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Abstract

Cannabis sativa L. is an important yet controversial plant with a long his-
tory of recreational, medicinal, industrial, and agricultural use, and together
with its sister genus Humulus, it represents a group of plants with a myr-
iad of academic, agricultural, pharmaceutical, industrial, and social interests.
We have performed a meta-analysis of pooled published genomics data, and
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Drug-type Cannabis:
Cannabis varieties
characterized by high
levels of THCA, also
referred to as
marijuana; under long-
standing prohibition in
many countries

we present a comprehensive literature review on the evolutionary history ofCannabis andHumulus,
including medicinal and industrial applications. We demonstrate that current Cannabis genome
assemblies are incomplete, with ∼10% missing, 10–25% unmapped, and 45S and 5S ribosomal
DNA clusters as well as centromeres/satellite sequences not represented. These assemblies are
also ordered at a low resolution, and their consensus quality clouds the accurate annotation of
complete, partial, and pseudogenized gene copies. Considering the importance of genomics in
the development of any crop, this analysis underlines the need for a coordinated effort to quantify
the genetic and biochemical diversity of this species.
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1. INTRODUCTION

Cannabis sativa L. (henceforth Cannabis) is an important yet controversial plant with a long history
of human use (90). Recreational, medicinal, and ritual uses rely on the psychoactive chemical con-
stituents present in the plant (i.e., drug-type Cannabis). Industrial and agricultural use involves the
production of fibers and, to a lesser extent, seeds (i.e., fiber-type Cannabis, hemp). The United Na-
tions Office on Drugs and Crime (UNODC) (118) estimates that Cannabis is consumed by 2.5%
of the global population,making it the most highly consumed drug. Recent debate has grown con-
cerning the ethical and societal implications ofCannabis legalization for recreational andmedicinal
use globally. Some countries have allowed limited hemp cultivation for agriculture and industry,
but Cannabis import and export have been greatly restricted. Recently, the prohibition of Cannabis
cultivation has ended in some parts of the world; arguably, the boldest regulatory change has oc-
curred in Canada, where federal law now allows large-scale agricultural production of both drug-
and hemp-type Cannabis.
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Hemp-type
Cannabis: Cannabis
varieties characterized
by low levels of THCA
and high levels of
CBDA; used for fibers,
seeds, and seed oils

Dioecious: having
male and female
reproductive organs
on different plants and
thus having biparental
reproduction

Dioecy: characteristic
of a species in which
males and females are
distinct organisms

Legalization, and the concomitant ability for scientists to work with Cannabis, underlines the
growing need for a concerted effort to, for example, characterize core germplasm collections as is
being done for virtually all crops (132). As an agricultural andmedicinal plant that has, for themost
part, been illegally cultivated and traded over the last 80 years, the shift to crop status requires the
quantification of this species’ genetic and phenotypic variability as a prerequisite for successful
agronomic, breeding, and medicinal applications.

With optimism for scientific and economic development due to the resurgence of this crop,
researchers have recently published a number of genomics data sets using a variety of cultivars
and methods (38, 56, 77, 98, 120, 124) (Figure 1). Here, we pool published genomics data for a
meta-analysis and present a comprehensive literature review. We frame this information in the
context of the evolutionary history of this species and its closest relatives.

2. BIOGEOGRAPHY AND DOMESTICATION

Cannabis comprises a single species of dioecious herb,Cannabis sativaL. It is sister to the genusHu-
mulus L., which comprises three species of dioecious twining herbs commonly known as hop: the
rare H. yunnanensis Hu, H. scandens (Lour.) (synonym Humulus japonicus) Merr., and H. lupulus L.
with five varieties (10, 23, 104, 105).Together,Cannabis andHumulus have long been recognized to
compose the family Cannabaceae.However, based on recent phylogenetic studies, Cannabaceae is
currently considered to include eight additional genera of mostly tropical trees (9, 113) (Figure 2).

Based on our current understanding of Cannabaceae phylogenetics, herbal growth and dioecy
transitioned from tree growth and monoecy, respectively, in a common ancestor of Cannabis and
Humulus. Subsequently, cannabinoid biosynthesis evolved in an ancestor ofCannabiswhile biosyn-
thesis of bitter acids and xanthohumols evolved in an ancestor ofHumulus, although the molecular
changes underlying the origin and evolution of these pathways are not well known (Figure 2).

The majority of Cannabaceae genera are considered to have their origins in East Asia, but
the precise areas of origin are often unknown (69). Both Trema and Humulus have their centers
of diversity in China, with a focus on the biodiversity hotspot of the mountains of Southwest
China (Hengduan Mountains) in Humulus (Figure 1; also see the sidebar titled Global Cannabis
Sampling).

Similarly, Cannabis is considered to have originated in temperate Asia (reviewed in 23, 43)
after having diverged from its common ancestor with Humulus (104), likely in the late Oligocene
to early Miocene [27.8 million years ago (mya) (68) to 21 mya (142)]. Subfossil pollen analysis
suggests a putative center of origin for Cannabis on the northeastern fringe of the Qinghai-Tibet
Plateau, over 19.6 mya (69). From there, the data suggest that the genus dispersed to Russia and
Europe approximately 6 mya and to eastern China approximately 1.2 mya, all likely before the
onset of human evolution (68, 69).

Based on achene fossils recovered in East Asia and Europe, early human use of Cannabis
as a fiber plant is hypothesized to date back to at least 8,000 years before present (BP) in the
Neolithic, having become widespread by at least 4,500 years BP (59, 68, 69). Hemp-type Cannabis
was introduced in the New World as an industrial crop in the sixteenth century. For drug-type
Cannabis, ancient use dates back to 2,700 years BP, documented through burial gifts containing
�9-tetrahydrocannabinol (THC) found in Central Asia, which were likely used in medicinal
and/or ritualistic contexts (49, 50, 90, 94). The sites of these fossils did not reveal any evidence of
fiber use (94), raising the question of whether Cannabis was first used as a multipurpose crop, or
whether the domestication of hemp and drug-type Cannabis proceeded independently (22, 94).
Regardless, cultivated drug-type Cannabis was spread from Central Asia and/or India to Africa,
the Middle East, and Southeast Asia by Arab and Hindu cultures between 2,000 and 500 years
BP (27). In East Africa, Cannabis was introduced to cultures that had invented pipe smoking (27).

www.annualreviews.org • Cannabis Genomics 715



PP71CH26_Sharbel ARjats.cls May 13, 2020 9:37

a

CN [2]

AF [4]

FR [11]

IR [68]

DE [6]

IT [13]

SY [2]

PL [2]

TR [5]

HU [9]

CA [7]

ZA [3]

FI [1]

NL [1]

RO [1] UA [1]

RS [1]

GE [1]
SK [1]

PK [1]

KP [2]

TH [1]
LA [1]

GT [1]
0
2,000
4,000
6,000

Elevation
(masl)

Elevation
(masl)

Native range of Cannabis sativa
    Putative origins of hemp domestication
    Putative origin of BLDT domestication
    Putative origin of NLDT domestication
Nonnative range
Inferred Cannabis center of origin
GBIF occurrence localities

0
2,000
4,000
6,000

Native range of Humulus lupulus
Native range of Humulus scandens
Native range of Humulus yunnanensis
GBIF occurrence localities

d

LR

Plant type
(n = 468)

Oth
er [4

]

North
 Am

eric
a [7

]

Geographic
origin

(n = 468) 

IR [68]

b cLR

D
rug-type cultivars

U
nknow

n/NA (69%)

Hemp cultivars

Hemp cultivars
Europe(10.7%)

Hemp (17.1%
)

N
aturalized
(14.5%

)D
rug-type (65.2%)

PK [1]
TH/LA [1/1]
AF [4]
TR [5]
CN [2]
KP [2]
SY [2]

LR

Iran

Naturalized

Asia (18.4%
)

(Caption appears on following page)

716 Kovalchuk et al.



PP71CH26_Sharbel ARjats.cls May 13, 2020 9:37

Figure 1 (Figure appears on preceding page)

Global distribution ranges and current genotype sampling of Cannabis and Humulus. (a) Putative native and nonnative distribution
ranges of Cannabis sativa as documented in the literature (23, 106, 107) as well as region of origin as inferred by McPartland (68). Green
dots indicate preserved specimen sampling localities stored in the GBIF [GBIF.org (27 September 2019) GBIF Occurrence Download;
https://doi.org/10.15468/dl.qqwywp]. Lines and abbreviations indicate countries represented in recent genotyping studies (62, 98,
109) with the number of samples given in brackets. (b) Number of genotyped Cannabis samples achieved in three landmark
genotyping-by-sequencing studies (62, 98, 109) by plant type (hemp, drug-type, and naturalized/wild Cannabis) and corresponding
fractions of cultivars, landraces, and commercial strains. Gray sections indicate accessions of unknown or unspecified plant type.
(c) Number of genotyped Cannabis samples by continent and country of origin and corresponding fractions of naturalized/wild
accessions, hemp cultivars, and drug-type LR. Gray sections indicate accessions of unknown or unspecified geographic origin. Lines
and abbreviations indicate countries, with the number of samples given in brackets. Other represents South Africa (three samples),
Guatemala (one sample). (d) Native distribution ranges of Humulus lupulus,Humulus scandens, and Humulus yunnanensis as documented
in the literature (104; http://efloras.org and http://www.agroatlas.ru/). Blue dots indicate preserved specimen sampling localities
stored in the GBIF [GBIF.org (13 October 2019) GBIF Occurrence Download; https://doi.org/10.15468/dl.4ddht]. Abbreviations:
AF, Afghanistan; BLDT, broad leaflet drug-type Cannabis; CA, Canada; CN, China; DE, Germany; FI, Finland; FR, France; GBIF,
Global Biodiversity Information Facility; GE, Georgia; GT, Guatemala; HU, Hungary; IR, Iran; IT, Italy; KP, Korea; LA, Laos; LR,
landrace; masl, meters above sea level; NA, not available; NL, Netherlands; NLDT, narrow leaflet drug-type Cannabis; PK, Pakistan;
PL, Poland; RO, Romania; RS, Serbia; SK, Slovakia, SY, Syria; TH, Thailand; TR, Turkey; UA, Ukraine; ZA, South Africa.

Finally, drug-type Cannabis became established throughout the Americas after 1800 AD (23). In
the postwar twentieth century, targeted breeding and extensive hybridization within and between
hemp- and drug-type Cannabis marked their development (23), leading to numerous hybrid
cultivars that remain to be disentangled.

GLOBAL CANNABIS SAMPLING

A comprehensive understanding ofCannabis andHumulus phylogeographic and domestication history, genome evo-
lution, and genetic and phenotypic diversity is important for future breeding and conservation endeavors.However,
there remain several key gaps in our evolutionary knowledge of these species, in particular with regard to Cannabis.
This is largely due to its long-standing prohibition and the lack of curated, georeferenced germplasm collections,
especially from the putative centers of origin and introduction.
For example, the vast majority (∼61%) of accessions genotyped by the most recent diversity studies in Cannabis

are commercial drug strains for which no passport data are available, while hemp and naturalized accessions have
mainly been sampled from Europe and the Middle East, respectively. Assembly of a global data set comprising
various types of Cannabis materials (e.g., undomesticated, naturalized, and landraces) as well as a comprehensive
sampling of all putative infrageneric subgroups should be prioritized in future evolutionary studies, agricultural
improvements, and medicinal applications.
Specifically, focus needs to be placed on Asian accessions, as we could only trace 3% (15) of the 470 accessions (lan-

draces and naturalized populations) included in the three most recent genotyping studies to this region (62, 98, 109).
Considering the remarkable genetic diversity harbored by regions of Asia (45, 143) and its hypothesized impor-
tance for the origin and domestication of the genus (23, 69, 105), this needs to be addressed urgently. This could be
achieved not only by making use of large germplasm bank collections (73) but also by sourcing from vast herbarium
collections. For example, the Global Biodiversity Information Facility (https://www.gbif.org/) lists 553 preserved
specimens from China, 262 from Pakistan, and 331 from the Russian Federation that are deposited in herbaria
worldwide. Even though these collections may not be directly useful for breeding purposes, sampling landraces and
wild/naturalized lines from herbaria might help to elucidate patterns of genetic diversity and evolutionary history,
which can in turn help to identify important regions that need to be targeted for germplasm sampling for breeding
and/or evolutionary studies.
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Young shoots of Humulus lupulus were collected from supposedly wild hops (cf. lupum salic-
tarium, willow wolf) and cooked, as the Roman natural philosopher Pliny the Elder (23–79 AD)
mentioned, possibly for the first time, in hisNaturalis Historia. The collection of wild hops (female
flowers and fruit clusters) (25) and the first cultivation of the plants in Bavaria in 859 AD were
conducted mainly for the purpose of beer-brewing (8), an industry that has seen a recent surge
due to the revival of craft beer production (136). Besides being a beer-flavoring agent, Humulus
lupulus has a wide variety of uses due to its digestive, antibacterial, and antifungal effects, and it
may have anticarcinogenic potential (33, 140).Humulus scandens is not used for brewing beer but
is used in traditional Chinese medicine to treat pneumonia, diarrhea, hypertension, leprosy, and
tuberculosis (112). Medicinal uses of Humulus yunnanensis are unknown.

Within Cannabaceae, Cannabis and Humulus are members of a larger clade that comprises
plants with a derived base chromosome number x = 10 (113, 137) (Figure 2).

Tree
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Lozanella    x = NA
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Figure 2

Phylogenetic tree of Cannabaceae family. Time-calibrated genus-level divergences based on five plastid and
three nuclear gene regions (51) showing evolutionary transitions of key traits (137) and putative origins of
biosynthetic pathways (colored boxes). All nodes shown have a posterior probability of 1 based on plastome
phylogenetics (144). Estimated ancestral states and pathways are given at the root of the tree. Monoecious
plants are indicated by a bisexual sign, dioecious plants are indicated by separate male and female signs, and
corresponding branches are in red. Branches representing early-diverging genera with x = 13 or 14 are in
gray, and those representing genera with x = 10 are in black. Genera for which draft genome assemblies are
available are marked with DG.We note the genus Parasponia is nested within a paraphyletic Trema (123, 137,
144). Abbreviations: DG, draft genome; MEP, methylerythritol phosphate pathway; MEV, mevalonate
pathway; Mya, million years ago; NA, not available.
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Outgroups: closely
related taxa that are
used to establish
ancestral states of
traits (genetic,
phenotypic) in the
taxonomic group of
interest (e.g., Cannabis)

Recent phylogenetic analyses based on plastid genomes suggest that the genera Parasponia and
Trema together are sisters to Cannabis and Humulus (144). Parasponia species are of scientific in-
terest due to their ability to form root nodule symbioses with nitrogen-fixing rhizobia, a trait that
is only shared with legumes (123). Phylogenetically, Parasponia is nested within Trema, which oth-
erwise comprises species that do not make root nodules (122). Currently, contig-level genome
assemblies are available for Humulus, Parasponia, and Trema, which can be used as outgroups in
comparative analyses of Cannabis (38, 56, 123).

3. THE CANNABIS GENOME

Cannabis has a diploid nuclear genome (2n = 20) composed of nine autosomal chromosomes and
a pair of sex chromosomes. The haploid nuclear genome size is estimated to be 818 mega base
pairs (Mbp) for females (karyotype XX) and 843Mbp for males (karyotype XY) (95). The Cannabis
plastid and mitochondrial genomes are 153,871 bp (126) and 415,545 bp (133), respectively.

Initial Cannabis genome assemblies (120) used Illumina shotgun and mate-pair sequencing in
drug-type cultivar Purple Kush (PK) to produce a genome survey of 786 Mbp in 136,290 un-
mapped scaffolds, with 534 Mbp called in 363,760 contigs and 252 Mbp uncalled (N) in 228,430
gaps. A gene catalog of PK was built using Illumina RNA-sequencing (RNA-Seq) sequences as-
sembled in 30,074 representative transcripts (33Mbp).A companion genome survey of hemp-type
cultivar Finola (FN; 221 Mbp in 224,195 scaffolds) showed genome-wide single nucleotide poly-
morphism (SNP) differences between these representative drug-type Cannabis and hemp-type
genomes but relatively few gene copy number changes.

Recent assemblies of PK, FN (56), and a high–cannabidiolic acid (CBDA) cultivar (CBDRx)
(38) used long-read sequencing and genetic mapping to produce draft chromosome pseudo-
molecule sequences (PK 639Mbp in 6,193 scaffolds, 739Mbp called, 0.6 Mbp N; FN 784Mbp in
2,951 scaffolds, 784 Mbp called, 0.3 Mbp N; CBDRx 854 Mbp in 773 scaffolds, 714 Mbp called,
140MbpN) complemented by unmapped scaffolds (PK 252Mbp in 6,643 scaffolds, FN 224Mbp
in 2,352 scaffolds, and CBDRx 21 Mbp in 220 scaffolds). Additional genome survey (unmapped
scaffolds) assemblies are available for five other cultivars (Table 1).

Additional scaffold-level assemblies (not in peer-reviewed journals) of several Cannabis culti-
vars are publicly available, and their statistics are summarized in Table 1. Comparison of these

Table 1 Overview of the statistics of available Cannabis genome assemblies

Cultivar BioSample BioProject Size (Mb) NCBI assembly
Whole genome
sequencing Scaffolds

Finola SAMN09375800 PRJNA73819 1009.67 GCA_003417725.2 QKVJ02 5,303
Purple Kush SAMN02981385 PRJNA73819 891.965 GCA_000230575.4 AGQN03 12,836
CBDRx SAMEA5040675 PRJEB29284 875.722 GCA_900626175.1 UZAU01 220
LA Confidential SAMN04145444 PRJNA297710 595.358 GCA_001510005.1 LKUA01 311,039
Cannatonic SAMN05941636 PRJNA350523 585.824 GCA_001865755.1 MNPR01 11,110
Pineapple Banana
Bubba Kush

SAMN06546749 PRJNA378470 512.174 GCA_002090435.1 MXBD01 18,355

Jamaican Lion
DASH

SAMN09851581 PRJNA486541 1333.38 GCA_003660325.2 QVPT02 3,372

Chemdog91 SAMN04145446 PRJNA297710 285.933 GCA_001509995.1 LKUB01 175,088

The table includes publicly availableCannabis genome assemblies representing eight cultivars showing the total assembly size and number of scaffolds. Finola,
Purple Kush, and CBDRx are draft assemblies with chromosome pseudomolecule sequences; other assemblies are genome surveys consisting of unmapped
scaffolds.
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Genome assembly:
the computational
representation of an
organism’s genome; it
is produced by
sequencing fragmented
chromosomes and
informatically
re-assembling them

genomes shows large-scale differences in assembled genome size and order (Table 2). However,
the degree to which this represents genomic differences versus misassembly artifacts remains
unclear.

4. THE HUMULUS GENOME

For Humulus, several draft genomes are published and available in a single resource (http://
hopbase.org) (42). Compared to Cannabis [C. sativa: 1.67pg/2C (95)], diploid genome size varies
between 3.21pg/2C for female H. japonicus and 6.10pg/2C for certain H. lupulus varieties, al-
located across nine autosomal bivalents in addition to the sex chromosomes (https://cvalues.
science.kew.org) (37, 75, 147). The first long-read sequencing run with R6 and R7 MinION
Flow Cells on H. lupulus var. lupuloides resulted in 6.3 and 3.6 Mbp with an average two-
dimensional (2D) read length of 1,652 bp and 1,628 bp, respectively (12), but which only aligned
to 10% of the reference C. sativa (56, 120). These data are superseded by the latest PacBio
FALCON-Unzip diploid genome assembly of an H. lupulus var. lupulus cultivar (cv.) cascade,
which covers 3.79 Gbp of the estimated 5.4 Gbp with an average contig NG50 of 866 kbp
(http://hopbase.cgrb.oregonstate.edu) (42). In addition, this result is superior to the latest Tea-
maker short-read assembly of 1.77 Gbp with NG50 contigs of 1.4 kbp due to the large, highly
repetitive genome size (34.68%), which favors long-read sequencing approaches (Teamaker v1.1;
http://hopbase.cgrb.oregonstate.edu) (42). In contrast,C. sativa exhibits an even higher degree
of genome repetition (∼70%) (74, 86). Overall, the number of genes recovered in hop genome
assemblies is highly variable, for example, 35,482 in H. lupulus cv. SW and 24,919 in H. lupulus
cv. Teamaker, compared to 27,819–34,589 genes in Cannabis (Table 2). Although the CBDRx
genome assembly now includes gene annotations (47) and has been selected as a representative
genome by the National Center for Biotechnology Information, detailed gene characterization
and localization are still in their infancy for both Cannabis and Humulus (42, 74, 120).

5. CHROMOSOME-LEVEL COMPARISONS OF PUBLISHED DATA

To assess the completeness and representativity of the PK, FN, and CBDRx assemblies, we used
Illumina sequences from PK, FN, and 55 public whole-genome-sequenced (WGS) samples. Ex-
cluding contaminant, plastid, and mitochondrial fragments and filtering reads for high quality,
we mapped 91%, 89%, and 82% (±5% among individuals) of the fragments to the PK, FN, and
CBDRx assemblies and 60%, 67%, and 80% to their chromosomes, respectively.

Chromosomes are numbered and oriented differently in the PK, FN, and CBDRx assemblies.
We used the representative transcripts from the PK gene catalog to locate 25,467, 28,987, and
27,811 gene sequences in the PK, FN, and CBDRx chromosomes (27,819, 34,589, and 30,163
in total assemblies). Comparing the chromosome positions of uniquely mapped genes, we identi-
fied and oriented equivalent chromosomes between the assemblies (Table 2). Between assemblies,
90% of genes mapped in equivalent chromosome quartiles; however, the conservation dropped
significantly for equivalent segments below 10% of the chromosome length.The chromosome as-
semblies are ordered with a genetic map containing a large fraction of recombination-free regions
(52% in FN), and the local physical order of scaffolds is largely undetermined. The chromosome
assemblies show that both genes and recombination events are concentrated near chromosome
ends (Figure 3); in this respect, Cannabis behaves much more like a grain than like a member of
Rosales (56).

Mapping gene sequences to the PK and FN chromosome assemblies, we noticed a high num-
ber of mismatches in alignments to the same cultivar [PK transcripts showed <97% similarity
with the PK chromosome sequences; none of 11 FN GenBank coding (CDS) sequences mapped
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Table 2 Chromosome correspondence and statistics among assemblies

CHR-ID Orientation Size (Mb) Scaffolds Genes
FIN-ID

1 1 + 100,649,945 368 2,893
2 2 + 95,692,043 357 2,894
3 3 + 94,587,701 382 3,346
4 4 + 92,111,078 340 2,572
5 5 + 87,047,438 344 5,117
6 6 + 77,135,887 288 2,218
7 7 + 76,634,836 290 2,915
8 8 + 76,024,397 284 2,519
9 9 + 49,536,295 170 2,576
10 10 + 35,338,263 128 1,937
CHR CHR 784,757,883 2,951 28,987
UN UN 224,916,856 2,352 5,602
Total Total 1,009,674,739 5,303 34,589

PK-ID
1 1 + 79,255,070 818 2,472
2 2 − 73,430,137 803 2,300
3 3 − 72,195,804 755 2,773
4 4 − 78,152,476 732 2,534
5 6 − 72,519,175 670 4,304
6 7 − 60,968,100 609 1,986
7 9 − 60,626,883 488 2,506
8 5 + 62,039,859 625 2,265
9 8 − 51,081,244 444 2,579
10 10 + 29,404,172 249 1,748
CHR CHR 639,672,920 6,193 25,467
UN UN 252,291,743 6,643 2,352
Total Total 891,964,663 12,836 27,819

CBDRx-ID
1 5 + 88,181,582 133 2,215
2 8 + 79,335,105 40 2,365
3 6 + 96,346,938 67 2,849
4 3 − 94,670,641 105 2,516
5 2 + 101,209,240 144 4,414
6 9 − 71,238,074 51 1,898
7 4 + 91,913,879 49 2,923
8 7 + 61,561,104 45 2,238
9 10 − 64,622,176 60 2,862
10 1 − 104,987,320 79 3,531
CHR CHR 854,066,059 773 27,811
UN UN 21,666,009 210 2,352
Total Total 875,732,068 983 30,163

Rows contain equivalent chromosomes in Finola (FIN), Purple Kush (PK), and CBDRx [1–10 individual chromosomes,
total sequence in chromosomes (CHR), and total sequence in unmapped scaffolds (UN)]. Each assembly shows the
chromosome ID, orientation, total size, called size (without gaps), number of scaffolds, and number of genes.
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Cannabis chromosomes showing gene and recombination density and position of selected biosynthesis genes. Chromosomes with
numbering, sizes, and gene positions corresponding to Finola assembly v2 are represented with rectangular boxes showing regions with
the presence (gray) or absence (white) of recombination (a horizontal 10-Mbp scale is shown). Recombination intervals in Finola were
extracted from supplemental data of Laverty et al. (56). Gene density (number of genes per mega base pair) is plotted in green above the
chromosomes (a vertical scale of 0–100 is shown). The position of the genes of six selected biosynthetic classes (Supplemental Table 1)
is indicated by circles, the colors of which correspond to the biochemical pathways shown in Figures 4 and 5. Abbreviations: AAE1,
hexanoyl-CoA synthetase 1; CBCAS, cannabichromenic acid synthase; CBDAS, cannabidiolic acid synthase; CBGAS, cannabigerolic
acid synthase; CMK, CDP-ME kinase; DXR, deoxyxylulose phosphate reductoisomerase; DXS, deoxyxylulose phosphate synthase;
FPPS, farnesyl pyrophosphate synthase; GPPS, geranyl-pyrophosphate synthase; HDR, hydroxymethylbutenyl diphosphate reductase;
HDS, hydroxymethylbutenyl diphosphate synthase; HMGR, hydroxymethylglutaryl-CoA reductase; HMGS, hydroxymethylglutaryl-
CoA synthase; MCT, methylerythritol phosphate cytidylyltransferase; MDS, MECDP-synthase; MEP, methylerythritol phosphate
pathway; MEV, mevalonate pathway; MK, mevalonate kinase; MPDC, mevalonate diphosphate decarboxylase; OAC, olivetolic acid
cyclase; OLS, olivetol synthase; PMK, phosphomevalonate kinase; THCAS, tetrahydrocannabinolic acid synthase; TPS, terpene
synthase.
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perfectly to the FN chromosomes] and frequent stop codons in the corresponding chromosome
CDS sequences. This suggests that the poor accuracy of long-read sequencing negatively impacts
the assembly sequence and prevents accurate genome annotation in these assemblies.

The currently available Cannabis genome assemblies are still incomplete, with ∼10% missing,
10–25% unmapped, and 45S and 5S rDNA clusters as well as centromeres/satellite sequences not
represented. These assemblies are also ordered at a low resolution, and their consensus quality
makes accurate annotation and accounting of complete, partial, and pseudogenized gene copies
challenging.Elucidating quantitative traits and biosynthesis pathway differences between cultivars
requires a higher-quality Cannabis reference genome with sequences that are physically ordered
(for example, using optical or single-molecule technologies) at high resolution and locally finished,
and the resolution of allelic sequences and tandem repeats (53).

6. DIOECY AND SEX DETERMINATION

Cannabis is a dioecious plant displaying occasional hermaphroditism, with cases of monoecy in
hemp (70). Dioecy is the precondition for the evolution of sex chromosomes (17–19), estimated
to have evolved from a monoecy in a common ancestor of Cannabis and Humulus (see Figure 2).
Contrary to most other dioecious plants, where sex allocation is environmentally modulated (91),
Cannabis andHumulus have sex chromosomes, with males representing the heterogametic sex (XY
system). It is yet unknown if sex allocation in the other dioecious Cannabaceae genera,Chaetachme
andLozanella, is determined environmentally or via sex chromosomes.Cannabis has been described
as having either an X chromosome to autosome balance (28) or a dominant Y chromosome system
(95). This confusion regarding the role of the Y chromosome has been attributed to the influence
of abiotic stress in sexual determination (124). In Humulus, sex determination is dependent on
the X/autosome balance, and various sex chromosome systems exist, such as Winge, new Winge,
Sinoto, and new Sinoto (84). H. lupulus (2n = 20 + XY), H. japonicus (2n = 14 + XY1 Y2), and
H. lupulus var. cordifolius are typical karyotypes (2n = 16 + X1Y1 X2Y2) (75, 79, 134). Due to the
close relationship betweenHumulus and Cannabis, it is unclear whether sex chromosome diversity
represents single or multiple evolutionary origins.

7. Y CHROMOSOME EVOLUTION IN CANNABIS

In order for a sex chromosome to evolve, dioecy must be established through the incidence of
two closely linked and complementary dominant mutations that disrupt male and female organ
development (70). Once this seed occurs on any chromosome, a cascade of events shapes its evo-
lution toward a sex chromosome. Increased linkage of sex-specific genes gives rise to an expand-
ing, nonrecombining region, resulting in the accumulation of different mutations and rearrange-
ments (1, 18, 19). Both male (XY) and female (ZW) heterogamety exist, though the XY system
is predominant due to intrinsic evolutionary advantages (13); in the XY system, male sterility in
XX is due to a recessive loss of function, while female sterility in XY is induced dominantly (1,
19).

The Cannabis Y chromosome was found to be 47Mbp larger than the X chromosome,with dif-
ferentiation in the subtelocentric region of its long arm (26, 95).This size difference was attributed
to evidence of long interspersed nuclear elements (LINE)-like retrotransposon accumulation on
the terminal region of the Y chromosome (95). These retrotransposons were not detected on
either the X chromosome or the autosomes, although this could reflect the sensitivity of the tech-
nique [fluorescence in situ hybridization (FISH)], which is unable to detect low copy numbers
(96). Male-specific fragments were also detected along the same region, although the extent of
variability in these sequences and their copy numbers remains unclear (97).
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The search for male-specific genetic markers for breeding purposes and other applications has
led to the identification of several loci on the Y chromosome (26, 64). However, several of these
markers are only partially reliable (64, 71, 85, 116). To further complicate things, a pseudoauto-
somal region allows for ongoing recombination between X and Y chromosomes (95).

These observations have led to the assumption that the Y chromosome inCannabis is at an early
evolutionary stage (124), wherein male and female sterility have been recently established and the
nonrecombining region of sex-linked genes has not wholly formed (70). Recently, Prentout et al.
(87) provided an alternative scenario based on RNA-Seq data, followed by mutation accumula-
tion and segregation analyses, and concluded that the Cannabis Y chromosome is highly degen-
erate. Nevertheless, a more comprehensive genomic and transcriptomic overview of the Cannabis
Y chromosome is required. Given the importance of sex determination for breeding and for our
understanding of dioecy and XY chromosomes in plants, a comparative study of the Y chromo-
some in Cannabis and Humulus presents a unique opportunity to understand sex chromosome
evolution.

8. PHYTOCANNABINOID BIOCHEMISTRY AND EFFECTS
ON HUMAN PHYSIOLOGY

The primary biologically active components of Cannabis are the (phyto)cannabinoids, which
are terpenophenolic ligands synthesized by the plant (141). The two most abundant phyto-
cannabinoids are�9-tetrahydrocannabinolic acid (THCA) and CBDA, although at least 120 other
cannabinoid compounds have been identified in Cannabis (141). When heated, these compounds
are converted into their bioactive forms, THC and cannabidiol (CBD).

In humans and other animals, cannabinoids modulate the activity of the body’s endogenous
cannabinoid system (ECS) (61). The ECS is composed of several receptors, including the type 1
and 2 cannabinoid receptors (CB1R and CB2R), endogenous cannabinoids [anandamide (AEA)
and 2-arachidonoylglycerol (2-AG)], and the anabolic and catabolic enzymes that maintain en-
dogenous cannabinoid tone in the body (61). The ECS participates in the regulation of multiple
physiological processes, including lipid homeostasis, appetite, mood, arousal, motor control, in-
flammation, and pain (110).

Phytocannabinoids modulate different aspects of the ECS depending on their mechanism of
action.THC is a partial agonist of CB1R and CB2R; activation of CB1R results in the intoxicating
high of Cannabis as well as analgesic effects (41) and acute increases in appetite (46). CBD modu-
lates the activity of many different receptors that are part of the ECS, including CB1R and CB2R
as well as other receptors such as serotonin and opioid receptors (52, 66). The precise mechanism
of the action of CBD in vivo remains unclear. Very little is known regarding the molecular phar-
macology of the many other phytocannabinoids and how this pharmacology may influence the
effects of the phytocannabinoids in humans (88). Some evidence suggests that THCA is a weak
partial agonist of CB1R and CB2R, and far less abundant cannabinoids and terpenes, such as �9-
tetrahydrocannabivarin, cannabichromene, and β-caryophyllene, may act on CB1R, CB2R, or the
putative cannabinoids receptor GPR55 (4, 34, 117). Such studies have only begun to explore the
vast array of compounds present in Cannabis, and as data on the pharmacology of cannabinoids
accumulate, it is increasingly clear that cannabinoids are promiscuous ligands with multiple re-
ceptor targets, including targets outside of the ECS. Research will thus have to consider not only
nonspecific pharmacological effects but also the net effect(s) produced through unique combi-
nations of cannabinoids present in the different cultivars of Cannabis and products derived from
them. The present state of knowledge has very much focused on THC and CBD, as these two
compounds represent the majority of cannabinoids present in products by mass.
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With respect to pharmacokinetics, the phytocannabinoids appear to share common drug-
metabolizing pathways in the human body (cytochromes P450 2D6, 2C9, and 3A4) (141), and
their efficacymay differ between individuals, depending on individual ECS and drug-metabolizing
genes (44). Much of our current understanding of cannabinoid health effects is associated with
THC and CBD (6), and only few data are available for the short- and long-term physiological
effects of other cannabinoids or their combined effects. Such combinations of biochemistry are
likely to differ in terms of both the relative quantities and presence or absence between cultivars
of Cannabis, thus underlying the importance of having a polished genome and core germplasm
collection as solid foundations upon which pharmaceutical trials can be based.

A wealth of consumer-driven Internet information, limited human clinical trial data, and
modest preclinical animal studies purport a plethora of health benefits of cannabinoids. An
important caveat to the putative medical effects of Cannabis is their lack of substantiation with
rigorous human clinical trial evidence. Most trials that are available involve Cannabis-derived or
Cannabis-related drug products that underwent regulatory safety and efficacy evaluation and are
now marketed as Cannabis-based drugs (119). Other trials have largely involved subjects who
smoked Cannabis products that are usually high in THC (14, 121). Data from these trials are
further complicated by the important concern that study outcomes for any one Cannabis product
cannot necessarily be compared to others, considering biochemical variability between different
Cannabis cultivars and even within cultivars that are cloned.

The limited existing data do support that Cannabis has a number of potential health bene-
fits. Approved products include a purified form of CBD (i.e., Epidiolex) for seizures associated
with Dravet or Lennox-Gastaut syndrome (20); dronabinol (synthetic THC) for the treatment
of cachexia in HIV/AIDS patients (7); and nabiximols (Sativex, a botanical extract composed
of 2.5-mg CBD and 2.7-mg THC per single 100-mL spray), used as adjunctive treatment for
the symptomatic relief of neuropathic pain in multiple sclerosis in adults (35). Until now, other
Cannabis-based medicines have not yet entered regulatory testing for safety and efficacy, as would
be expected with other commercial pharmaceutical agents. However, observational studies, case
reports, and anecdotal evidence have been accumulating, and meta-analyses suggest that Cannabis
has potential therapeutic applications in areas such as pain, spasticity in multiple sclerosis, and
opioid sparing (https://www.cannabis-med.org/studies/study.php).

Despite the promise of therapeutic benefits in a variety of chronic disease conditions, we need
to remain mindful of the possible adverse effects of the cannabinoids. The negative short-term
effects of THC have long been understood and include reduced cognitive function, enhanced
anxiety, fatigue, and negative cardiovascular effects (128). Long-term negative consequences of
chronic high THC product use are also associated with permanent loss in higher cognitive func-
tions such as memory, intelligence, mental focus, and judgment (55). Addiction is also possible,
particularly for those individuals with predisposing risk factors, such as a family history for mental
illness (60).When smoked, long-term use can result in lung problems, such as chronic bronchitis
and cough (92).Moving forward, it is critical to recognizeCannabis and cannabinoids as drugs with
potential benefits and associated risks, as would be the case for the investigation of any novel drug.

9. CANNABINOID SYNTHESIS

THC accumulates mainly in capitate-stalked glandular trichomes of Cannabis. Glandular tri-
chomes have two major parts: the stem and the gland. Glands consist of disk cells with large
cavities; these cavities contain cannabinoids and secondary metabolites (103). In addition, the tri-
chome heads also contain RNAs encoding three possible polyketide synthases, members of the
methylerythritol 4-phosphate (MEP) pathway, and THCA synthase (THCAS), suggesting that
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the storage cavity is a major site of cannabinoid production (65). It is still not understood why
THCA is secreted into the cavity or why cannabinoid biosynthesis occurs in the cavity. It is hy-
pothesized that the end products or by-products, including hydrogen peroxide, may be toxic for
plant cells (101). Interestingly, antimicrobial properties of cannabinoids and their presence in tri-
chomes imply an association with plant defense (80).

Cannabinoids are synthesized and stored as acids; however, exposure to light or heat dur-
ing storage, processing, and consumption leads to nonenzymatic decarboxylation to their neutral
forms, which have psychoactive properties (54). Most of the biosynthetic pathway of synthesis of
cannabinoids has been elucidated, and genes and enzymes for most steps of the pathway have been
isolated and characterized (16) (Figure 4).

9.1. Precursor Synthesis

Synthesis begins from two distinct metabolic pathways: the polyketide pathway, leading to the
formation of olivetolic acid (OA), and the MEP pathway, producing geranyl diphosphate (GPP)
(102) (Figure 4).The synthesis of OA via the polyketide pathway is considered specific toCannabis
and starts with hexanoic acid, which is hypothesized to be synthesized from acetyl-coenzyme A
(CoA) and five molecules of malonyl-CoA, although its origin in the trichomes has not been
shown (29). Hexanoic acid is converted into hexanoyl-CoA by an acyl-activating enzyme (AAE)
called hexanoyl-CoA synthetase (HCS) (65), of which two forms have been identified in Cannabis:
CsHCS1 and CsHCS2 (81, 111). Whereas CsHCS1 [720 amino acids (AA)] is believed to be
trichome-specific, CsHCS2 (543 AA) is found to be expressed in all tissues. CsAAE1 (CsHCS1)
is likely the enzyme involved in the synthesis of cannabinoids since it is the most abundant AAE,
specific for short-chain fatty acyl-CoA, and localized to the cytosol, similar to olivetol synthase
(81, 111).

OA is synthesized by a polyketide synthase (PKS) named olivetol synthase (OLS), which cat-
alyzes the aldol condensation of hexanoyl-CoA with three molecules of malonyl-CoA (89, 115).
The malonyl-CoA is derived from acetyl-CoA by carboxylation, catalyzed by an acetyl-CoA car-
boxylase (EC 6.4.1.2). OLS contains 385 AA with no signal peptide and is found in flowers and
rapidly expanding leaves. Interestingly, this enzyme itself does not produce OA, but rather olive-
tol, triketide pyrone, and tetraketide pyrone, suggesting that another PKS may be involved in OA
biosynthesis (138). Similarly, OA has never been detected in a Cannabis plant (2). In 2012, a small
protein (12 kDa) was isolated with high expression levels in glandular trichomes, which showed
similarities to a dimeric α + β barrel (DABB)-type polyketide cyclase (31). This molecule has been
suggested as a possible olivetolic acid cyclase (OAC).

GPP is a general precursor molecule for various pathways and is produced through condensa-
tion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) by GPP synthase
(GPPS). In Cannabis and most other plants, GPPS uses IPP and DMAPP produced via the MEP
pathway in the plastid (15).

9.2. Cannabigerolic, �9-Tetrahydrocannabinolic, Cannabidiolic,
and Cannabichromenic Acid Synthesis

Cannabigerolic acid (CBGA) is synthesized by the aromatic prenyltransferase CBGA synthase
(CBGAS), through C-prenylation of OA by GPP. CBGA is assumed to be a central precursor of
cannabinoid biosynthesis, since it is used to produce THCA, CBDA, and cannabichromenic acid
(CBCA) through the cyclization of a prenyl moiety with the aid of specific synthases. Whereas
OA seems to be used as a prenyl acceptor by CBGAS, different prenyl donors like GPP, and to a
lesser extent neryl diphosphate, can be used (30).
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Cannabis sativa terpene and cannabinoid pathways. Colored regions indicate different pathways. The gray background indicates
processes located in the plastid; other processes are located in the cytosol. The dotted arrow indicates the transfer of GPP from MEP to
the cannabinoid pathway; dashed arrows indicate nonenzymatic decarboxylations. Enzyme names are shown in color, while resulting
compounds are shown in black. Compound (sub)structures depicted in red signify those that represent a single unit of GPP; those
depicted in blue signify a single unit of FPP. Abbreviations: AAE1, acyl-activating enzyme 1; CBC, cannabichromene; CBCA(S),
cannabichromenic acid (synthase); CBD, cannabidiol; CBDA(S), cannabidiolic acid (synthase); CBG, cannabigerol; CBGA(S),
cannabigerolic acid (synthase); DMAPP, dimethylallyl pyrophosphate; DXR, deoxyxylulose phosphate reductoisomerase; DXS,
deoxyxylulose phosphate synthase; FPP(S), farnesyl pyrophosphate (synthase); G3P, glyceraldehyde 3-phosphate; GPP(S), geranyl-
pyrophosphate (synthase); HDR, hydroxymethylbutenyl diphosphate reductase; HDS, hydroxymethylbutenyl diphosphate synthase;
HMGR, hydroxymethylglutaryl-CoA reductase; HMGS, hydroxymethylglutaryl-CoA synthase; IPP, isopentenyl pyrophosphate; MCS,
methylerythritol cyclodiphosphate synthase; MCT, methylerythritol phosphate cytidylyltransferase; MEP, methylerythritol phosphate;
MEV, mevalonate; MK, mevalonate kinase; MPDC, mevalonate diphosphate decarboxylase; OAC, olivetolic acid cyclase; OLS, olivetol
synthase; PMK, phosphomevalonate kinase; THC, tetrahydrocannabinol; THCA(S), tetrahydrocannabinolic acid (synthase); TPS,
terpene synthase.

www.annualreviews.org • Cannabis Genomics 727



PP71CH26_Sharbel ARjats.cls May 13, 2020 9:37

THCAS and CBDA synthase (CBDAS) have been well characterized in recent studies. They
appear highly similar in their biochemical properties, such as mass (both are 74-kDa monomeric
proteins) and Km for CBGA, and they share 84% similarity at the amino acid level (103). Both
enzymes have a 28-AA signal peptide, which dissociates to a secreted mature protein and a flavin
adenine dinucleotide (FAD)-binding domain (103, 114). THCAS and CBDAS show high domain
homology with the berberine bridge enzyme (BBE) involved in the alkaloid biosynthesis of Es-
chscholzia californica. Both Cannabis synthases and BBE activity require molecular oxygen and pro-
duce hydrogen peroxide as a side product (100). The sequence similarity of THCAS and CBDAS
with the BBE has been confirmed (80).

Synthases for all three major cannabinoids are coded by single exon genes (56). All three genes
have high levels of homology—84% similarity between THCAS and CBDAS and 96% between
THCAS and CBCAS (56, 114). Recently, copy number variation of the synthase genes in this
pathway was found to account for some of the variation in cannabinoid content amongst Cannabis
cultivars (67, 125). Instead, a recent, extensive characterization of THCAS and CBDAS variants
indicated that the amino acid sequence may affect in vitro activity (146). Although most mutations
around catalytic, glycosylation, and disulfide bridge sites resulted in decreased activity or even full
inactivation, some caused an increase in activity compared to the wild-type enzyme.Cannabinoid-
free Cannabis plants have been reported, which may comprise nonfunctional synthase genes in
either the polyketide pathway or CBGAS.

Heterologous expression of recombinant THCA and CBDA synthases in the yeast Koma-
gataella phaffii followed by whole-cell bioconversion of CBGA showed that both synthases formed
up to eight different products. Surprisingly, each enzyme showed the ability to form all three of the
major cannabinoids (THCA, CBDA, and CBCA) in different ratios (146). Due to their similarity
in structure and supposed catalytic mechanism, it has been suggested that the product specificity
of THCAS and CBDAS would be determined by a small number of amino acid residues (114).
Microcapillary sampling of stalked trichomes found in mature flowers and immature sessile tri-
chomes found on vegetative leaves revealed similar cannabinoid profiles between the trichome
types (58), although it is unclear whether this is true across the genetic spectrum of Cannabis.

The sequence similarity between THCAS and CBDAS implies a common ancestry (114), and
sequence analysis of THCAS and CBDAS from different cultivars suggests that CBDAS is the
ancestral gene and that its duplication led to higher CBDAS variation and the origin of THCA
synthase (80). Moreover, additional synthase gene variants have been described (38, 114, 131),
suggesting that the structural and functional evolution of these genes ismore complex than initially
thought. Recent research has shown that CBDAS and THCAS are not two codominant alleles
from the same locus as previously suggested but rather two different genes found in very close
proximity within a largely nonrecombining region (38, 131) (Figure 4).

Commonly known cannabinoids, such as CBGA, THCA, CBDA, and CBCA, are C5-
phytocannabinoids that contain an n-pentyl side chain. At the same time, Cannabis plants
also produce minor cannabinoids with an n-propyl side chain, called C3-phytocannabinoids.
Cannabigerovarinic acid is synthesized by the C-prenylation of divarinic acid instead of OA
by GPP (24). It is believed THCAS, CBDAS, and CBCAS are not selective for the sub-
strate and can use CBGVA to produce tetrahydrocannabivarinic acid, cannabidivarinic acid, and
cannabichrovarinic acid, respectively (99). This hypothesis requires in vitro confirmation.

10. BIOSYNTHESIS OF TERPENES

Terpenes are responsible for the characteristic aromas of both Cannabis and hop. They are
one of the largest groups of phytochemicals, and they are classified based on the number of
five-carbon building blocks, including monoterpenes (10 carbons), sesquiterpenes (15 carbons),
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and triterpenes (30 carbons). In plants, terpenes are synthesized via two different pathways: the
cytosolic mevalonic acid pathway contributing to the biosynthesis of sesquiterpenes and triter-
penes and the plastid MEP pathway involved in the synthesis of mono-, di-, and tetraterpenes
(13). Two molecules of acetyl-coenzyme A are used in the mevalonic acid pathway, whereas
pyruvate and d-glyceraldehyde-3-phosphate are used in the MEP pathway. These molecules are
converted to IPP and then further isomerized to DMAPP.Monoterpenes are made from the GPP
precursor formed by MEP in the plastid, where GPP synthase catalyzes the condensation of one
molecule of IPP and one molecule of DMAPP into GPP (129). Sesquiterpenes and triterpenes
are produced in the cytosol from a farnesyl diphosphate (FPP) precursor; two molecules of IPP
and one molecule of DMAPP are condensed with the aid of FPP synthase to produce FPP.
Various terpene synthases convert FPP into sesquiterpenes, whereas triterpenes are produced
by condensing two FPP molecules into squalene by squalene synthase. Squalene is then used to
produce various triterpenes and sterols (5).

The characterization of terpene synthase (TPS) genes (including additional synthases) in
Cannabis (11, 39, 58, 139) raises the question as to how they vary (e.g., polymorphism levels and
copy number variation) between cultivars. Recently, a gene expression analysis of cannabinoids
and terpenoids in eight distinct commercial Cannabis varieties confirmed the presence of synthase
transcripts and metabolites for most terpenoids, and in addition, TPS genes encoding linalool and
nerolidol were identified and characterized from two different cultivars (139).

Many TPS genes are upregulated during the process of calyx maturation (e.g., the develop-
ment of stalked trichomes from sessile trichomes); this is especially evident for genes involved
in the synthesis of monoterpenes (58). Whereas the ratio of cannabinoids stays relatively stable
throughout the development of vegetative tissues and maturation of calyces, the ratio of monoter-
penes to sesquiterpenes increases with calyx maturation, reaching 12:1 in stalked trichomes. Se-
quence polymorphisms in TPS genes are not well documented. Zager et al. (139) identified a gene
coding for an enzyme (CsTPS19BL) that generates a mixture of (1)-linalool and (2)-linalool from
GPP and (E)-nerolidol from tFPP in the cultivar black lime. Curiously, an ortholog cloned from
the cultivar Valley Fire that had three mismatched nucleotides produced exclusively (1)-linalool
from tFPP instead of nerolidol (139). To date, 18 TPS belonging to two subfamilies, TPS-a and
TPS-b, were identified and described (11, 39, 58, 139) (see Supplemental Table 1). No sequence
polymorphisms or changes in regulation of TPS expression between hemp- and drug-type culti-
vars have been reported.Nevertheless, the availability of improved Cannabis genome assemblies of
FN, PK, and CBDRx should allow for the quick identification of the variants in Cannabis cultivars
(38, 56).

The hop cones ofH. lupulus generally include relatively large fractions of the monoterpenes β-
myrcene and β-pinene and the sesquiterpenes humulene and β-caryophyllene, and genes encoding
the enzymes synthesizing β-myrcene, β-caryophyllene, and humulene have been described (130).
However, it is unclear if functionally equivalent terpene synthases in Cannabis and Humulus have
the same (orthologous) origin, or resulted from parallel (paralogous) evolution. No terpene-free
Cannabis or Humulus plants are known (11, 24), probably because terpenes are precursors for var-
ious vital pathways.

11. BITTER ACID AND XANTHOHUMOL BIOSYNTHESIS
IN HUMULUS LUPULUS

Similar to the cannabinoid pathway, the production of bitter acids and xanthohumols inH. lupulus
relies on the prenylation of polyketide precursors (Figure 5). The polyketide precursor for
bitter acid biosynthesis is phlorisovalerophenone (PIVP), which is produced by first converting
ketoisocaproic acid into isovaleryl-CoA by two carboxyl CoA ligases (CCLs) named CCL1 and
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Humulus lupulus terpene, bitter acid, and xanthohumol pathways. Colored regions indicate different pathways. The gray background
indicates processes located in the plastid; other processes are located in the cytosol. The dotted arrow indicates the transfer of DMAPP
from MEP to bitter acid and prenylflavonoid pathways. Enzyme names are shown in color, while compounds are shown in black.
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positioned between colored regions. Abbreviations: CCL, carboxyl CoA ligase; CHS_H1, chalcone synthase homolog 1; DMAPP,
dimethylallyl pyrophosphate; DMX, desmethylxanthohumol; FPP(S), farnesyl pyrophosphate (synthase); GPP(S), geranyl-
pyrophosphate (synthase); HDR, hydroxymethylbutenyl diphosphate reductase; HDS, hydroxymethylbutenyl diphosphate synthase;
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CCL2 (21, 135) and then adding three molecules of malonyl-CoA by PIVP synthase (78). PIVP
is then prenylated with two molecules of DMAPP by two prenyltransferases PT1L and PT2,
forming the general bitter acid precursor deoxyhumulone, which is either further prenylated by
the same two PTs into the β-bitter acid lupulone or monoxygenated by an unknown enzyme
into the α-bitter acid humulone (57). The polyketide precursor for xanthohumol is the common
chalconoid naringenin chalcone. It is produced by first converting p-coumaric acid into 4-
coumaroyl-CoA by CCL1, followed by adding three molecules of malonyl-CoA by the chalcone
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synthase homolog CHS_H1 (76). Naringenin chalcone is then prenylated with one molecule of
DMAPP by PT1L to form desmethylxanthohumol, which is further converted into xanthohumol
by O-methyltransferase OMT1 (72). Despite the obvious analogies between cannabinoid, bitter
acid, and xanthohumol biosynthesis, it remains unknown to what extent these pathways share a
common evolutionary origin.

12. CANNABIS DISCOVERY PROTEOMICS

Proteomic studies of Cannabis are rare due to global legislative restrictions. However, the increas-
ing availability of comprehensive genomic and transcriptomic resources, as well as a relaxation of
the legislative framework for Cannabis research, is likely to spark an increase in Cannabis discovery
proteomics studies.

Proteomic studies of hemp have investigated hempseed as a highly digestible, protein-rich food
source.Two comprehensive proteomic studies of hempseed have been conducted, both descriptive
in nature, providing a foundation for the agricultural development of hemp as a functional food
(3, 83). More recently, Mamone and colleagues (63) experimentally verified hemp-type Cannabis
as a hypoallergenic protein source, reporting low abundance of allergenic peptides after gastroin-
testinal digestion.

Protein studies of drug-type Cannabis have predominantly focused on elucidating the biosyn-
thetic pathways for a small number of highly abundant cannabinoids and terpenes, as described
above. The first published proteomics study of drug-type Cannabis compared the leaf and flower
proteomes using 2D gel electrophoresis and matrix-assisted laser desorption/ionization time-of-
flightmass spectrometry (MALDI-ToF-MS) to identify the proteins specifically expressed in floral
glandular trichomes (89). Over 300 proteins were identified as unique to flowers; fewer than 100
proteins were found in gland extracts. However, this method did not identify any of the known
cannabinoid biosynthesis enzymes. The authors suggested that the concentrations of these en-
zymes may be below the detection limit; however, more recent data indicate that THCAS is one
of the most highly abundant proteins in glandular trichomes (40, 127). Since we now know that
cannabinoid synthesis enzymes are also expressed in vegetative tissue (93), it seems plausible that
these spots were present in both gels and thus not selected as differential or else that extraction
methods were insufficient to extract these enzymes.

Improvements in gel-free proteomics technology enabled two further reports characterizing
the proteome of Cannabis inflorescences and trichomes (40, 127). These studies conducted pep-
tide fingerprinting analyses of complex protein extracts from isolated trichomes or apical buds
using nanoflow liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). Addition-
ally, Vincent and colleagues (127) conducted ultra-performance liquid chromatography (UPLC)
top-down proteomics of intact protein mixtures. Two of these studies each identified over 400
unique proteins from isolated floral trichomes, and of those, 6.9% (40) and 27% (127) were iden-
tified as being involved in the synthesis of secondary metabolites, including most known enzymes
of the cannabinoid, terpenoid, and flavonoid biosynthetic pathways. Indeed, both studies identified
THCAS and CBDAS with good coverage (up to 63.9%) (40). The difference in the abundance of
biosynthesis enzymes in the two studies may be due to the different Cannabis cultivars analyzed;
however, it seems more likely to be a result of different protein extraction methods. Additionally,
11.0% (40) and 12.3% (127) of identified proteins were of unknown function. As improved ge-
nomic resources become available, these uncharacterized proteins may prove to be of interest as
biosynthetic enzymes.

An alternate approach conducted by Jenkins and Orsburn (48) using simultaneous next-
generation sequencing and shotgun proteomics has been successful in generating an annotated
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proteome map without using the standard annotated genome approach. This novel method en-
abled the identification of over 17,000 putative protein sequences from Cannabis leaf, stem, and
flower tissue and is the first comprehensive annotated protein FASTAdatabase for this genus.Even
so, the identification rate of peptides was <6%, compared with 22% for Arabidopsis, indicating
that improved genomic resources will be critical for further analyses of this type. Unsurprisingly,
a comparison of identified protein networks from leaf and mature female flower tissue revealed
substantial differences and corroborated data from the previous gel-free studies. Proteins identi-
fied in leaves belonged primarily to the photosynthetic pathway, while those from flowers were
predominantly associated with secondary metabolite biosynthesis, including synthesis of cannabi-
noids, fatty acids, and terpenes (48).

To date, no studies have been published that compare the proteome of different Cannabis cul-
tivars. The compilation of large collections of Cannabis cultivars and varieties will enable multidi-
mensional comparative proteomic analyses.Combining these data with genomic andmetabolomic
information as well as cultivar-specific therapeutic or psychedelic user experiences may reveal
bioactive low-abundance metabolites, their synthesis enzymes and metabolic pathways.

13. CANNABIS GENETIC DIVERSITY

It has been reported that the distinction between hemp- and drug-type Cannabis cultivars is not
merely based on cannabinoid content but can be traced across the entire genome (38, 43, 62,
98, 109), suggesting independent domestication from already differentiated germplasm stocks.
However, these findings are based on limited sampling and lack detailed biogeographic and evo-
lutionary analyses. Furthermore, drug-type Cannabis can be roughly divided into narrow-leaflet
(commonly referred to as sativa) and broad-leaflet (commonly referred to as indica) cultivars, sug-
gesting distinct genetic pools that may have arisen through breeding (36, 62, 98).

There is an indication that most genetic diversity and substructure in the species are found
within hemp (32, 45, 145), where the existence of distinct gene pools in central Asia and Europe
has long been recognized (23, 32). A chloroplast haplotype study (145) suggests that the major
genetic substructure within hemp-type Cannabis might follow a latitudinal gradient. Importantly,
major hemp-type cultivars included in this study were part of different haplogroups, suggest-
ing that geographically differentiated gene pools were used for domestication. Such a multire-
gional origin of domestication would also be supported by fossil data (59, 68). However, a glob-
ally sampled genomic data set is required to validate these results and fully understand Cannabis
phylogeography.

Heterozygosity is another important measure of genetic diversity and can help to elucidate
some aspects of crop evolutionary history. As a wind-pollinated crop, Cannabis generally exhibits
high levels of heterozygosity, but several authors have reported differences in heterozygosity be-
tween infrageneric groups. Sawler et al. (98) found significantly higher heterozygosity levels in
hemp (∼16%) than in other Cannabis groups (∼12.5%) and interpreted this as indicative of a
broader genetic base of hemp and/or less hybridization between closely related accessions. Soler
et al. (108) found a similar trend of higher levels of heterozygosity in hemp (40.5%) than in drug-
type Cannabis (28.2%).

In contrast, Lynch et al. (62) reported significantly lower levels of heterozygosity for Euro-
pean hemp accessions than for drug-type accessions (22% versus 31%), which they interpret as
evidence of recent breeding efforts in the North American drug-type Cannabis, compared to the
long breeding history of hemp. However, this study had only limited sampling of Asian hemp
accessions, and in contrast, Gao et al. (32) showed significantly higher levels of heterozygosity in
Chinese hemp (35.5–37%) compared to European hemp (18.2%).
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The assembly of a global data set comprising various types ofCannabismaterials (i.e., undomes-
ticated, naturalized, and landraces) as well as comprehensive sampling of all putative intrageneric
subgroups should therefore be a priority for future evolutionary studies. Additionally, important
sampling gaps, likely due to the difficulty of securing germplasm from certain regions, need to be
filled. Specifically, focus needs to be placed on central Asian accessions, as only 3% (i.e., 15) of 470
accessions (landraces and naturalized populations) included in the three most recent genotyping
studies were reliably known to originate from this region (62, 98, 109). Considering the remark-
able genetic diversity harbored by regions of Asia (45, 143) and its hypothesized importance for the
origin and domestication of the genus (23, 69, 105), this needs to be urgently addressed. Emphasis
should be placed on sampling landraces and wild/naturalized lines by making use of germplasm
bank (73) and herbarium collections. Finally, voucher information and passport data (including
putative material type and origin) need to be properly recorded, as conventionally done in other
phylogeographic studies.

14. CONCLUSION

Clearly there is a wealth of both data and active research in the Cannabis area, much of which
is being spurred on by an industry growing into a novel niche created by recent societal and
governmental acceptance.Nonetheless, there are large gaps in our knowledge of this high-demand
crop on many levels, and as such, a more coordinated effort to quantify, document, and protect
this species’ phenotypic, genomic, and biochemical diversity is needed. Here we show a number
of gaps in our acquired knowledge of Cannabis genomics and biochemistry as a guide forward in
the development of this multipurpose crop.
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