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Abstract

The remarkable diversity of specialized metabolites produced by plants has
inspired several decades of research and nucleated a long list of theories to
guide empirical ecological studies. However, analytical constraints and the
lack of untargeted processing workflows have long precluded comprehensive
metabolite profiling and, consequently, the collection of the critical curren-
cies to test theory predictions for the ecological functions of plant metabolic
diversity. Developments in mass spectrometry (MS) metabolomics have rev-
olutionized the large-scale inventory and annotation of chemicals from
biospecimens. Hence, the next generation of MS metabolomics propelled
by new bioinformatics developments provides a long-awaited framework to
revisit metabolism-centered ecological questions, much like the advances in
next-generation sequencing of the last two decades impacted all research
horizons in genomics. Here, we review advances in plant (computational)
metabolomics to foster hypothesis formulation from complex metabolome
data. Additionally, we reflect on how next-generation metabolomics could
reinvigorate the testing of long-standing theories on plant metabolic
diversity.
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Metabolome:
comprises the
complete set of small
molecules presented in
a biological system of a
given state

Contents

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
1.1. Hierarchical Levels of Plant Specialized Metabolite Diversity . . . . . . . . . . . . . . . . 869
1.2. A Brief Historical Perspective on Parallel Developments in the Chemical

Ecology and MS Analysis of Plant Specialized Metabolites . . . . . . . . . . . . . . . . . . 870
2. CORNERSTONE CHALLENGES IN THE UNTARGETED MS

ANALYSIS OF PLANT SPECIALIZED METABOLITE DIVERSITY . . . . . . . . . 872
2.1. Illuminating the Dark Matter in MS Metabolomics Studies . . . . . . . . . . . . . . . . . . 873
2.2. Anatomy of Key Processing Steps of MS Metabolomics Data . . . . . . . . . . . . . . . . 873
2.3. Challenges of MS Metabolomics Data Annotation

via Database Interrogation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875
3. A NEXT-GENERATION OF MS METABOLOMICS COMBINING

MASSIVE AND ALIGNMENT-BASED DATA EXPLORATION . . . . . . . . . . . . . . 876
3.1. Implementing Massive MS/MS Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 877
3.2. Alignment-Based Approaches to Navigate Plant Specialized Metabolite

Diversity via MS/MS Molecular Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877
3.3. Linkage Analysis of MS Metabolomics Data with Genetics Data . . . . . . . . . . . . . 880

4. NEXT-GENERATION MS METABOLOMICS REINVIGORATES
THE TESTING OF PLANT DEFENSE THEORY PREDICTIONS . . . . . . . . . . 880
4.1. Formulating Metabolomics-Level Predictions for Plant Defense Theories . . . 881
4.2. Decoding Plant Specialized Metabolite Diversity in the Form of Simple

Statistical Currencies Using Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
5. CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

1. INTRODUCTION

Plants are master synthetic chemists, making use of their metabolic prowess to produce complex
blends of structurally diverse metabolites. The plant kingdom contains somewhere on the order
of one hundred thousand to one million chemically unique structures (3, 26), with an estimated
range of five thousand to fifteen thousand structures per plant species (38, 40). Plant specialized
metabolites (PSMs, synonymously referred to as secondary metabolites or natural products), com-
pared with their counterparts integrated in primarymetabolic pathways that are broadly conserved
across plant lineages, contribute to the majority of the pan-plant metabolome diversity. This di-
versity of PSMs is a central dimension of the functional traits that propelled plants’ colonization of
very diverse ecological niches, and the pronounced plasticity in PSM production provides plants
with on-demand biochemical capabilities to cope with highly unpredictable fluctuations of biotic
and abiotic stress conditions (144).

From a biosynthetic standpoint, the production of structurally diverse PSMs is supported
by large metabolic gene families such as those of the cytochrome P450s, uridine diphosphate
(UDP)-glycosyltransferases, and BAHD acyltransferases (25). Tailoring or decorating enzymes
encoded by these large gene families can modify PSM scaffolds with various chemical groups
that exponentially increase PSM structural diversity and often exhibit relatively low substrate
specificity compared with enzymes in primary metabolism, which tend to be more restrictive
(141). Varying degrees of enzyme promiscuity, i.e., the “coincidental catalysis of reactions other
than the reaction(s) for which an enzyme evolved” (67, p. 473), are hence viewed as key mech-
anistic bases for the vast reaction space characteristic of PSM pathways. Gene duplication, via
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Metabolite profiling:
provides direct
functional information
by targeting a set of
metabolites associated
with specific metabolic
pathways or
compound classes in a
biological system

tandem, segmental, and whole-genome duplications, and subsequent divergence in expression
and amino acid sequences of the duplicated genes, is the central evolutionary motor to metabolic
diversification (71, 72, 142). The expansion of gene families resulting from the retention of
duplicated genes supported by neofunctionalization—selective retention by acquisition of a new
beneficial function—and subfunctionalization—partitioning of ancestral functions between gene
duplicates (88)—is indeed widely recognized as a major driving force of metabolic innovations
over short evolutionary time scales. Genetic mechanisms for gene duplications, recruitments,
and the evolution of new metabolic activities in PSM pathways have been recently discussed in
several excellent reviews (93, 141).

1.1. Hierarchical Levels of Plant Specialized Metabolite Diversity

The compositional diversity of PSM profiles or phytochemical diversity can be examined at differ-
ent hierarchical levels. A first hierarchical level of analysis considers the micro- and macroevolu-
tionary diversification of PSM pathways among individuals of plant populations (i.e., intraspecific
diversity) and among closely related species up to more evolutionarily distant plant species (i.e.,
interspecific diversity). For the latter comparison, researchers have noted that particular PSMs or
complete metabolic classes are sparsely distributed among plant lineages. Consequently, certain
PSM classes have been frequently targeted as idiosyncratic metabolic characters for the biochem-
ical investigation of specific plant families, for instance, quinolizidine alkaloids and nonprotein
amino acids for Fabaceae (145), tropane and steroidal alkaloids for Solanaceae (58), and iridoids
and essential oils for Lamiaceae (136). This taxonomically restricted distribution of several PSM
classes reflects that particular taxa-specific metabolic pathways have been preferentially selected
during evolution when their final metabolic products provide fitness benefits in the ecological
niches inhabited by plants of these taxonomic groups. For instance, antiherbivore pyrrolizidine
alkaloid biosynthetic pathways have undergone repeated loss and gain transitions during evolu-
tion, resulting in patchy metabolic distribution among closely related species (101). At the pop-
ulation level, within- and among-population compositional heterogeneities in PSMs have been
reported in a large body of targeted phytochemical studies (2, 71), more rarely using broadly tar-
getedmetabolite profiling (148).These population-level polymorphisms in PSMsmost frequently
appear in the form of quantitative variations in metabolite concentrations and their maintenance
has been hypothesized to contribute to overall-population fitness in fluctuating and geographically
dispersed environments (95) as well as in the context of rapid changes in herbivore regimes (150).

A second hierarchical level of exploration considers quantitative and qualitative metabolic vari-
ations within a plant that occur among different organ or tissue types as a result of the confined,
and, in the most extreme cases, cell-type-specific, localization of the underlying biosynthetic path-
ways (59). Intertwined with the spatial heterogeneities of PSMs are temporal adjustments in PSM
production according to ontogenic stages or circadian or annual cycles and during stress acclima-
tion (55, 69). Modulations of PSM diversity detected at the intraspecies scale are further exacer-
bated as part of natural polymorphisms in induced signaling and responses to biotic stresses, in
particular those resulting from interactions with herbivorous insects (61). The underlying time-
and ecological context–dependent specialized metabolism plasticity contributes to the broad set
of reconfigurations of a plant’s defensive physiology when challenged by herbivores, pathogens, or
competitors, and, when enemies are absent, it is thought to avoid the excessive allocation of valu-
able resources to chemical defenses at the expense of maintaining physiological investments (13)
as well as collateral damages to mutualistic interactions (123). The evidence for such materialized
trade-offs between constitutive and induced metabolic diversity in the context of insect herbivory
is, however, equivocal (64).
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Metabolomics:
the comprehensive and
systematic analysis
(both qualitatively and
quantitatively) of all
measurable
metabolites in a
biological sample
using high-throughput
analytical means

Chemical ecology: an
interdisciplinary field
between chemistry and
biology that primarily
focuses on the small
molecules mediating
interactions between
living organisms and
their environment

Beyond plant biology research, exploring metabolic diversity is relevant to all important theo-
retical advances in the study of organisms’ adaptations to their environments and networks of or-
ganismic interactions in ecosystems. In ecology, three functional levels of biodiversity (i.e., species)
over spatial scales are traditionally considered (143): α diversity, referring to the diversity of local
species within a particular geographic area; β diversity, signifying the ratio between regional and
local species; and γ diversity, describing the total species diversity in a landscape. These functional
levels of biodiversity have recently been transposed to phytochemical diversity (66, 95). According
to the above-described hierarchical levels of analysis, functional categorizations could translate in
α metabolic diversity as the diversity of PSMs in a given plant and β metabolic diversity as the fun-
damental intraspecific PSM space for a (set of ) population(s), while γ metabolic diversity would
be the extension of the diversity analysis to a multispecies perspective.We advocate (see Section 3)
that the comprehensive metabolic data necessary to assess these different levels of PSM diversity,
among other variables of interest, require taking full benefit of recent advances in mass spec-
trometry (MS) metabolomics for large-scale data acquisition. Additionally, the implementation of
adequate statistical approaches to score metabolic diversity from these data into simple currencies
is another critical step. In Section 4, we formalize this view and discuss how predictions of semi-
nal theories in the chemical ecology of PSMs could be revisited when they are posed at this new
scale of analysis and when statistical currencies derived from the widely used information theory
framework are implemented to compare metabolomes.

1.2. A Brief Historical Perspective on Parallel Developments in the Chemical
Ecology and MS Analysis of Plant Specialized Metabolites

The advent of the study of PSMs dates back to 1806 when Friedrich Wilhelm Sertürner isolated
the “salt of opium,” the first alkaloid morphine, from opium poppy principium somniferum (50).
For about 150 years, documentation of the vast small-molecule structural space in plant extracts,
leading to the discovery of diverse compound classes, was mostly viewed as a strong argument
for the incidental origin of PSMs. The diversity of PSMs was seen as “flotsam and jetsam on the
metabolic beach,” as waste or inner end products from central metabolism degradation pathways
(51, p. 243), and referred to as serving no primary function in a plant’s growth and reproduction
(50). Interestingly, the research of entomologists in the middle of the twentieth century led to a
remerging functional interpretation of PSMs in light of plants’ interactions with insects. In his
seminal article published in 1959, Gottfried Fraenkel recognized that PSMs were not the inert
waste products of a plant’s metabolic exuberance but carried intrinsic defenses against and host
selection functions for insects (44). Core to Ehrlich & Raven’s plant-insect coevolution theory
formulated in 1964 was the prediction that variations in metabolic traits constrained, as part of an
arms race, rates of lineage diversification in both producing plants and the insects they interact
with (33). These paradigm shifts that emphasized the interorganismic functions of PSMs pro-
vided guidance to the formal establishment of (plant) chemical ecology in the 1970s. Additionally,
bioassays on PSMs benefited, starting from the middle of the twentieth century, from impressive
advances in the area of organic synthetic chemistry methods (32), including approaches enabled
by the widespread application of Diels–Alder cyclization and retrosynthetic analysis by pioneers
such as Corey and Woodward (discussed in 97).

Early plant chemical ecology studies were conducted with a focus on a few compounds and did
not systematically absorb the merits from contemporary technical innovations in MS (Figure 1).
In the 1980s, the development of two soft ionization techniques, electrospray ionization (ESI)
(146) and matrix-assisted laser desorption/ionization (MALDI) (125) enabled for the first time the
direct detection of intact nonvolatile molecules, thereby significantly expanding the detectable
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Figure 1 (Figure appears on preceding page)

Timeline of methodological breakthroughs in mass spectrometry and concepts to support plant specialized metabolism exploration.
The left panel visualizes important technical advances in the implementation of broader-scale mass spectrometry–based plant
metabolite analysis [e.g., the method proposed by Venable et al. (135)]. The right panel highlights selected key concepts and studies
associated with a holistic and functional view of plant specialized metabolite diversity. The graph depicts bibliographic trends for
published research articles on plant secondary and specialized metabolites (teal area) and citations for two key plant defense theories
(the optimal defense hypothesis and screening hypothesis) addressing plant metabolic diversity (orange lines). Bibliographic information
from the Web of Science online database.

chemical space beyond small volatile molecules analyzable by gas chromatography coupled with
mass spectrometry (GC-MS) (48). The large-scale commercialization of these two ionization
techniques made MS the dominant analytical technique to conduct more broadly targeted
metabolite profiling. The term metabolomics was first coined by Steven Oliver et al. in an article
published in 1998 (99), followed by several research articles adopting nontargeted MS-based
metabolite profiling methods for the study of plant metabolism (42, 45, 107), leading to the
emergence of metabolomics as a vigorous technical research field. Early plant metabolomics
analyses were largely exploratory and relied either on GC-MS, liquid chromatography-MS (LC-
MS), or direct-injection MS to profile, with relatively low throughput, genetically modified or
environmentally challenged plants for metabolite fingerprints established from tens to hundreds
of metabolites detected in a few samples (5, 42, 53, 107, 108, 137). In the past decade, steady
improvements in the scanning speed and resolution of mass analyzers (measuring mass-to-charge
[m/z] ratios based on differential ion behaviors in electric, magnetic, and electromagnetic fields)
as well as in the sensitivity and sample throughput of MS instruments have revolutionized this
research field. While a concomitant decrease in costs has not been observed for MS instruments
equipped with the highest-resolution MS analyzers [Fourier-transform ion cyclotron reso-
nance technology (FT-ICR)], medium-high-resolution quadrupole time-of-flight mass analyzer
(QTOF) MS instruments for routing metabolomics work have continuously gained market
share due to their relative affordability for single laboratories (6). Together, these hardware
developments have enabled a fundamental transition, progressively adopted in a wide range
of biological studies, from a reductionist to a more global analysis of small-molecule profiles.
In chemical ecology, the relatively recent application of the latest advances in untargeted MS
metabolomics has dramatically improved the efficiency of detection of PSMs mediating key
chemical interactions between organisms and their environment, thereby overcoming one of the
main limitations of traditional bioassay-guided structure elucidation workflows.

2. CORNERSTONE CHALLENGES IN THE UNTARGETED MS
ANALYSIS OF PLANT SPECIALIZED METABOLITE DIVERSITY

Compared with other omics approaches, metabolomics offers direct and real-time readouts of the
small-molecule determinants of an organism’s physiology and ecological interactions (82). Ma-
jor technical obstacles to metabolomics analyses are directly associated with the aforementioned
highly diverse chemistry as well as the several orders of concentrations and complex spatiotem-
poral dynamics associated with small molecules. These challenges combined with the inherent
specificities of each biological matrix render technically unfeasible the profiling of the complete
metabolome of a given cell type, tissue, organ, or organism and thwart the routinization of un-
targeted metabolomics studies (39). DNA and RNA consist of only four bases that make up the
backbone of the strands connected with phosphodiester bonds, whereas proteins are linear poly-
mers consisting of long chains of amino acid residues. Although the chemical complexity of pro-
teins expands to 20 amino acid types, creating the extremely vast chemical space in which proteins
function, inferences on protein sequences can be derived from genome information according to
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the central dogma of molecular biology. In clear contrast, unlike the polymeric nature of nucleic
acids and proteins, precursors (building blocks) for the biosynthesis of PSMs are highly diverse.
PSM scaffolds are not assembled in a template-based modular fashion and are further chemically
modified and decorated, leading to significant heterogeneity in molecular composition, polarity,
and stability, all of which render comprehensive chemical analyses challenging even for extracts
obtained through multistep enrichments for specific compound classes. Obviously, nucleic acid
and protein sequences may not be used to directly infer physicochemical properties of PSMs. But,
conversely, metabolomics analysis can advantageously be applied as a stand-alone technique to
nonmodel plant species for which genome and transcriptome data are not yet available. Rather
than reviewing the entire analytical and processing method portfolio for MS metabolomics, we
focus here on critical steps that affect the diversity of explored metabolites.

2.1. Illuminating the Dark Matter in MS Metabolomics Studies

All combinations of metabolomics methods per se are technically biased toward very small frac-
tions of the true metabolome of plant specimens. Reciprocally, the dark metabolome represents all
the metabolites present in a system that are either not extracted, lost and/or transformed during
the extraction, or not detected using standard analytical methods and hence remain unknown or
detected metabolites that cannot be structurally annotated and hence are considered as known
unknowns (23). Recent innovations in MS technologies that allow real-time metabolome analy-
sis of unicellular microorganisms (57, 84) and complete living multicellular organisms (46) have
significantly expanded our capacity to inventory part of this dark metabolite space. Among the
many frontiers in this research field, an important obstacle is to resolve the spatial heterogeneities
in metabolites at cellular or subcellular levels that, in turn, result from heterogeneities in enzy-
matic activities and dynamic metabolon assemblies at these spatial scales (100). More generally,
various technical factors, such as sample extraction, liquid chromatography separation,MS acqui-
sition, detection, and metabolic feature extraction during postprocessing of the data (described in
Section 2.2), influence qualitatively and quantitatively metabolite annotation outputs (147). Ulti-
mately, metabolites measurable by MS metabolomics are frequently estimated to be less than 5%
of the organism’s metabolic space (131).

Optimization of extraction protocols that consider different solvent combinations constitutes
an instrumental, but strikingly poorly exploited, means of achieving both efficiency and repro-
ducibility with a better coverage of PSM diversity (49). A key remaining issue is to increase the
sensitivity in the detection of metabolites with low abundance or poor ionization behavior. To this
end, different metabolomics strategies using multiple orthogonal analysis platforms such as LC-
MS, GC-MS, capillary electrophoresis-MS (CE-MS), and nuclear magnetic resonance (NMR),
which are complementary techniques in terms of their expertise in the detection and characteri-
zation of metabolites of different physiochemical properties, are frequently combined to achieve
improved comprehensiveness (8, 76, 78). In this respect, different MS ionization techniques in-
cluding the commonly used ESI, atmospheric pressure chemical ionization (APCI) and atmo-
spheric pressure photoionization (APPI) offer overlapping but also specific ranges of applicability
dependent on metabolites’ molecular weight and polarity (147). In addition, positive and negative
ionization mode measurements are routinely conducted in untargeted metabolomics as comple-
mentarily parallel runs, with each of the two ionization modes detecting significant numbers of
unique analytes that can be combined through dual processing of ionization mode–specific data.

2.2. Anatomy of Key Processing Steps of MS Metabolomics Data

A typical processing pipeline for untargeted high-resolution MS (HR-MS) metabolomics data
is depicted in Figure 2. After data acquisition, an initial step to the computational processing of
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Figure 2

A schematic workflow for high-resolution mass spectrometry untargeted data processing and simple statistical mining.
(❶) Spatiotemporal heterogeneities in a plant’s metabolic space are detectable at different hierarchical scales and for different ecological
interactions. Experimental design and plant specimen selections are to be critically considered according to explored levels of metabolic
diversity. (❷) After metabolite extraction and measurement by LC coupled to HR-MS, vendor-specific raw data are converted to
universal file formats for subsequent automated processing by a wide range of open-source software. The latter have been benchmarked
in recent reviews (63, 124). (❸) Automated processing aims to unfold multidimensional HR-MS data into a mass matrix consistent in
size for the data set and used as input for statistical mining. Automated processing steps critically include mass feature detection and
alignment among samples as well as the (❹) MS spectral deconvolution by clustering of mass features belonging to a single metabolite
and generated during in-source fragmentation. (❺) Feature normalization and missing value imputation are important for the next
steps of statistical analysis. (❻) Multilevel statistical analyses are typically conducted for the interpretation of global metabolic trends
and identification of biomarker metabolic features associated with those trends. More recently, statistical descriptors from the
information theoretical framework were transposed to score indices of diversity and specialization from metabolome profiles, thereby
allowing the quantification of the reprogramming of metabolome diversity according to ecological interactions (80). Abbreviations:
HR, high-resolution; LC, liquid chromatography, MS, mass spectrometry,m/z, mass-to-charge ratio.
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Mass feature:
corresponds to an m/z
signal, detected by
automated processing
of LC-MS data, for a
compound being
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(MS/MS): also
referred to as MS2; an
instrumental method
to break down ions
into fragments via the
tandem coupling of
mass analyzers

Deconvolution: the
computational process
of resolving coeluting
mass features and
creating
compound-specific
spectra

Dereplication:
the identification of
metabolites in an
empirical study using
existing knowledge of
the known chemical
structures of these
metabolites, thus
avoiding repeatedly
characterizing the
structures of known
metabolites

HR-MS data using noncommercial platforms consists of the conversion of the vendor-specific
data format to the NetCDF, mzML or mzXML standardized file formats so that the HR-MS raw
data can be read by the many widely used software tools, such as XCMS (121), MZmine (62),
MetAlign (86), OpenMS (109), MS-DIAL (130), and others. HR-MS data are three-dimensional
data sets composed of distributions of m/z signals and their retention times and corresponding
intensities. Hence, data preprocessing solutions are ultimately required to unfold these mul-
tidimensional data sets and facilitate subsequent data interpretation. Computational solutions
typically involve feature detection and alignment across multiple samples, noise filtering, and
missing feature imputation in order to generate a concatenated matrix in which mass features
associate to a unique m/z and a specific retention time. Rationales and algorithmic bases to
built-in feature detection and preprocessing methods have been extensively reviewed (63, 124).

The extracted matrix consists of an uncharacterized pool of mass features amassed from the
ionization of (plant) metabolites that correspond to different adduct types, isotopic ions, and
in-source fragments extracted by data processing. Hence, an important step in untargeted HR-
MS data processing consists of clustering mass features belonging to the same metabolite into
so-called MS pseudospectra (MS1) using open-source software tools such as CAMERA (74),
RAMClust (16), MSClust (128), xMSannotator (133), or AStream (10) with the aim of reducing
data redundancy and facilitating detectable metabolite number estimations and further annotation
steps. Along this line, the use of in-source MS fragments (from MS pseudospectra) to interrogate
low-energy tandem mass spectrometry (MS/MS) spectra in public databases is often recognized
as an underexploited approach that enhances metabolite annotation in mass feature lists from
metabolomics studies (16, 89).

2.3. Challenges of MS Metabolomics Data Annotation
via Database Interrogation

Processing of HR-MS data typically translates into tens of thousands of mass features that cor-
respond to up to several thousand metabolites, the majority of which remain unknown. Conse-
quently, there is inherently an order of magnitude of difference between known and unknown
features. Hence, a formidable challenge is to prioritize and confidently annotate mass features ex-
tracted during processing steps and possibly combine in-source fragmentation-derived features as
MS pseudospectra. In GC-MS, automatic mass spectral deconvolution and straightforward spec-
tral identification are routinely applied, owing to the highly reproducible ionization process of
electron impact ionization (EI), historically standardized at 70 eV, together with the robustness
of capillary columns, thus creating highly reproducible mass spectral and relative retention time
information (41). Standardized spectral libraries such as that of theNational Institute of Standards
and Technology (NIST) (12) and the Golm Metabolome Database (73) further allow matching
of mass spectral records with experimental data, and the many automated tools and multivariate
computational approaches for high-throughput spectral extraction (27) have greatly streamlined
the spectral annotation process in GC-MS-based metabolomics analysis.

Neither of these developments is readily applicable in LC-MS-based metabolomics, notably
because mass spectra obtained fromLC-MS are highly instrument- and condition-dependent and,
probably more problematic, due to the scarcity of PSM spectral representation and lack of chem-
ical knowledge capture in public databases (6). In model species for which specific databases are
available, such as via the Platform for RIKEN Metabolomics (PRIMe) resources for Arabidopsis
(110) or other well-studied plant species for which in-house libraries have been created, derepli-
cation of metabolite identification knowledge (representing only a small fraction of the plant’s
PSM diversity) can be relatively straightforward via the matching of parent and fragment masses
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to those of database entries. Yet, for most other species, such a specific knowledge base is unavail-
able.While the unambiguous assignment of a molecular formula can remain a challenging task for
high-molecular-weight metabolites, MS analyzers such as Orbitrap and time-of-flight (TOF) are
now capable of reaching 1 ppm (part per million) or sub-ppm mass accuracy levels (90) that dras-
tically reduce the space of chemically plausible formulas for a given mass feature. This process can
be further empowered by computational approaches that merge MS data of fully 13C-labeled and
unlabeled plant extracts in order to eliminate ambiguity in chemical formula assignment (131).

MS/MS (or MS2) experiments and the consecutive interrogation of publicly available spec-
tral databases, such as METLIN (126), MassBank (56), ReSpect (111), WEIZMASS (117), the
Global Natural Products Social Molecular Networking (GNPS) community library (138), and
others, with target MS/MS spectra are central steps in HR-MS data analysis. Currently, there are
approximately 2.4 millionMS/MS spectra corresponding to less than 80,000molecules readily ac-
cessible in the most-renowned MS/MS databases, which is likely an overestimate considering the
large overlap of chemical entries among these libraries (6). In recent years, in silico (i.e., computer-
generated) MS/MS spectral libraries have been employed as promising alternatives to overcome
the restricted chemical space coverage of experimental MS/MS databases by generating simu-
lated spectra from chemical databases (7), such as PubChem (68), the Chemical Abstracts Service
(CAS) registry (85), and ChemSpider (102), in which large volumes of known chemical structures
have been indexed. These computational approaches, as showcased in the Critical Assessment of
Small Molecule Identification (CASMI) contest (9, 114), have ramified considerably in the last
few years and, when combined with other orthogonal information such as retention time predic-
tions (15) and chemical ontology inference tools (52), can greatly assist in annotation knowledge
dereplication. If all of the previously mentioned annotation strategies are exhausted, structural
elucidation has to be conducted de novo, with NMR remaining as the gold standard for the struc-
tural elucidation from close-to-pure metabolite fractions. Nonetheless, its low sensitivity and low
throughput still preclude its application to large-scale exploratory MS metabolomics. Coming
back to MS analysis, an early attempt at de novo interpretation of MS data was the DENDRAL
project back in the 1960s, which applied artificial intelligence to identify unknown compounds
by analyzing their mass spectra and using knowledge of chemistry (83). Recently, a computational
approach has been developed to interpret MS/MS data of small molecules by searching molecular
structure databases using fragmentation trees and machine learning techniques. This approach,
termed CSI:FingerID, represents a powerful means of increasing identification rates of metabo-
lites (30). Recently, a computational method, termed CANOPUS, has been developed to reinforce
systematic compound class assignment and ontology prediction using high-resolution fragmen-
tation mass spectra when neither spectral nor structural reference data are available in libraries or
databases (29).

3. A NEXT-GENERATION OF MS METABOLOMICS COMBINING
MASSIVE AND ALIGNMENT-BASED DATA EXPLORATION

The switch in 2008 from traditional Sanger sequencing to the so-called next-generation sequenc-
ing (NGS) techniques has revolutionized genomics research (119). A technological breakthrough
of that magnitude has not yet occurred in MS metabolomics; instead, this field has witnessed
more incremental technological advances in instrumental sensitivity, accuracy, and MS/MS data
collection capacity. Nonetheless, profound advances are currently ongoing from simple univari-
ate and/or multivariate statistical mining (11, 19) (to pinpoint phenotype-associated metabolites
on which identification efforts are targeted) toward large-data exploratory approaches amortizing
chemoinformatics as well as bioinformatics methods frequently inspired from the field of DNA
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sequencing. Analogous to the large-scale exploration of biodiversity that has flourished with the
advent of NGS, recent crowdsourced data and knowledge capture initiatives (138) as well as the
transposition of sequence alignment-based classification to MS/MS data (6) are game-changers
for large-scale phytochemical diversity exploration.

3.1. Implementing Massive MS/MS Data Acquisition

MS/MS data acquisition as a starting point for compound annotation is traditionally conducted
using data-dependent MS/MS acquisition (DDA) methods. In the DDA method, a narrow mass
isolation window is selected for which a few of themost intense precursorm/z features are targeted
for collision-induced dissociation (CID) fragmentation to generate MS/MS spectra (Figure 3). In
contrast, data-independent MS/MS acquisition (DIA) methods, such as the SWATHmethod, ap-
ply multiple acquisition cycles, and in each one a relatively large mass window (10–25 Da or more)
is stepped across the entire mass range without precursor selection; these cycles are repeated over
time during the entire chromatographic separation, thus collectively generating MS/MS data for
all detectable signals (47). This method, however, requires high scan rate MS instruments to com-
pensate for the short travel times of ions in mass spectrometers in order to cover the whole mass
range when smaller isolation windows are applied. Alternatively, DIA methods can be operated
indiscriminately by manipulating CID insource ionization fragmentation within an m/z range set
as large as possible (17). Although traditional DDA is a powerful and versatile strategy, it suffers
from several fundamental limitations as comparedwithDIAmethods.First, the precursor isolation
width in DDAmethods must be set as a compromise between sensitivity and specificity to achieve
decent MS/MS signals while avoiding contamination. Second, due to scan rate limitation, only a
relatively restricted number of precursor ions can be selected for further CID fragmentation in
each DDA acquisition cycle, and the stochastic nature of DDA methods frequently lead to biased
acquisition of the same highly abundant metabolites, which reduces the comprehensiveness of
the MS/MS analysis. In recent years, DIA methods that allow for a massively parallel collection of
structural information on samples’ metabolic diversity have therefore received considerable atten-
tion.Themajor disadvantage ofDIA is amissing link between precursors and fragments,which re-
quires computational approaches to reconstruct precursor-to-fragment relationships. These char-
acteristics of DIA methods are reminiscent of the situation in NGS in which the computational
assembly of short sequencing reads is a technological prerequisite enabling high-throughput se-
quencing of millions of DNA molecules simultaneously. Several open-source software programs
are able to tackle this DIA precursor-to-fragment assembly issue, such asMS-DIAL,which gained
momentum for the processing of SWATH data (130) (Figure 3). An alternative DIA data analysis
approach, termed indiscriminant MS/MS, extracts the resolution required for spectral assemblies
from cross-sample variance for the correlation calculations used in precursor-to-fragment assign-
ments (17). Altogether, these DIA data-processing tools allow the deconvolution of large-scale
MS/MS libraries, thereby maximizing structural information collection on a given phytochemical
profile.

3.2. Alignment-Based Approaches to Navigate Plant Specialized Metabolite
Diversity via MS/MS Molecular Networking

The basic local alignment search tool (BLAST) that performs comparisons between pairs of se-
quences, searching for regions of local similarity, is undoubtedly the most routinely used bioinfor-
matics tool for genomics data mining. A breakthrough development in MS/MS data exploration
is the molecular networking approach developed by Dorrestein’s group (140) that is based on
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Figure 3 (Figure appears on preceding page)

Computational approaches exploiting large-scale MS/MS capacities to explore plant specialized metabolite diversity. (a) Method
comparison for DDA and DIA high-throughput MS/MS acquisition. (b) DIA-generated MS/MS spectra deconvolution. Information
regarding a fragment’s assignment to a given precursor mass is lost during DIA acquisition but can be computationally retrieved using
spectral deconvolution according to mass feature peak shape, such as in the universal program MS-DIAL, or based on mass feature
intensity–based correlation methods exploiting sample-to-sample variance, as in the idMS/MS method. (c) A portfolio of MS/MS
similarity scoring, clustering, and representation as molecular networks are integrated into the GNPS (http://gnps.ucsd.edu)
community-wide MS data archiving and analysis platform. Optimized pipelines available in GNPS further allow the mapping of
MS/MS molecular network visuals with shared mass motifs inferred from MS/MS data sets (MS2LDA) (134) or annotations of
chemical families via a combination of in silico annotation and hierarchical chemical ontologies (MolNetEnhancer) (34), MS/MS
clustering via the exploitation of phylogenetics-derived tools (Qemistree) (129), as well as MS/MS queries using MASST (139), which
is conceptually similar to the NCBI BLAST search. The chemical clustering from Qemistree, available on iTOL (https://itol.embl.
de/tree/709513416494381587432576), was generated using data from Reference 129, with permission from Pieter Dorrenstein.
(d) In a closely related analytic approach to molecular networking,MS/MS spectra are clustered into modules in a biclustering approach,
according to scores for shared fragments and neutral losses between pairs of MS/MS spectra. Molecular networks reconstructed from
modules extracted from the biclustering approach or from the GNPS-based molecular networking are advantageous because they allow
the formulation of annotation hypotheses based on previously known metabolites populating a network associated with a phenotypic
response of interest [here, the strong response to insect feeding (induced state)] or can be explored based on gene-to-metabolite
coexpression and quantitative genetics data to detect candidate genes underlying the production of specific metabolites. Abbreviations:
BLAST, basic local alignment search tool; DDA, data-dependent MS/MS acquisition; DIA, data-independent MS/MS acquisition;
GNPS, Global Natural Products Social Molecular Networking; idMS/MS, indiscriminant MS/MS; LOD, logarithm of odds; mGWAS,
metabolic genome-wide association study; mQTL, metabolic quantitative trait locus; MS, mass spectrometry; MS/MS, tandem mass
spectrometry; m/z, mass-to-charge ratio; NCBI, National Center for Biotechnology Information; NL, neutral loss.

multiscale pairwise alignments of MS/MS spectra from HR-MS analyses. Molecular networks
are visual displays in which nodes represent spectra and edges represent spectrum-to-spectrum
alignments (with similar fragmentation implying similar structure) (140). This approach is ex-
tremely useful for PSM diversity analysis, as it efficiently taps into preexisting structural knowl-
edge for the considered species as well as for structural annotation based on MS/MS similarities
for PSMs of shared biochemical origin (Figure 3). The molecular networking analysis is empow-
ered by the vast crowdsourced compilation of metabolomics data sets and chemical knowledge
within the GNPS data set (138). Further, software tools such as MS2LDA (which finds shared
structural motifs) (134), MolNetEnhancer (which uses MS2LDA motifs for metabolite classifi-
cation) (34), Qemistree (which computes MS/MS phylogenies) (129), and others are particularly
useful for the efficient mining of the spectral interrelationships of PSMs within an investigated
system. Additionally, these tools, together with in silico MS/MS approaches such as SIRIUS (28),
CSI:FingerID (30), NAP (24), DEREPLICATOR (94), and others, are integrated in the GNPS
community library. To complete this data analysis ecosystem, GNPS authors have developed an
equivalent of the NCBI BLAST search to queryMS/MS spectra, termedMASST (139). Recently,
a feature-basedmolecular networkingmethod that enables quantitative analysis and the resolution
of isomers, including from ion mobility spectrometry, has been integrated with other annotation
tools and is now becoming one of the most commonly used analysis pipelines within the GNPS
environment (98).

Classical spectral similarity scoring algorithms to constructmolecular networks include, among
others, probability-based-matching algorithms and the normalized dot product, which calculates
the cosine of the angle between two MS/MS spectra (70). These algorithms, which rely on ac-
curate matching of common peaks in two spectra, however, do not take into account mass shifts
caused by structural analogs whose structures differ in modifications such as methylation, hydrox-
ylation, or glycosylation. Several recent studies have highlighted the importance of considering
neutral losses for aligning MS/MS spectra (104, 134). Along these lines, a simple and sensitive
unsupervised approach termed biclustering, which was originally designed to find differentially
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coexpressed gene modules under two types of conditions, was recently implemented to improve
the scoring and classification of MS/MS similarities for PSMs by considering both types of frag-
mentation variables (fragment and neutral loss similarity scores) in constructing possible com-
pound familial groupings (79, 81, 96).The output of the biclustering modules can be transposed as
molecular networks to visualize other orthogonal biological information (for instance, metabolite
inducibility by herbivore attack) linked to a given MS/MS spectrum (Figure 3). Such molecular
networking procedures were applied to detect pathway- and PSM-specific natural variation effects
inNicotiana attenuata native populations (79) or insect-species-specific defensive metabolites (80).

3.3. Linkage Analysis of MS Metabolomics Data with Genetics Data

Untargeted MS metabolomics has been extensively applied in combination with genome and
transcriptome studies to understand plant gene functions. These multi-omics analyses either rely
on coexpression analyses between transcriptomics and metabolomics expression data to identify
gene-to-metabolite associations inferred from conditional transcriptional regulation or are used
to exploit natural variation via metabolic quantitative trait loci analysis and metabolic genome-
wide association studies (mGWASs) (36). As for the latter, linkage mapping analysis using struc-
tured populations such as multiparent advanced generation intercross (MAGIC) and recombinant
inbred lines (RILs) and/or unstructured natural populations as used by GWASs together with
the combination of NGS and MS metabolomics represent powerful tools to query genomic re-
gions associated with specific PSM traits in both model and crop species (20, 148). The ability
to statistically harness the multidimensional variance of PSM production (at tissue-, species-, and
population-level, as well as according to ontogeny/phenology and (a)biotic factor interactions)
using MS metabolomics data has been exploited on rare occasions to reveal divergent and conver-
gent genetic regulation of plant metabolism (20, 21).Coexpression-based approaches have notably
been employed to lead the identification of transcription factors regulating aliphatic glucosino-
late (54), steroidal glycoalkaloid biosynthesis (58), and flavonoid pathways (81) and can be inte-
grated with mGWASs and expression QTLs to more confidently impute gene functions to plant
metabolism (148) (Figure 3). Interestingly, models used in GWASs have recently been employed
to identify PSMs (analogous to loci) associated with insect resistance and ultraviolet radiation tol-
erance from the thousands of candidate metabolites (77, 103). In a recent study,we similarly parsed
population-level intraspecific variations in PSMs to infer novel jasmonate-dependent metabolic
traits potentially involved in defense against insect herbivory (79).

4. NEXT-GENERATION MS METABOLOMICS REINVIGORATES
THE TESTING OF PLANT DEFENSE THEORY PREDICTIONS

Over the past six decades, plant defense theories have provided conceptual frameworks from
which to infer predictions about the evolution and function of the considerable diversity of PSMs
(113). These plant defense theories have been topics of excellent reviews (32, 113, 122). These
theories were often posed at different levels of analysis (120), making it difficult to contrast their
critical predictions and advance to the next cycle of theory development (113, 122). Additionally,
as previously discussed, the lack of comprehensive metabolomics data and associated processing
workflows to compare the metabolic space among different plant taxa in a common currency
has thwarted the scientific maturation of the field, as predictions were made far beyond the
reach of the available data (113). In this section, we briefly discuss seminal guiding theories in
chemical ecology (Table 1) and how the previously mentioned next-generation metabolomics
advances would allow rigorous testing of aspects of these important theories that inspired previous
generations of researchers.
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Table 1 Long-standing hypotheses or models addressing plant metabolism–centered evolutionary and ecological ques-
tions that would benefit from next-generation metabolomics analysis

Guiding plant defense theory Year Critical predictions for plant specialized metabolites (PSMs)
Screening hypothesis (43, 60) 1991 During evolutionary screening processes, PSMs that are being exapted increase in

specificity in the phytochemical profile as a consequence of providing adaptive
value for a given environmental condition

Escape-and-radiate hypothesis
(33)

1964 Innovations in PSMs contribute to lineage diversification; hence, a strong association
between rates of species-lineage diversification and character evolution of PSMs is
predicted

Geographic mosaic hypothesis
(127)

1994 PSM diversity is expected to be heterogeneously distributed in geographic scales,
with the highest diversity in coevolutionary hotspots where strong reciprocal
selection on the interacting species takes place

Optimal defense hypothesis
(92, 105)

1974 Plants directionally allocate resources to PSM production according to their
defensive value and the probability of whole-plant or tissue-level attack

Moving target hypothesis (1) 1994 When attacked by herbivores, PSM production is reconfigured nondirectionally as a
way of creating random plant phenotypes that are hard for insects to adapt to

Information transfer hypothesis
(65, 66)

2015 PSM diversity is conceptualized as information through which plants interact with
their environment; inducibility and specificity in PSM landscapes are expected to
be correlated with the specificity of information exchange

Plant apparency hypothesis (37) 1976 Apparent plants invest quantitative (high in richness, less toxic) defensive PSMs,
whereas unapparent plants invest qualitative (low in richness, highly toxic)
specialized metabolite defense

Carbon:nutrient balance
hypothesis (18)

1983 PSM production is determined by the availability of carbon and nitrogen

Growth rate hypothesis (22) 1985 Slow-growing plants evolve quantitative specialized metabolite defense, whereas
fast-growing plants evolve qualitative specialized metabolite defense

Growth:differentiation balance
hypothesis (87)

1932 The allocation pattern of PSMs is expected to be curvilinear across a resource
gradient, peaking at the intermediate resource level

4.1. Formulating Metabolomics-Level Predictions for Plant Defense Theories

Two of the most important concepts that have guided the functional interpretation of PSM di-
versity as an adaptive response to aggressors, in particular, phytophagous insects, are the syn-
ergy and screening hypotheses. The synergy hypothesis, which has not yet been addressed using
large-scale possibilities offered by PSMmetabolomics, postulates that PSM function is metabolic-
context-dependent, since most individual PSMs exhibit biological activities only when part of a
given metabolic landscape (31, 106), and hence not directly inferable through traditional bioassay-
guided workflows. Molecular networking of MS/MS metabolomics data can identify metabolites
associated with a given resistance phenotype in light of structurally related metabolite congeners
with which functional synergies are likely to be established. Similarly, PSM covariance in natural
populations could be mapped onto MS/MS molecular networks built on structural similarities as
a new layer to examine PSM synergies.

The screening hypothesis formulated in 1991 complements the functional synergy perspective
(60) (Table 1). Based on assumptions that most PSMs have no adaptive value at any given time
and that the probability of generating novel PSMs that are biologically active is low, the screening
hypothesis suggests that PSM diversity is maintained at different hierarchical scales in order to
provide the raw material to exapt bioactivities of previously extraneous or alternatively adapted
metabolites (43). In the genera Bursera and Inga, correlations between rates of species diversifica-
tion and the structural diversity within target classes of PSMs have been interpreted by some as
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experimental support of the screening hypothesis (14, 75). However, it remains untested whether
these trends apply at broader PSM scales. As mentioned earlier, such analysis is now possible
in the context of recent MS metabolomics advances. Additionally, while the vast majority of de-
tected metabolites remain unannotated, molecular networking approaches partly circumvent this
hurdle by providing a means of achieving, without a priori chemical knowledge, compound class-
level clustering of known and unknown MS/MS spectra. It is then possible to examine how each
of these computationally generated compound class clusters evolved with species diversification
rates. The complexity of most PSM pathways coupled with enzyme promiscuity provides the bio-
chemical underpinnings for the large number of analogs with small chemical differences that are
thought to be screened or functioning in synergy. Again, the molecular networking–based ordi-
nation and exploration of these closely related structures in MS/MS metabolomics data sets could
accelerate the detection of those subtle chemical modifications that vary in natural populations
and confer adaptive value in a given ecological context.

Similarly, large-scale MS metabolomics data could be used to test some of the predictions of
Ehrlich & Raven (33) as well as Thompson’s (127) geographic mosaic hypothesis of coevolution
theories (Table 1). Core to Ehrlich & Raven’s (33) coevolution theory is the escape-and-radiate
hypothesis, which predicts that interspecific variations in metabolic diversity are responsible for
lineage diversification in plants (33). Key predictions at the level of PSM production have re-
mained untested at taxonomic scales beyond closely related congeners (4) due to the difficulty of
conducting comprehensive analyses on a large array of PSMs at a time and the lack of a metric
with which to compare rates of PSM profile evolution. As elegantly discussed and convincingly
exemplified by Sedio (115), the development of a chemical structural–compositional similarity
metric that weights the structural similarity of every pair of compound-derived MS/MS spectra
between species-level phytochemical profiles offers a rigorous test to central predictions of Ehrlich
& Raven’s coevolutionary theory regarding interspecific metabolic variations (116). Thompson’s
geographic mosaic hypothesis of coevolution emphasizes the importance of geographic variations
in natural selection mosaics, resulting in the patchy distributions of PSMs across space and time
(127). A comprehensive computational MS/MS metabolomics analysis of the cosmopolitan plant
genus Euphorbia has revealed structural diversity patterns across geographically separated phylo-
genetic clades of this genus that are consistent with the geographic mosaic hypothesis (35).

Starting from the 1970s, much of the focus of plant defense theories has been on the costs
and benefits of PSM production. Two core sets of hypotheses can be distinguished. One in-
cludes the optimal defense (OD) (92, 105), moving target (MT) (1), and apparency (37) hy-
potheses that place major emphasis on explaining temporal and spatial distributions of PSMs
according to defensive function and probability of attack.Whereas the other group of hypotheses
[including the carbon:nutrient balance hypothesis (18), the growth rate hypothesis (22), and the
growth:differentiation balance hypothesis (87)] seeks mechanistic explanations for how variations
in resource availability influence tradeoffs between plant resource investments in growth and PSM
production. The OD hypothesis postulates that plants directionally adjust their preferential in-
vestments into costly defensive PSMs to maximize their fitness as a function of the probability of
future attack (92, 105). The apparency hypothesis further defines apparency as the ecological pre-
dictability (in space and time) of entire plants or tissues and predicts that more apparent plants will
invest more heavily in broadly defensive PSMs (37). In contrast, the MT hypothesis, posed at the
same functional level of analysis, argues that the evidence of such a directional metabolic change
is unsupported but rather that PSMs change randomly when plant tissues are consumed by herbi-
vores, thereby creating a metabolic moving target, which could thwart herbivore adaptation (1). In
Section 4.2,we discuss how information theory modeling can help to distinguish between the con-
trasting predictions of theOD andMThypotheses regarding attack-induced trajectories of PSMs.
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4.2. Decoding Plant Specialized Metabolite Diversity in the Form of Simple
Statistical Currencies Using Information Theory

Several recent studies have demonstrated the use of information theory to quantify the chemical
information content in phytochemical studies in a framework that can be conceptually connected
to other types of information processing (80, 81, 149). Information theory was first introduced
in a seminal article by Claude Shannon (118) in 1948 in which he describes how uncertainty can
be represented, manipulated, and quantified using a probability-based model. This revolutionary
theoretical framework not only laid the foundation for a mathematical analysis of information
but also opened new avenues for almost every field of information-rich science and technology. In
ecology, information theory has been particularly useful in assessing biodiversity and trophic flows
by quantifying numbers of organisms and patterns of interactions of trophic processes, respectively
(132). Information theory has been successfully employed in genomics to quantify sequence con-
servation information (112) and in multi-organ transcriptomics studies to decipher gene specifiers
for organ-level transcriptome specialization (91).

In the case of MS metabolomics, a recent transposition of statistics derived from informa-
tion theory analysis was employed to parse plant tissue-level metabolic specialization from large-
scale MS/MS data (81). In a follow-up study (80), an integration of information theory statistics
and MS/MS molecular networking was used to quantify consistencies in highly controlled her-
bivory elicitations of temporal modulations of PSM diversity (α, β, and γ metabolic diversity)
at the three functional levels of phytochemical diversity (66, 143). In this analysis, trajectories
of herbivory-elicited plasticity of PSM production are captured using information theory de-
scriptors of metabolome diversity (Hj index) and specialization (δj index) calculated fromMS/MS
metabolomes. The ability to describe a complex information landscape in a few discrete indices
allowed for tests of contrasting plant defense theory predictions posed at the level of herbivory-
elicited metabolomes, such as those of the OD and MT hypotheses: namely unidirectional accu-
mulations of metabolites with defense functions (OD) versus nondirectional metabolic changes
(MT) (80) (Table 1). Consistent with the prediction of the OD hypothesis, herbivory-induced
PSM changes were channeled toward the production of defensive metabolites, which, in the con-
text of the above statistical descriptors, translated into an overall greater metabolite profile spe-
cialization (δj index) and lower metabolic diversity index (Hj index). In contrast, the MT hypothe-
sis predicts nondirectional changes in the metabolome.Within an information theory framework,
such nondirectional reconfigurations result in an overall increase of metabolic diversity as an indi-
cator of greater metabolic information uncertainty as well as no consistent change in metabolome
specialization, leading to a random distribution of the specificity indices of individual metabolites
(no metabolite exhibits significant specificity in response to herbivore attack) (80).

In the case of the previously described screening hypothesis, one key prediction is that screen-
ing processes should give rise to adaptive PSM divergence across populations maintained in order
to increase the probability that a plant contains specific PSMs that may eventually be effective
against a particular type of natural enemy. In an information theory statistical framework, such
PSM exaptations should materialize as an increase in the specificity indices of exapted metabolites
whose bioactivity becomes adaptive for a given environmental context. Another application of
transposing information theory to phytochemical communication is exemplified by a recent study
(149) decoding conflicting volatile-mediated information processes between plants and herbivores
as a test of the information transfer hypothesis (65, 66) (Table 1). In this elegant study, informa-
tion theory modeling of volatile information certainty for insects’ foraging is consistent with the
premise that interspecific volatile redundancy is a key variable in the communication arms race
between plants and their herbivores (149).
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5. CONCLUDING REMARKS

When seminal hypotheses to explain the different levels of PSM diversity were developed,
hypothesis-driven methods were the unique means of making scientific advances. Due to the
technical inability at the time to conduct comprehensive metabolite profiling at appropriate taxo-
nomical scales, key predictions of these hypotheses remained largely untested. The last decade
of metabolomics hardware and computational breakthroughs has led to a next generation of
metabolomics analyses for which the collection and data-driven ordination of structural infor-
mation on up to several thousands of metabolites per measurement is now achievable. These ad-
vances provide unprecedented access to PSM diversity as a functional variable to revisit these
seminal hypotheses (once their predictions are reformulated to match the new scales afforded
by the new comprehensive analysis), examine genetic determinants of phytochemical diversity,
and accelerate the identification of cryptic bioactive chemicals. In plant genomics, advances and
standardization of NGS methods have recently culminated with the release of the 1,000 Plant
Genomes Project (1KP), representing the most detailed catalogue of genomic variations in plants.
The recent community-level efforts for metabolomics data archiving, reuse, and interoperability
with other platforms should further foster additional opportunities to study the metabolic prowess
of plants.

SUMMARY POINTS

1. Variations in plant specialized metabolite (PSM) diversity detected at different hierar-
chical levels ranging from intraindividual to intra- and interspecific levels are important
functional dimensions of plants’ adaptations to their environments but are challenging
to examine.

2. Theoretical frameworks about phytochemical diversity remain largely untested, as their
main predictions reach far beyond the data needed to fully test them (in particular, large-
scale phytochemical analysis).

3. The next generation of untargeted metabolomics marrying advances in mass spectrom-
etry (MS) resolution with streamlined methods for large volumes of tandem mass spec-
trometry (MS/MS) data deconvolution already allows for the transition from traditional
reductionist approaches focusing on a few metabolites to a more holistic investigation
of a plant’s metabolome.

4. While still in their infancy in the metabolomics field, community-wide efforts [such as
the Global Natural Products Social Molecular Networking (GNPS) ecosystem] for MS
data sharing, analysis, and knowledge capture through bioinformatics solutions often
inspired from successes in genomics contribute substantially to the global interpretation
of metabolomics data and reinvigorate a community-wide interest in structural chemical
diversity.

5. Analogous to the exploration of biodiversity revolutionized by the advent of next-
generation sequencing (NGS), we recommend, in order to fully embrace the opportuni-
ties of the metabolomics information-rich era, that predictions of the seminal theories be
posed at this new scale of analysis and that simple statistical currencies be implemented
to compare and contrast metabolomes.

884 Li • Gaquerel



6. With the proliferation of data-intensive analyses in this field, a risk of marginalization of
hypothesis-driven research on phytochemical diversity could exist. An exciting challenge
should notably be to infuse a plant-natural-history-driven perspective intometabolomics
data exploration in order to revisit important theories that inspired previous generations.
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