place predominantly through a codependent efflux of PINs colocalized with ABCBs
(98). Another study showed that ABCB6 and ABCB20 are auxin efflux transporters involved in
polar auxin transport that modulate shoot and root architecture (59) (Figure 2). Loss of function
of these two ABCBs causes severely twisted siliques and roots (59, 180). ABCB15–ABCB18 and
ABCB22 are implicated in lateral root development (19).

In contrast to the ABCB IAA transporters, members of the ABCG family, ABCG36 and
ABCG37, export the auxin precursor indole-3-butyric acid (IBA) (5) (Figure 2). A member of the
ABCD subfamily, ABCD1 (also known as CTS) functions as an IBA importer into peroxisomes
(104). NPFs are also reported to be auxin and auxin precursor transporters: NPF6.3 (also known
as NRT1.1) functions as an auxin importer to regulate lateral root development (75). NPF7.3
(also known as NRT1.5) and NPF5.12 (also known as TOB1) are IBA importers localized to the
plasma membrane and tonoplast, respectively (101, 165). WAT1 is also localized to the tonoplast
but functions as an auxin exporter (121). The AUX1/LAX family includes four auxin influx pro-
teins that regulate the development of various organs (Figure 2). The agravitropic aux1 mutant
is insensitive to exogenously applied IAA or 2,4-dichlorophenoxyacetic acid (9). AUX1 mediates
high-affinity IAA transport in the physiological range (Km ≈ 1 µM) in Xenopus oocytes; however,
no transport activity has been detected for LAX2 (32). A recent study showed that combining
single-cell nucleus morphokinetic tracking with cell type–specific induction of auxin biosynthesis
allows the mapping of directional auxin flow in the root and refines the contributions of PIN2
and AUX1 in this process (53).

Recent studies have demonstrated that diffusion through plasmodesmata is critical for auxin
transport, affecting auxin distribution and contributing to plant growth and development (97,
167). Manipulating callose levels influences auxin diffusion through plasmodesmata and regulates
auxin distribution, phototropism, lateral root emergence, and leaf hyponasty (97, 113).

Physiological and Developmental Highlights of Auxin Transport

One of the most significant contributions of auxin transport to plant growth and development is
its activity in the meristem, which can be visualized as a reverse fountain of auxin flowing root-
ward through the vascular tissue and redirected shootward through the meristem epidermis (44).
The radial inward movement of auxin, released from cells undergoing programmed cell death,
was suggested to contribute to periodic peaks that determine lateral root positioning (172). How-
ever, the efflux components controlling lateral root formation remained elusive. A recent study
identified the missing auxin transporters in the outer tissues of the root. Five closely related
ABCBs (ABCB15–ABCB18 and ABCB22) are required for lateral root spacing via modulation
of the DR5:LUC oscillation amplitude. Their predominant expression in the lateral root cap and
epidermis and the lateral root defects in the knockout lines suggest that they transport auxin in
the outer layers of the root meristem to instruct lateral root spacing (19). These five ABCB trans-
porters, which are genetically linked, localize to the plasma membrane, transport auxin out of the
cell, and act redundantly to transport IAA shootward through the lateral root cap and epidermis
to the maturation zone, allowing lateral root spacing (19).

Auxin: Open Questions

Although auxin transport is well characterized, several questions remain. For example, whether
IAA entrance into the nucleus is regulated by active transport is unknown. Such a mechanism
would gate IAA binding to its receptor TIR1/AFB proteins (118). The physiological relevance
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of this gating, given the recent report that the auxin receptor AFB1 is localized to the cytoplasm
(118), adds further complexity to the process. In addition, evidence of direct binding between
ABCB4 and PIN2 (27) and evidence from mathematical modeling (98) support dynamic ABCB–
PIN interaction (5), adding additional complexity and specificity.Understanding how these groups
of IAA exporters work in concert to maintain auxin patterning would be interesting.

CYTOKININS

Cytokinin Background

The first CK to be isolated was Kinetin in 1955, followed by the isolation of trans-Zeatin (tZ) from
corn endosperm in 1961 (54, 71, 102). tZ and N6-(�2-isopentenyl) adenine (iP) are the two main
active forms of CKs. tZ is produced in the root and then translocated acropetally through the
xylem to regulate shoot growth and development, whereas iP is synthesized mainly in the shoot
and moves basipetally to the root by phloem to regulate cell division, development, and nutrient
processing (52, 76). Grafting experiments indicated that tZ, but not iP, is transported acropetally
to shoot and rescues the shoot growth phenotype in the mutant atipt1 atipt3 atipt5 atipt7 (94). By
contrast, iP dominates transport in the basipetal direction and is sufficient for normal root growth
(65, 94, 109, 131).

Cytokinin Transporters and Distribution

In 2014, two independent groups showed that in Arabidopsis the plasma membrane–localized ABC
protein ABCG14 regulates long-distance CK translocation from root to shoot through the vas-
cular system (73, 179) (Figure 3). Grafting experiments between wild-type and abcg14 Arabidopsis
seedlings indicated that root-derived CK is necessary for normal shoot development and that
AtABCG14 participates in xylem loading of root-synthesized CKs (73, 179). Further study re-
vealed that AtABCG14-mediated phloem unloading via an apoplastic pathway redistributes CK
from root to shoot (182). Five years after AtABCG14 was identified, OsABCG18 was reported to
have a similar activity in rice (Figure 3). OsABCG18 is a plasma membrane–localized exporter
that regulates CK long-distance translocation from root to shoot to promote grain yield in rice
(183).

The equilibrative nucleoside transporter (ENT) family members also participate in CK
translocation, although these proteins were not shown to directly transport CK in planta (51, 52,
147). In Arabidopsis, two azaguanine (AZG) transporter family members, AZG1 and AZG2, trans-
port CKs: AZG1 reportedly acts as a CK importer through an interaction with PIN1 to regulate
root development, and AZG2 functions as a CK importer to regulate lateral root development
(90, 154, 155). Furthermore, evidence indicates that two ER-localized ABCI subfamily mem-
bers, ABCI20 and ABCI21, together with their homolog ABCI19, function as CK transporters
to fine-tune CK responses (72).

Physiological and Developmental Highlights of Cytokinin Transport

Similar to the long-distance root-to-shoot CK translocation, it is now clear that local CK trans-
port has a huge impact on plant growth and development. The identification of the plasma
membrane–localized H+-coupled high-affinity purine permease PUP14, a CK importer identi-
fied in Arabidopsis, demonstrated the importance of the biochemical transport process, as without
its activity, the plants do not survive the embryonic stage. PUP14 imports CK into cells, thus
reducingCK availability in the apoplast,with diluted amounts available for the plasmamembrane–
localized CK receptors. Therefore, PUP14 is involved in establishing a spatiotemporal CK sink
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Overview of CK transporters in plants. (Left) Illustration of an Arabidopsis plant with magnifications emphasizing different organs.
(Right) Overview of characterized CK transporters. Blue arrows represent importers; red arrows represent exporters. The inset is a
magnification of the indicated organelles. The numbers in circles above transporter names indicate locations in the tissues in the
illustration on the left (not all tissues express transporters regulating this hormone). The direction of CK transport for the three
ER-localized ABCI proteins is currently not entirely clear. All transporters were characterized in Arabidopsis unless the transporter
name is preceded by a species abbreviation. Abbreviations: CK, cytokinin; ER, endoplasmic reticulum; Os, Oryza sativa.

to regulate morphogenesis (187). Two other PUP family members, PUP1 and PUP2, promote
CK import to regulate Arabidopsis growth and development (16, 39). There are 12 PUP family
members in rice. OsPUP7 is localized to the ER and transports the CK derivative caffeine, af-
fecting plant growth, developmental processes, and stress responses. OsPUP4 might function in
CK loading into vascular bundles to regulate long-distance CK transport (119, 170). OsPUP1
also localizes to the ER and is predominantly expressed in the root vascular cells; its expression
is induced by CK treatment. It was hypothesized that OsPUP1 is a long-distance CK transporter
involved in unloading shoot-derived or phloem-transported CKs out of the vasculature by cell-to-
cell transport. OsPUP4, a homolog of OsPUP7, is localized to the plasma membrane, directs CK
cell-to-cell transport, and influences CK homeostasis by regulating CK long-distance transport
and local allocation (170). Thus, the PUP CK transporter family members are major regulators
of plant growth and development.
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Cytokinin: Open Questions

The role of the vacuole as a storage organelle to maintain CK homeostasis has been proposed but
not confirmed yet. Such vacuolar CK import activity would have a profound effect on the ER–CK
receptor–mediated response.

GIBBERELLINS

Gibberellin Background

GAs were chemically characterized in the late 1950s. During the Green Revolution in the
1960s, alterations in GA biosynthesis and responses were employed to dramatically enhance crop
yields. GAs regulate many aspects of plant growth and development, such as germination, stem
elongation, flower development, dormancy, leaf senescence, and fruit ripening (12, 48, 70, 116).

Gibberellin Transporters and Distribution

GA homeostasis is regulated at multiple levels, including biosynthesis, catabolism, signal percep-
tion and transduction, and transport (46–48, 108, 136, 173). GA movement plays a pivotal role
in the GA distribution that is necessary to regulate plant growth (10). A GA receptor was first
identified in rice in 2007 (158), and about a decade later in 2016, the first GA transporter, NPF3,
was identified (26, 152) (Figure 4). NPF3 localizes to the plasma membrane and imports GAs in
a pH-dependent manner. The glucosinolate transporter NPF2.10 (also known as GTR1) serves
as a multifunctional transporter for the structurally distinct compounds glucosinolates, JA-Ile (the
conjugated form of JA), and GA to positively modulate Arabidopsis stamen development (21, 130).
Using a yeast-modified two-hybrid system to detect GA transport activity, researchers showed that
NPF2.3, NPF2.4, NPF2.5, NPF2.7, AIT1, and AIT3 are GA transporters (21). The transport ac-
tivities of these proteins were confirmed in Xenopus oocytes with six different GAs (82); however,
the physiological importance of these biochemical activities in plants remains uncharacterized.

In Arabidopsis, SWEET13 and SWEET14, members of the Sugars Will Eventually Be Ex-
ported Transporters (SWEET) family, were also confirmed to be GA transporters (68, 103).
SWEET13 and SWEET14 import GAs as shown in yeast and oocyte transport assays (68).
SWEET13 and SWEET14 redundantly function to regulate anther development, and exoge-
nous application of GAs to the double mutant sweet13 sweet14 rescues anther dehiscence defect
(68). In rice, OsSWEET3a functions as both a sugar transporter and a GA transporter to regulate
seed germination and early shoot development (103) (Figure 4).

Rizza et al. (127) engineered a GA perception biosensor to report on GAs at the cellular level,
demonstrating that GA concentration is highest in the elongation zone. The transporters that are
responsible for GA distribution in the root have not yet been identified, but data obtained with
this sensor indicate that GAs are mobile (125–127). A ratiometric GA signaling biosensor based on
the DELLA protein RGA also revealed GA transport in planta, while also reporting on changes
of GA contents at a cellular level in the shoot apical meristem (139). Barker et al. (8) characterized
GA biosynthesis sites in Arabidopsis, and rescue experiments indicated GA4 movement as well as
evidence for GA12 long-distance movement but no evidence of shoot-to-root transport of GA9.
Exogenous application of fluorescently labeled GA3 led to exclusive accumulation in mesophyll
cells, and this process is controlled by two transcription factors, TEM1 and TEM2, which were
shown to negatively control NPF-specific (GTR1, NPF3, and NPF2.3) GA transporter expres-
sion, leading to variable GA accumulation and distribution in mesophyll cells to regulate trichome
initiation in the epidermis, supporting the hypothesis that GA moves from one tissue to another
in plants (92).
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Overview of GA transporters in plants. (Left) Illustration of an Arabidopsis plant with magnification emphasizing different organs.
(Right) Overview of characterized GA transporters. Blue arrows represent importers; red arrows represent exporters. The inset is a
magnification of the indicated organelles. The numbers in circles above the transporter names indicate localization in the tissues in the
illustration on the left (not all tissues express transporters regulating this hormone). All transporters were characterized in Arabidopsis
unless the transporter name is preceded by a species abbreviation. Abbreviations: ER, endoplasmic reticulum; GA, gibberellin; NPF,
nitrate transporter/peptide transporter; Os,Oryza sativa; SWEET, Sugars Will Eventually Be Exported Transporter.

Physiological and Developmental Highlights of Gibberellin Transport

A recent study revealed the importance of GA transport in a specific developmental context:
suberin formation in the root. Two new GA and ABA importers, NPF2.12 and NPF2.13, and one
tonoplast importer, NPF2.14, coordinately regulate suberin formation (11) (Figure 4). NPF2.12
and NPF2.13 are membrane-localized proteins, expressed in leaf phloem companion cells, that
promote GA12 transport from the shoot to the root (11). These results provide the missing mech-
anism behind GA12 long-distance transport. Once GA12 docks in the root, it is converted to GA4

by the GA20ox and GA3ox enzymes. GA4 and ABA are imported into the pericycle by NPF2.12.
In the pericycle, the hormones are transported into the vacuole by the pericycle-specific NPF2.14
tonoplast-localized transporter. Vacuolar accumulation of GA and ABA initiates in the phloem
unloading zone, around the root elongation zone, where the two hormones are kept in vacuo-
lar storage as the root matures and differentiates. Only later in development are the hormones
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taken into the endodermis by NPF3 to promote suberization. These findings suggest that GA
and ABA work nonantagonistically to regulate plant development (11). In addition, the novel
mechanism explains for the first time the developmental importance of long-distance GA12 shoot-
to-root movement and the biological importance of bioactive GA4 and ABA accumulation in the
endodermis to regulate endodermal suberization.

Gibberellin: Open Questions

Whether there are GA exporters capable of transporting GA from inside the cytosol to the
apoplast is unknown. No such proteins have been identified so far, yet proteins with this function
must exist in order to overcome the GA ion-trapping mechanism.

JASMONIC ACID

Jasmonic Acid Background

JAs are formed by the oxygenation of fatty acids and were first isolated in 1957 as cis-jasmone,
a fragrant constituent of the essential oil of Jasminum grandiflorum. JA biosynthesis happens in
chloroplasts, peroxisomes, and cytosol, and the major bioactive form is JA-Ile (164). JAs are in-
volved in vegetative and reproductive processes such as root elongation and fertility and are best
known for their importance in plant adaptation to environmental stimuli, including abiotic and
biotic stresses (40, 162).

Jasmonic Acid Transporters and Distribution

JA biosynthesis is rapidly induced upon wounding and stresses. Several studies support transport-
mediated JA translocation in plants upon biotic stresses: JA and JA precursors are transported from
wounded shoots to unwounded roots in a LOX2-dependent manner (36, 137). Grafting experi-
ments between wild-type Arabidopsis seedlings and JA-deficient mutants confirmed the transport
of oxylipin from shoot to root (36). Using deuterium-labeled analogs of JA and JA-Ile, Sato et al.
(132) demonstrated that JA and JA-Ile transport occurs following leaf wounding in both tobacco
and tomato, with JA-Ile showing higher mobility than JA. In addition, following shoot wound,
endogenous JA precursor 12-oxo-phytodienoic acid (OPDA) and its derivatives were transported
long distances to coordinate shoot-to-root responses during plant stress acclimation (135).

JA biosynthesis initiates in chloroplasts, where OPDA is synthesized; OPDA then moves to
the peroxisomes. Two transporters, JASSY and OPDAT1, export OPDA out of chloroplasts and
plastids in Arabidopsis and poplar, respectively (42, 184) (Figure 5). JASSY is localized to the outer
chloroplast envelope, and plants mutated in JASSY show increased sensitivity to abiotic stresses as
well as biotic stresses due to reduced JA accumulation and response (42). OPDAT1 is localized to
the plastid inner envelope (184). Mutants of opdat1 have reduced JA levels and increased suscepti-
bility to spider mite infestation (184). In Arabidopsis, ABCD1, a peroxisomal membrane–localized
protein, imports OPDA into peroxisomes, where the final step of JA synthesis occurs (156).

Several NPF members function as weak JA transporters for in vitro transport assays (69). For
example, AIT1 and AIT3 import not only ABA and GA but also JA-Ile in yeast transport assays
(21). Similarly, NPF2.10 functions as a JA-Ile importer in the Xenopus oocyte transport system
(130). The physiological roles of NPF protein transport activity are not entirely clear (69).

Physiological and Developmental Highlights of Jasmonic Acid Transport

Although grafting experiments and analyses of exogenous radiolabeled JA and JA-Ile showed
that JAs can act as the transmissible wound signal from a site of local damage to systemic leaves,
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Overview of JA transporters in plants. (Left) Illustration of an Arabidopsis plant with magnifications emphasizing different organs.
(Right) Overview of characterized JA transporters. Blue arrows represent importers; red arrows represent exporters. The insets are
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the specific molecular form that is translocated remains to be determined. By setting up rosette-
petiole grafting experiments in Arabidopsis, Li et al. (85) showed that JA could relocate from a site
of local damage to systemic leaves. Direct evidence showing that JA is the mobile form of JA-
dependent wound signals came from tracing leaf-to-leaf translocation of d5-JA (84). In addition,
members of the ABCG family, ABCG16, ABCG6, and ABCG20 (also known as JAT1, JAT3,
and JAT4, respectively), function as jasmonate transporters in JA leaf-to-leaf translocation in
Arabidopsis (Figure 5). ABCG16 is localized to both the plasma membrane and nuclear envelope,
and it facilitates JA export out of the cell and JA-Ile import into the nucleus (86, 157). ABCG6
and ABCG20 localize to the plasma membrane and are expressed in the phloem, regulating JA
translocation from the site of synthesis to distal leaves (84). Knockout mutants acbg6 and abcg20
result in a 70% decrease in translocated JA, leading to significant compromise or abolished
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wound-induced systemic response/immunity, as determined by the expression of JA-responsive
marker genes and resistance to the necrotrophic fungal pathogen, Botrytis cinerea (85).

Jasmonic Acid: Open Questions

Though several JA or JA-Ile transporters have been identified, most transport assays have been
carried out using in vitro systems, so direct transport activities in planta must be confirmed. The
transporters that are involved in JA long-distance transport remain mysterious, and more screens
should be carried out to identify additional transporters of JA and its derivatives.

ETHYLENE

Ethylene Background

Ethylene is associated with many different physiological processes such as seedling growth, organ
development, senescence, fruit ripening and abscission, and immune pathogen responses (99).
In some of these processes, ethylene has synergetic or antagonistic interactions with other plant
hormones such as auxin and JA (117). Ethylene is found in plants as a gas and has high rates of
diffusion within cells as well as through lipid membranes.

Distribution and Transporters of the Ethylene Precursor

There are no direct transporters for ethylene; however, transport of the ethylene precursor 1-
aminocyclopropane-1-carboxylic acid (ACC) is regulated (114, 141). ACC is not found as a gas and
therefore does not diffuse. The Arabidopsis ACC-resistant2 (are2) mutant shows a dose-dependent
resistance to exogenously applied ACC but has a normal response to ethylene (22).ARE2 encodes
the amino acid transporter LHT1. Recently, a second ACC transporter, AtLHT2, was identified
by complementing AtLHT1 ACC insensitivity (22). LHTs were previously identified as positively
charged histidine, lysine, and arginine amino acid transporters (50). Presently, the physiological
relevance of a dual ACC and amino acid transport activity is not understood. Although the mech-
anism is still unclear, LHTs appear to be the main means of transport in the ethylene pathway.
ACC has been found in the xylem, suggesting that it participates in long-distance signaling and a
systemic ethylene response.

Physiological and Developmental Highlights of Ethylene Transport

Although ethylene diffusion is not regulated by active transporters, conditions that alter the ease
with which ethylene diffuses from the site of production to its target sites may have a profound
effect on the ethylene response. For example, it was recently shown that compact soils allow sig-
nificantly less gas diffusion, owing to a reduction in air-filled pores relative to loose soils, thereby
causing ethylene to accumulate in root tissues and trigger hormone responses that restrict the
growth ofArabidopsis (57, 110).Thus, the volatile ethylene hormone acts as an early warning signal
for roots to avoid compacted soils. Recent work in rice has shown that the mechanism is conserved
in monocots and that the ethylene response in compact soils requires ABA and auxin biosynthesis
as well as AUX1-mediated auxin transport (110).

Ethylene: Open Questions

The recent discovery that compacted soils lead to significantly lower levels of ethylene diffusion
(63) is intriguing and raises the possibility that similar mechanisms take place over time and space
in other physiological processes in plants.
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ADVANTAGES AND LIMITATIONS OF DIFFERENT HORMONE
TRANSPORT ASSAYS

There are several ways to test the potential capacity of transporters in hormonemovement. For ex-
ample, methods such as combining mutants with hormone measurements in specific tissues (144)
or utilizing a hormone-specific reporter to test for shifts in hormone response (6, 126, 181) have
been employed.However, transport assays must be carried out to validate the biochemical activity
of transporter proteins directly. Transport assays may be carried out in planta using protoplasts
(38, 180, 181, 187) or in heterologous systems such as yeast or oocytes (24, 63, 80, 181). Each
method has its disadvantages and advantages.

Plant protoplast-based transport assays can provide useful information even when an unknown
factor is required for the activity. This type of assay was used to demonstrate the requirement for
D6PK protein kinases to regulate the transport activity of PINs (7, 30). D6PK and PINOID
kinases activate PIN-mediated auxin efflux and are essential for PIN-mediated auxin export in
oocytes (186). Another example where the protoplast assay was crucial was in the analysis of the
half-size ABCG proteins that form homo- and heterodimers to allow transport activity (31, 41).
A half-size ABCG that forms a heterodimer cannot function in a heterologous system such as the
oocyte (30).

Nonplant heterologous yeast or oocyte systems are often used to confirm the activity of a
specific transporter. Xenopus oocytes are large cells (>1 mm in diameter) with low endogenous
transport activity. Therefore, oocytes are highly suitable for electrophysiological measurements,
which is an accurate method for characterization of the kinetic properties of transporter proteins
(80). The disadvantages of the yeast and oocyte heterologous systems are the advantages of the
plant protoplast assays: The nonplant systems are not informative if additional genetic or chemical
factors are needed.

Whether the transport assays rely on Xenopus oocytes, yeast, or protoplasts, one needs a
way to detect the hormones (14, 68, 144). Possible methods for hormone detection include
direct measurement using gas chromatography tandem mass spectrometry (GC-MS/MS), ra-
dioactive isotope-labeled (180, 181, 187) or fluorescently labeled hormones, and fluorescently
tagged genetic hormone sensors (6, 55, 62).

WHY SO MANY TRANSPORTERS FOR ONE HORMONE?

Most plant hormones, including auxin, ABA, CKs, GAs, and JA (4), have multiple transporters.
Several factors, explained below, have likely led to this phenomenon.

Specificity

All hormones come in a plethora of forms, including precursors, active forms, and catabolites. In
the case of GA, these sum to over 130 different GA metabolites (89). Since structure, polarity, and
size differences vary among metabolites, a specificity in transport level is required. Gene duplica-
tion and specificity acquired over the course of evolution resulted in multiple transporters from
the same family.These might possess similar biochemical activities, leading to genetic redundancy,
or may vary in substrate recognition. For example, ABCG17 and ABCG18 have redundant activ-
ities transporting ABA (181), whereas ABCG14 functions as a single copy factor to transport CKs
from root to shoot (73, 179).

Subcellular Localization

Plant cells have multiple membranes, including the plasma membrane and internal organelle
membranes. These membranes are composed of different mixtures of fatty acid–based lipids and
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proteins and are surrounded by diverse pH environments that drive proton-mediated transport,
adenosine triphosphate (ATP) availability, and more. Thus, cells require specific transporters that
function efficiently in each setting (e.g., the plasmamembrane, ER, chloroplast, and tonoplast) (4).
The most studied example of such diversity is the PIN protein family: The short PINs localize to
the ER, and the long PINs localize to the plasma membrane (4). More examples are provided by
NPF2.12 and NPF2.13, which are localized to the plasma membrane, and their neighbor on the
phylogenetic clade, NPF2.14, which is localized to the tonoplast (11).

Expression Pattern and Transcriptional Response to the Environment

Multiple copies of the PIN transporters, each with unique cell type–specific expression and sub-
cellular localization, drive auxin flow. The root reverse fountain auxin flux and shoot phyllotaxis
are both examples of how PIN expression patterns influence environmental responses (2). The
NPF2.12–NPF2.14 and NPF3 GA and ABA transporters are another example of how a group of
transporters expressed in proximity cell types allows hormone movement and accumulation. In
this case, NPFs have the ability to facilitate shoot-to-root hormone translocation and also root
pericycle-specific accumulation (11). Thus, heterogeneous transporter expression patterns per-
mit versatile hormone gradients that influence plant growth and development. Furthermore, to
respond to the changing environmental conditions, plants use hormone gradients to balance en-
dogenous signals, which highly depend on transport levels and demand multifarious transporters.
With the recent rapid development of genetic and biochemical approaches, new families of trans-
porters will likely be discovered, shedding additional light on how translocation and redistribution
of hormones control hormone homeostasis and govern plant growth and development.

MULTISUBSTRATE ACTIVITY FOR A SINGLE TRANSPORTER

Plant transport systems andmechanisms appear to be vast and diverse, but this variety alone cannot
account for the specificity and selectiveness of the transporters when dealing with the even more
divergent nature of metabolites. Across the plant kingdom, there are hundreds of thousands of
metabolites, and the metabolomes of most species consist of thousands of metabolites, including
many signaling molecules (34, 163).

A number of transporter families are relatively conserved throughout the plant kingdom, such
as the ABC, MATE, and NPF transporter families. Although conserved, these families vary in
the number of members as well as substrate specificity between species (83). Despite the high
amino acid similarities between members, it seems that families are not constricted to a specific
metabolite or even transport mechanism (uptake versus efflux). One of the most robust trans-
porter families in the plant kingdom is the NPF family, which includes 52, 70, and 79 members
in Arabidopsis, rice, and tomato, respectively (88). Originally characterized as nitrate transporters,
it is now clear that transporters of this family are involved in the transport of a much wider range
of substrates, including phytohormones such as GA, ABA, IAA, IBA, and JA-Ile (24, 140, 165,
169). The NPF member NPF2.10 (GTR1) transports more than one substrate: GA, ABA, glu-
cosinolates, and JA-Ile (21, 130). Systematic studies of Xenopus oocytes and the yeast Saccharomyces
cerevisiae showed that multiple family members possess multisubstrate activity (21, 107, 130, 152).
It is currently unclear what mechanism regulates this phenomenon.

The two systems most often used to characterize NPF members are Xenopus oocytes and the
yeast Saccharomyces cerevisiae. Each system has the advantage of allowing the identification of sub-
strates with micromolar affinities (21, 152); however, the fact that these methods are heterologous
transport systems that may not accurately recreate a complicated biological organism must be
taken into account.Competition between substrates, effects of other metabolites, pH levels, codon
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optimization, and changes in membrane deposition are just a few of the variables that are hard to
predict and replicate in vitro that could potentially have a determining effect on actual transport in
living systems. Further research and new in vivomethods are needed to study transporter substrate
coupling.

One way to verify the importance of transport activity is to test the mutant phenotypes in
plants. If a phenotype is driven by lack of hormone accumulation/gradient at the right time and
place due to loss of transporter activity, one would expect it to be rescued by treatment with the
hormone. Indeed, a recent study used this approach to test the in planta activity of two new GA
and ABA importers, NPF2.12 and NPF2.13, and a tonoplast importer, NPF2.14 (11). Combi-
nations of the npf2.12, npf2.13, and npf2.14 mutants showed reduced endodermal suberization.
Importantly, this phenotype was rescued by either ABA or GA (11), indicating that these genes
encode transporters of these hormones. Transport assays in plant protoplasts (128), fluorescently
labeled hormones tested in planta (181), and hormone quantifications in different plant tissues
in the mutant background (181) are additional approaches that should be used to validate the
multisubstrate hormone data found in heterologous transport systems.

As to why the phenomenon of multisubstrate transport activity exists, one explanation may
be that many of these transporter families are conserved throughout evolution (e.g., NPF and
ABC transporters appear in eukaryotes and prokaryotes) (111, 112, 123) and the lack of selectivity
has not proven to be costly and therefore prevailed. Another possibility is that multisubstrate
transporters offer an evolutionary solution to how outnumbered transporters are in relation to
the number of different metabolites and provide efficient transport mechanisms. We imagine a
scenario where two substrates generally acting antagonistically are imported and exported by the
same transporter or, similarly, a number of substrates are needed for a common function and are
transported by the same transporter.

PLANT HORMONE DISTRIBUTION AT THE SUBCELLULAR LEVEL

Most hormone transporters identified so far are localized on the plasma membrane (1, 4). Al-
though these transporters explain hormone transport from cell to cell, loading and unloading to
the phloem or xylem for long-distance hormone translocation, and the creation of local hormone
sinks, they do not explain the observed subcellular localization of hormones and their precursors
(4). In many cases, plant hormones must be transported within the cell to initiate signal transduc-
tion. The receptors of most hormones, including IAA, JA, GA, SA, and ABA, are in the nucleus,
but the majority of these hormones are biosynthesized in the plastids, ER, and cytoplasm (49).
Only one nucleus-localized transporter, ABCG16, which is a JA-Ile importer into the nucleus, has
been identified (157). How precursors exit from the plastids is also not clear. Therefore, subcellu-
lar hormone precursor transporters are predicted to be required for proper hormone homeostasis
and response (23).

Another crucial layer of regulation of hormone distribution at the subcellular level is the stor-
age and degradation that take place in the vacuoles. Vacuoles are the storage space for not only
sugars, minerals, and special chemicals but also hormones and their conjugates (153, 177). How-
ever, only a few transporters have been identified that are localized to the tonoplast to promote
the storage of hormones. We speculate that additional tonoplast transporters will be identified
in the near future, which will further our understanding of the role of the vacuole in hormone
responses.

A major challenge in the field is the quantification of hormones in their different forms at the
subcellular level (145). Methodologies that will allow the mapping of bioactive hormones, their
precursors, and conjugated forms at the organelle level will be a milestone in the field.
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FUTURE PERSPECTIVES

Over the past years, the plant hormone research community has gained significant knowledge of
the mechanisms that result in hormone movement and homeostasis in plants. This review sum-
marized most of the characterized transporters responsible for short-distance, long-distance, and
organelle-based transport of plant hormones. Small signalingmolecules produced in the plant that
function as cascade amplification signals at a distal location likely meet the functional definition
of a hormone. In addition to mobile classic and small peptide hormones, should mobile proteins
that move to allow responses be considered hormones? The florigen FLOWERING LOCUS
T (FT) protein is an excellent example of a protein that executes a critical function after long-
distance translocation: regulating flowering time after translocation from leaves to the shoot apical
meristem (138). The recent identification of MCTP-SNARE complex–mediated endosomal traf-
ficking (87) and temperature-sensitive membrane phospholipid binding mechanisms (149) that
control the movement of FT further demonstrates the complex regulation behind the transport
of signaling molecules.We expect that the research community will continue to identify new hor-
mones and novel transport mechanisms using advanced genetic, biochemical, and metabolomics
tools in the coming years.
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