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Abstract

Single-cell approaches are quickly changing our view on biological systems
by increasing the spatiotemporal resolution of our analyses to the level of the
individual cell. The field of plant biology has fully embraced single-cell tran-
scriptomics and is rapidly expanding the portfolio of available technologies
and applications. In this review, we give an overview of the main advances
in plant single-cell transcriptomics over the past few years and provide the
reader with an accessible guideline covering all steps, from sample prepara-
tion to data analysis.We end by offering a glimpse of how these technologies
will shape and accelerate plant-specific research in the near future.
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Microfluidics:
manipulation of
liquids down to the
picolitre range, used in
single-cell approaches
to generate droplets

Bulk
RNA-sequencing
(bulk RNA-seq):
the common name for
RNA-sequencing of
pooled cells, tissues, or
organisms

Fluorescence-
activated cell sorting
(FACS): a flow
cytometry–based
method to separate
and sort cells based on
parameters such as size
or fluorescence
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1. MILESTONES IN THE DEVELOPMENT OF PLANT SINGLE-CELL
RNA-SEQUENCING

For centuries, biologists have been striving to precisely capture, characterize, and classify cells
within multicellular organisms. The identity of a cell has long been primarily determined accord-
ing to morphological features, spatial information within the tissue or organ, cell-to-cell com-
munication, or unique cellular content such as specific organelles. However, with the onset of
molecular biology, it became clear that the identity of individual cells can be characterized by
unique spatiotemporal gene expression profiles. As such, the transcriptome can be thought of as a
unique molecular fingerprint in which gene activity is a readout for cell function, developmental
stage, or disturbances caused by internal and environmental stimuli. This concept has intriguing
implications, as the transcriptome of a single cell would theoretically contain all required infor-
mation to determine its origin, identity, and developmental stage within a complex multicellular
tissue, organ, or even the full organism. Harnessing this highly complex information at a suffi-
cient resolution has, however, been a major technical hurdle, even in well-studied model species
such as Arabidopsis thaliana. Over the past two decades, stepwise technical advances in next gen-
eration sequencing (NGS) and microfluidics technology have been instrumental in mapping the
transcriptome at cellular resolution (Figure 1).

A first major step moving beyond profiling individual genes in a complex sample came with
the onset of mapping a large subset of the Arabidopsis transcriptome via microarray (89) and, later,
the full transcriptome via bulk RNA-sequencing (bulk RNA-seq) technologies (46) (Figure 1).
Although the sample itself usually was a convoluted mixture of different cell types, tissues, or
entire organisms, RNA-seq revealed molecular mechanisms and pathways underlying develop-
mental processes, adaptation, stress, and immune responses at a whole-genome level. Pioneering
work in the plant field combining cell-type-specific reporters and fluorescence-activated cell sort-
ing (FACS) allowed the deconvolution of the complexity of the Arabidopsis root into radial cell
identities and longitudinal zones (9). This resulted in high-resolution gene expression maps of an
organ at whole-genome resolution (9, 10, 20, 29, 44). Together with subsequent studies mapping
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Figure 1

Timeline of key events in plant single-cell transcriptomics. Milestones related to the development and establishment of single-cell
transcriptomics in the plant field are illustrated by green boxes. General technological developments are shown in gray, and key
developments outside of the plant field are indicated in pink. Each dot marks the appearance of the first publication related to each box.
Abbreviations: NGS, next generation sequencing; RNA-seq, RNA sequencing; SAM, shoot apical meristem; UMI, unique molecular
identifier.
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Barcode: a short
nucleotide sequence
used as a unique cell-
or sample-specific
recognition tag

Unique molecular
identifier (UMI):
a short oligonucleotide
sequence unique to
each transcript from
an individual cell that
enables quantification
and correction of
polymerase chain
reaction amplification
biases

Cell trajectories:
biological processes
that cause
heterogeneity among
cells

Gene regulatory
network (GRN):
a network of molecular
regulators that
regulates molecular
processes through
transcriptional
regulation

Single nuclei assay
for transposase-
accessible
chromatin-
sequencing
(snATAC-seq):
retrieves information
on the open chromatin
status of individual
nuclei

Compart-
mentalization:
isolating a single cell
into a compartment
(e.g., a droplet, tube,
or well)

cellular responses to different environmental factors, such as nitrogen (29), salt, and iron (20),
these data sets became heavily used resources to trace spatiotemporal gene expression profiles in
roots.The requirement for a priori knowledge in the construction of tissue-specific reporter genes
has, however, hampered the use of this technology beyond well-characterized model species.

Moving from pooled cells to profiling single-cell transcriptomes required retrieving reliable
gene expression values from the very low amounts of RNA present in a single cell (11). Early
technological advances that enabled an exponential amplification of messenger RNA (mRNA)
from a single cell (43, 80) provided the basis for the first whole-genome single-cell RNA-seq
studies in plants, in which single Arabidopsis root cells carrying a fluorescent tag were sorted into
wells using FACS, followed by full-transcriptome sequencing (24). Although limited in practice to
a few hundred cells, these studies illustrated the immense potential of single-cell transcriptomics
in plants.

The transition from plate-based to nanoliter-sized droplet-based assays using microfluidics
(79) allowed an increase in the throughput from hundreds to thousands of single cells per
experiment at affordable costs. A cell barcode system was introduced in which randomly designed
short nucleotide sequences serve as unique labels that enable sequencing reads obtained in a
pool of mRNAs from single cells to be assigned back to their original cell (37). This barcoding
principle was also implemented to tag each captured individual transcript within a cell with unique
molecular identifiers (UMIs) in order to correct for polymerase chain reaction (PCR)-induced
replication biases (38). The adoption of droplet-based methodologies into accessible commercial
platforms fully embedded this technology in modern plant research (7, 18, 19, 21, 26, 28, 39, 41,
47–49, 54, 68, 71–73, 81, 83, 87, 88, 91, 94). These studies illustrate how single-cell transcriptomes
give sufficient information to cluster cells according to their identity and response to stimuli.
Moreover, cells can be ordered along a pseudotime axis, allowing the reconstruction of cell trajec-
tories within multiple cell types (7, 18, 19, 28, 39, 42, 47–49, 54, 60, 62, 67, 68, 71–73, 81, 83, 88)
and gene regulatory networks (GRNs) that control them (19, 81). These networks will be further
refined by the addition of single-nuclei assay for transposase-accessible chromatin (snATAC)-seq
data (21, 26, 54), allowing the exploration of chromatin accessibility at the level of individual
cells.

In conclusion, plant research has fully embraced single-cell transcriptomics, and its application
to a variety of plant species is ongoing. Pioneering studies in rice, maize, and tomato (7, 47, 54, 60,
62, 71, 81, 87, 91) indicate the utility of single-cell transcriptomics in crop species and thus lead the
way for its integration into applied plant research. Although the field of single-cell technologies
progresses at a very fast pace, in this review we provide the reader with an accessible guideline
encompassing all steps, from sample preparation to data analysis. We furthermore illustrate how
single-cell technologies will shape and accelerate plant-specific research in the near future.

2. AN OVERVIEW OF THE SINGLE-CELL RNA–SEQUENCING
WORKFLOW

The generation and analysis of a single-cell transcriptome data set from a plant sample require
a multifaceted workflow, comprising (a) the generation of individual cells and compartmental-
ization; (b) library construction and sequencing; and (c) demultiplexing, analysis, integration, and
validation of the data (Figure 2). This section summarizes the state-of-the-art process used to
generate single-cell transcriptomes from plant samples and highlights the most important pit-
falls. We end this section by describing more advanced analysis methods to retrieve meaningful
biological information from the obtained data set.
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Figure 2

Schematic overview of a typical droplet-based plant scRNA-seq experiment. Individual cells are isolated from the tissue, which contains
different cell identities (colored cells), by enzymatic digestion. As an optional step (dashed line), specific cell populations can be enriched
using FACS. Next, cells are compartmentalized together with barcoded beads, buffers, and enzymes required for library preparation into
droplets. After droplet formation, cells are lysed, and the released mRNAs are bound to the bead; this is followed by library preparation
and next generation sequencing. Next, raw sequence reads are filtered and normalized, after which the reads are mapped against a
reference genome. Dimensionality reduction clustering is performed before assigning cell identities. The resulting data set can then be
used to, e.g., predict gene regulatory networks or perform trajectory inference analysis. Abbreviations: FACS, fluorescence-activated
cell sorting; mRNA, messenger RNA; poly(T), polythymidylic acid tail; scRNA-seq, single-cell RNA-sequencing; tSNE, t-distributed
stochastic neighbor embedding; UMAP, uniform manifold approximation and projection; UMI, unique molecular identifier.
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Protoplast: a plant
cell from which the
cell wall has been
removed by enzymatic
digestion

Multiplets: a droplet
containing two or
more cells

2.1. The Generation of Single Cells in Plants

Similar to other research fields, the first step in plant-based single-cell experiments is the isolation
of single cells. Several methods are available for isolation and separation of plant single cells.

2.1.1. Cell isolation methods. Given that plant cells are characterized by rigid cell walls, this
first step can be especially challenging depending on the tissue type or plant species. Enzymatic
cell wall digestion and manual isolation remain the two principal ways to enable the dissociation
of single cells from the tissue context in plants.

Enzymatic digestion to release single cells from their tissue context results in a suspension of
cells without cell walls (called protoplasts) and has been the most common way to isolate the indi-
vidual cells for recent single-cell transcriptome experiments in Arabidopsis, maize, tomato, and rice
(7, 9, 10, 18, 19, 23, 24, 28, 39, 41, 47–49, 60, 62, 67, 71–73, 83, 87, 88, 91, 94) (Figure 2). Careful
optimization and validation are required in both biological and technical aspects to retrieve all cell
types of interest from the isolated tissue.

Manual isolation methods provide an alternative to enzymatic dissociation of cell walls.
These include microcapillary-based approaches to extract the content of individual cells and
microdissection-based techniques to isolate a region or cell of interest. Microcapillary-based ex-
tractions have been used extensively in plant research, as they allow the acquisition of the con-
tent of specific or rare cells from a broad spectrum of plant species and tissues (45, 50), and
were recently also adapted to single-cell experiments (17, 42, 75). This approach was used to ob-
tain single-cell RNA-sequencing (scRNA-seq) data from Physcomitrium patens [formerly known as
Physcomitrella patens (64)] leaves (42) (Figure 1) in combination with a nuclear fluorescent protein,
allowing a controlled disruption of cells and subsequent uptake of the nucleus and surrounding cy-
toplasm. In laser capture microdissection (LCM), tissues are first fixed by embedding or freezing,
sectioned, and placed on a slide before individual cells or a specific region is isolated and removed
using a laser. Although LCM has not been used to generate single-cell transcriptome data yet,
this method has been applied in hard stems (15) and fleshy tomato fruit bodies (55), indicating its
efficacy in a wide range of tissue types.

Although each of these manual approaches has its specific merits, a main advantage of both
is that they can be applied to any tissue or plant species without the need for prior knowledge
or molecular tools as long as the cells of interest can be differentiated according to, e.g., size or
anatomic features. Moreover, because cells do not undergo enzymatic digestion but are fixed or
directly processed, the influence of preparation on gene expression is considered low, as seen in
scRNA-seq data from P. patens (42). However, these manual approaches are laborious and come
with relatively low throughput.

2.1.2. Compartmentalization of cells. Once a cell mixture is obtained, individual cells need to
be separated and compartmentalized into tubes (42, 60, 75), wells (24, 49, 62, 67, 71), or droplets
(7, 18, 19, 21, 28, 39, 41, 47, 68, 71, 72, 73, 83, 87, 88, 91, 94) for further processing. Each tube,
well, or droplet contains the necessary components to perform the amplification of transcripts and
library preparation. The technique used for cell compartmentalization merits high precision, as
the presence of multiple cells in a compartment (multiplets) or the inclusion of impurities such as
cell debris and free mRNA leads to data loss in downstream processing. FACS has been used to
distribute cells in some plate-based scRNA-seq approaches (24, 49, 62, 67), allowing simultaneous
enrichment for specific cell populations of interest using fluorescent reporter lines. Independent of
the compartmentalization into wells or droplets, a FACS-based sorting step can be useful to obtain
multiple characteristics of a single cell (e.g., size and/or fluorescence), which can help isolate the
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Single-cell
transcriptomes
attached to
microparticles
(STAMPs):
the combination of
barcoded beads with
attached mRNA
transcripts from a
single cell

targeted cell population (24, 49, 62, 67) and/or reduce undesired cell debris (62, 67, 88). In this
aspect, the implementation of FACS devices equippedwith image stream analysis is of high interest
(33) and can allow more precise cell quantification to reduce the chance of multiple cells being
sorted into a single well.However, cell sorting comes at the cost of additional processing steps and
increased processing time. The final choice of cell isolation and compartmentalization strategy is
highly dependent on the tissue, species, commercial platform usage, and envisaged application. In
any case, careful consideration is required before initiating a single-cell experiment.

2.2. Single-Cell Transcriptomics Technologies Used in Plant Research

High-throughput and low-cost cell processing allowed droplet-based single-cell methods [e.g.,
Drop-seq (53) or the Chromium Controller from 10X Genomics] to dominate the plant single-
cell transcriptome landscape, including applications inArabidopsis (18, 19, 21, 26, 28, 39, 41, 47–49,
68, 72, 88, 94), rice (47, 87), and maize (6, 71, 91) (Figure 1). Given the prominent role of droplet-
basedmethods in the plant field, a typical single-cell experiment using this setup is described below
and depicted in Figure 2.

The general principle underlying droplet-based methods is the encapsulation of an indi-
vidual cell and a barcoded bead in a nanoliter-sized droplet. The bead is coated with DNA
oligonucleotide probes that encode a cell-specific barcode and transcript-specific barcodes (UMIs)
equipped with a poly(T) sequence (Figure 2). The droplets contain all buffers and enzymes re-
quired for complementary DNA (cDNA) synthesis. Upon encapsulation in the droplets, cells are
lysed, which allows the poly(A)-tailed mRNA to bind to the beads. Reverse transcription is used
to generate single-cell transcriptomes attached to microparticles (STAMPs). Because transcript
coverage mainly occurs at the 3′ end, processing is fast but contains limited information about
genetic variation and relative abundance of transcript isoforms is not obtained (96). After mRNAs
aggregated into a STAMP, the individual droplets are combined into one sample in order to facil-
itate further PCR-based amplification and library preparation, followed by RNA-Seq. This setup
allows droplet-based scRNA-seq methods to process thousands of cells while providing sufficient
resolution and sequencing depth to generate atlases of whole organs in a single experiment.

A different 3′-based method called cell expression by linear amplification and sequencing
(CEL-seq2) (34) has been applied to generate a transcriptome map of the transcriptional land-
scape of the maize shoot apical meristem (71) and to precisely define cellular transition states dur-
ing maize anther development (60). Similar to droplet-based methods, CEL-seq2 uses primers
that are equipped with a cell barcode and UMI, while the major difference is that the mRNA
amplification in this plate-based approach is done via in vitro transcription instead of PCR, which
can reduce amplification bias (34).

For scRNA-seq experiments where high (or full-length) transcript coverage is of the essence,
the SMART-Seq protocols have been applied in a plate-based setup (24) (Figure 1). SMART-Seq
combines reverse transcription with a template-switching mechanism at the 5′ end of the RNA
template to generate a full-length cDNA (96). Additionally, the full-length transcript coverage can
provide information on expression levels of transcript isoforms (31). Although the extended pro-
cessing time associated with full-length transcript amplification makes this approach less suitable
for high-throughput single-cell analysis, it is highly suitable for experiments focusing on specific
or rare cell types (24, 49, 67). The SMART-Seq protocol has been utilized to study transcrip-
tional changes that govern all steps in the development of protophloem sieve elements, a rare cell
subgroup that is most of the time not captured in the scRNA-Seq data set of the Arabidopsis root
(67).
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Dimensionality
reduction: the process
of reducing the
number of dimensions
in a high-dimensional
space using
visualization

Highly variable
genes (HVGs):
genes with high
contributions to
cell-to-cell variation
within a homogeneous
cell population

2.3. Data Analysis

The analytical workflow of single-cell transcriptomes is amultistep process. Several software pack-
ages, including Cell Ranger (95), Seurat (13), and COPILOT (72), combine pipelines to perform
quality control, normalization, dimensionality reduction of the raw data, and visualization. In this
section, we describe the different steps during data analysis as currently performed in the plant
field and highlight some of the potential options and pitfalls.

2.3.1. Demultiplexing, quality control, and normalization. After sequencing and the initial
quality control used for the detection and removal of low-quality bases (e.g., with FastQC), the
sequence files are demultiplexed to assign sequences back to their cells of origin using the unique
cell barcodes. Next, another round of demultiplexing is performed using UMIs to quantify the
number of mRNAs captured within a single cell. The usage of UMIs largely improves expres-
sion quantification across thousands of analyzed cells, as it identifies PCR duplicates and reduces
background noise and PCR amplification bias (38). The non-mRNA sequences (e.g., the barcode
and UMI) are removed before alignment to the reference genome/transcriptome. Several steps
can be taken at this point to evaluate the quality of cell compartmentalization and library prepara-
tion. For example, a comparison between the mapping efficiency of endogenous RNA to spike-ins
(control transcripts with known sequence and user-defined concentration) gives an estimate about
the quality of the library used for sequencing. RNA degradation or inefficient cell lysis can lead
to a low-quality library, which would be detectable by low mapping ratios to endogenous RNA
but sufficient mapping to spike-ins. An additional quality check is done by calculating the number
of counts per barcode (summarized as count depth), the number of genes per barcode, and the
ratio of counts from mitochondrial and chloroplast genes per barcode. A combination of a low
count depth, low number of genes, and high number of counts from mitochondrial or chloroplast
genes per barcode can indicate a low-quality cell, while an unexpectedly high number of counts
and genes per barcode can indicate a potential mixture of two or more cells (multiplets). A low
count depth can indicate either a cell with low-quality RNA or an empty droplet. In either case,
low-quality cells or multiplets should be removed before normalization. This normalization step
is used to adjust variation between cells of the same sample that is caused by differences in cell ly-
sis, library preparation efficiency, or sequencing depth. These variations occur because each count
per barcode is the result of an mRNA molecule that underwent capturing, reverse transcription,
and sequencing.Thus, even slight differences in efficiency within these steps can cause a high vari-
ability between cells, making normalization a critical step (85). Once normalization is performed
and gene expression has been quantified, a subset of genes with the highest variation in average
expression level across all cells [highly variable genes (HVGs)] (11, 16, 22) is used to determine
cell clusters.

2.3.2. Dimensionality reduction and clustering. Depending on the plant species, sequence
coverage, and depth, scRNA-seq data sets can contain the expression values of, for example,
25,000 genes in Arabidopsis (2) or 40,000 in maize (40) for each of the thousands of cells. To cope
with the computational and statistical challenges that come with comparing gene expression
profiles among thousands—and up to millions—of cells, HVGs are identified (19, 26, 39, 47, 48,
60, 67, 68, 72, 73, 83, 87, 91, 94) and uninformative genes are removed (referred to as feature
selection). Dimensionality reduction tools are used to visualize the high-dimensional data set
in only two or three dimensions. Principle component analysis (PCA) has been used to reduce
dimensionality and determine cell clusters in plant scRNA-seq data sets (19, 26, 47, 48, 60, 72,
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t-Distributed
stochastic neighbor
embedding (tSNE):
a dimension reduction
and projection
algorithm

Uniform manifold
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projection (UMAP):
a dimension reduction
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restricted to a cell
identity,
subpopulation, or cells,
preferably across
multiple data sets

83). PCA determines variables that contribute to the overall variance of expression among all
individual cells and compares them to establish which variables contribute the most to the overall
variance. PCA has been applied in combination with other dimensionality reduction tools, e.g.,
t-distributed stochastic neighbor embedding (t-SNE) (86), to visualize cell clusters in plant
scRNA-seq studies (18, 19, 26, 48, 67, 72, 81, 83, 88). t-SNE plots visualize how many clusters
were identified and how many cells belong to each cluster. However, the positions and distances
between clusters on the t-SNE plot hold little information. By contrast, uniform manifold ap-
proximation and projection (UMAP) (57) allows comparison of both cell clusters and cells within
these clusters based on distances between them. Given that UMAP also allows the visualization
of more than two dimensions and has a rapid runtime performance (5), it is quickly becoming the
preferred method in the plant field (7, 21, 26, 28, 39, 41, 47–49, 54, 62, 71, 72, 81, 87, 91, 94).

Several algorithms are available to identify and characterize cell populations by unsupervised
clustering (22). Plant scRNA-seq studies mainly used the Louvain clustering algorithm (21, 28,
39, 54, 67, 83) based on shared nearest neighbor networks (19, 21, 26, 39, 47, 48, 68, 72, 73, 83, 91,
94), which calculates the nearest neighbors of each cell and clusters those with the highest overlap.
However, comparative studies indicate that clustering outputs can differ significantly between
methods (27), which can, for example, affect connections between cells and the total number of
clusters.

2.3.3. Cell identity assignment and validation. The cell identity of each cluster can be defined
by overlaying the expression of specific marker genes, requiring previous knowledge of the gene
expression in the tissue or species of interest. For the root scRNA-seq data sets in Arabidopsis, this
can be done via correlation analyses of marker gene expression in specific clusters and validated
data sets (10, 44) and by computing an index of cell identity score (23) for each cell (19, 72, 73,
83). The process of cell clustering and identity calling is, however, an iterative one, as changing
cluster parameters has a great impact on clustering output and the ability to call subcell types.

Once clustering and annotation have been performed, a typical first step in validating newly
generated data sets is to investigate cell cluster–specific genes for known marker genes (besides
those used for initial clustering) or other indications that match the expected biological function,
such as metabolic pathways. Typically, marker gene expression is not only specific to a cell cluster
but also expressed in most cells of that cluster. Variations of marker gene expression among cells
of the same cluster can have multiple causes. For example, the gene in question might only be
expressed in a specific developmental stage or cellular subtype. In addition, the technical noise of
single-cell techniques could lead to false negatives for lowly expressed genes. Comparing marker
gene expression of genes associated with proliferation (e.g., cell cycle–related genes) can be used
to fine-tune the composition of a cell cluster (21, 28, 49, 60, 71, 88). Alternatively, plants show
distinct changes in cell ploidy levels throughout their development, and sets of marker genes have
been associated with the switch from the mitotic cell cycle to the endocycle (8). These endocycle
markers can be used to validate the progression of cell lineages in time (21, 28, 49, 60, 71, 88). It
is worth noting that some developmental processes (e.g., cells with different identities undergo-
ing division) might even cause dominant transcriptional changes that could mask the actual cell
identities, causing cells from different cell lineages to cluster together. Additionally, marker gene
expression might be affected by biotic or abiotic stimuli, which need to be taken under consider-
ation during the experimental and project design. While marker genes for root cell identities in
Arabidopsis have been extensively studied and validated, fewer marker genes are available for other
organs and even fewer for other species. Automated cluster annotation methods have facilitated
cell identity annotation in the mammalian field (1), offering important alternatives to the manual
annotation currently done in the plant field.
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Although the optionsmentioned above should be explored for each data set generated and offer
a fast way to provide an initial validation of the data, it is important to stress that there is no substi-
tute for in vivo validation. As the predictive power of a large-scale resource defines its usefulness
for the community, validating that predicted cell clusters correspond to spatial or temporal cell
identities is a key step in ensuring the utility of the data. This can be done by validating expression
patterns with transgenic reporter lines (19, 41, 49, 62, 67, 88) or by in situ hybridization (7, 47,
54, 67, 71, 91). Ultimately, functional relevance is a key step in validating the utility of the profiles
using genetically perturbated mutants (28, 41, 62, 68, 72, 83, 91). Once validated, scRNA-seq data
sets can be mined to extract additional transcriptional signatures that give relevant information
on biological processes within individual cells.

2.3.4. Data set integration. Conceptually, scRNA-seq data sets provide statistical power due
to the high number of data points, often referred to as power by numbers. As more cells are col-
lected, the sensitivity increases to detect a wider range of cell identities, including both rare cell
types and specific cell states of common cell types. Increasing the number of analyzed cells can
be achieved by either increasing the number of sampled cells or by integrating multiple exist-
ing data sets. The integration of data from different experiments or batches requires additional
corrections and quality controls. Technical variance associated with protocols, equipment, staff,
and time of processing can interfere with the detection of the biological signal of interest and
lead to false discoveries when combining samples (35). Integration methods correct for batch ef-
fects between cells from different samples by transforming the data to recreate cell identities in
low-dimensional space that are no longer dominated by batch effects. Available methods can be
differentiated based on whether they require the exact same amount of cell types present across
all batches [e.g.,MetaSparseKmeans (36)] or whether they can process cell identities or states that
are not present across all samples [e.g., mutual nearest neighbor (MNN) (32)]. Shahan and col-
laborators (72), for example, used the canonical correlation analysis (CCA) that is implemented
in the Seurat toolkit (13) to integrate in-house-generated and publicly available scRNA-seq data
sets from Arabidopsis roots. Wang and collaborators (87) used MNN to correct for batch effects
between rice samples that were exposed to different environmental conditions enabling the com-
parison of cell type assignment independent of the environmental conditions.

Given that batch effects can only be accounted and corrected for in the analysis pipeline
if they are controlled for through an appropriate experimental design, an upcoming challenge
for the plant community will be to join forces and align protocols and experimental designs to
ensure that all generated data can be incorporated into a comprehensive plant cell atlas (for more
about the Plant Cell Atlas initiative, see 65).

2.4. Beyond Cell Clustering: Identification of Single-Cell
Transcriptome Signatures

The initial outputs of a scRNA-seq data set are differentially expressed genes (DEGs) between
cell types or subsets of cells. This already provides a high spatial resolution for the involvement
of unknown regulators and differential responses of specific tissue types to a general stimulus
such as abiotic stresses or treatment with phytohormones. However, scRNA-seq data also allow
characterizing cellular state transitions and developmental trajectories due to the high tempo-
ral resolution. Additionally, the combination of spatiotemporal resolution and high cell numbers
provides opportunities to enhance GRN analysis.
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2.4.1. Trajectory inference methods. The dynamic processes that occur within cells can be
uncovered using trajectory inference methods. A trajectory analysis can highlight transitions be-
tween different cell states or even identify branching points in the developmental trajectory of a
cell-type lineage. Pseudotime analysis can be used to align cells according to their incremental
transcriptional changes within a temporal order along a trajectory that corresponds to a biologi-
cal process. Running different algorithms in an iterative way and testing different cells as starting
points can provide some robustness in this prediction.

The resulting trajectories can be simple (e.g., cyclic or linear) or bifurcated or can even contain
disconnected events (69). However, in all cases, validation is required to ensure the predicted tra-
jectories match detectable biological events. Genes specifically expressed at the branching points
or transitions between cell states can contribute to understanding these cell lineage–specific pro-
cesses. The Arabidopsis root tip is uniquely fit to trace developmental trajectories, as cells are or-
derly aligned in cell files and cell lineages are well defined. Monocle is an unsupervised algorithm
that generates a pseudotemporal resolution of transcriptome dynamics (82) and has already been
used intensively to define developmental trajectories in Arabidopsis (19, 21, 28, 67, 68, 73, 87, 94),
tomato (81), rice (47), and maize (71). Other tools, including CytoTRACE (30, 72), Slingshot (62,
78, 88), GNG (69, 88), and scVelo (6, 49, 72), have also been used for the same application. By
focusing on the trajectories of cortex and endodermis cells, which both originate from the same
stem cell, potential early regulators in ground tissue development could be identified (72).

2.4.2. Gene regulatory network analysis. Single-cell data sets offer unprecedented temporal
and spatial resolution to reconstruct GRNs with transcriptional regulators that control cell-type-
specific processes and cell stage transitions.Although harnessing the full spatiotemporal resolution
at the cellular level of scRNA-seq data is still challenging, constructing GRNs between groups of
cells along the developmental trajectory is already feasible (19, 67). For example, analyzing the
dynamics of transcription factor expression during trichoblast cell differentiation in Arabidopsis
revealed novel players and currently undescribed feedback mechanisms (19). Expanding these
comparisons to include transcription factors and their respective target genes can shed further
light on how cell-to-cell communication orchestrates cell proliferation and differentiation.

3. EMERGING OPPORTUNITIES FOR SINGLE-CELL TECHNOLOGY
IN PLANT RESEARCH

3.1. Digging Deeper and Faster

Plant research has embraced high-throughput single-cell transcriptomic approaches in recent
years, and this has allowed the study of developmental processes and cellular responses at un-
precedented resolutions (7, 18, 19, 21, 26, 28, 39, 41, 42, 47–49, 54, 60, 62, 67, 68, 71–73, 75, 81,
83, 87, 88, 91, 94). However, we are only observing the tip of the proverbial iceberg, as we will not
only see the amount and type of information increase exponentially over the next few years, but
also soon be able to extract much more detailed information from existing data.

A prime example is the identification of specific or novel subpopulations of cells. Current res-
olution of the Arabidopsis root, for example, allows precise identification of developmental tra-
jectories of general cell identities (e.g., vascular tissues) and some subdivision into cell types (e.g.,
xylem and phloem) (19, 26, 28, 39, 67, 72, 83, 88, 94).Using recently definedmarker genes for such
subpopulations gives sufficient information to perform a more detailed classification of subpopu-
lations (e.g., into proto- and metaxylem, sieve element, and companion cells) and even trajectory
bifurcation analysis to validate cell lineage tracing studies (67, 88). Moving from general profiling
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of all tissue types to the generation of more dedicated data sets comprising one specific tissue type
(41, 49, 67, 83) will provide the required resolution and identification of validated marker genes
and allow direct detection of these identities in all existing data sets. NICHE-seq (58) offers an
alternative to overcome marker-based cell selection or analysis of overexpression mutants. Here,
a photoactivatable fluorescent protein is constitutively expressed in all cells, and two-photon irra-
diation is used to locally excite it before tissue dissociation. Cells in which the fluorescent protein
is stimulated are separated from nonstimulated cells using FACS and sequenced afterwards. The
ability to stimulate cells of interest within a tissue niche has the potential to capture cell states and
to recreate spatial information in any tissue of interest.

Besides providing temporal alignment of cell types along a developmental trajectory, trajectory
inference methods can offer additional information on the stability and speed of cell state tran-
sitions (61). In the simplest example, the number of cells along a trajectory can predict whether
this transition is slow (gradual change typed by a homogenous distribution from start to end)
(Figure 3a) or very fast (switch-like behavior characterized by few cells between the start and
end) (Figure 3b). This by itself provides important biological insights into the developmental
process of transitions into certain cell identities. For example, the interpretation of developmen-
tal trajectories in scRNA-seq data sets of lines overexpressing xylem-specific transcription factors
has revealed a bistable hysteric switch behavior of xylem vessel identity in Arabidopsis (83).

Obtaining more reliable developmental trajectories to pinpoint rare cells undergoing this type
of switch-like behavior can be assisted by scaling up the number of processed cells. Single-cell
combinatorial barcoding protocols, such as split-pool ligation-based transcriptome (SPLiT)-seq
(66) or single-cell combinatorial indexing (sci)-RNA sequencing (14), allow ultrahigh-throughput
processing of up to millions of cells using multiple rounds of random pooling and barcoding.
Analysis of such high cell numbers, although they come at the expense of data depth per cell, al-
lows enrichment and identification of very rare or transient subpopulations. This could become
very relevant, as groups of cells within a cell type might respond differently to an endogenous
or environmental stimulus. Expression mosaicism of transgenes in plant calli, in which transgene
expression is only observed in a fraction of cells of the same identity, is an ideal example for het-
erogeneity within cell types (70). Identifying and studying such exceptional responder cells in
plants (Figure 3c) could hypothetically reveal, for example, gene regulatory elements that cause
their resistance towards biotic and abiotic stimuli. These rare cell populations and transient cell
states might challenge current definitions of cell identity but, at the same time, offer exciting new
opportunities for biotechnological applications.

Although single-cell transcriptomic approaches are well established in the plant field, cell-
specific responses and consequent phenotypic changes are the result of the combined effect of the
transcriptome, epigenome, metabolome, and proteome. The coming years will be characterized
by initiatives to start single-cell multiomics analyses (Figure 3d). Upcoming new methods can
capture transcriptome and epigenome information from individual cells simultaneously, such as
assay for single-cell transcriptome and accessibility regions (ASTAR-seq) (90) or simultaneous
high-throughput ATAC and RNA expression with sequencing (SHARE-seq) (52), which can, for
example, provide unique opportunities to understand acquired disease resistance or responses to
other internal and external stimuli at the cellular level.

3.2. Single-Cell Transcriptomics for All

Although the potential of single-cell transcriptomics has been illustrated in the model plant Ara-
bidopsis (18, 19, 21, 26, 28, 39, 41, 47–49, 67, 68, 72, 73, 75, 83, 88, 94), the moss P. patens (42), and
economically relevant crop species such as maize (7, 54, 60, 71, 91), tomato (62, 81), and rice (47,
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Figure 3

Application of single-cell technologies in plant cell research. (a–b) Enrichment of subpopulations can be used
to identify and characterize changes along a developmental trajectory. Slow transitions between the start and
end of a trajectory suggest gradual changes in the transcriptome, while fast transitions, without intermediate
stages, can suggest a switch-like behavior. (c) Ultra high-throughput analysis of ten-thousand to hundreds of
thousands of single cells could reveal heterogeneity within cells of the same cell type. The transcriptomes of
such exceptional responders carry useful information to understand phenotypic plasticity. (d) Multiomics
single-cell approaches can be used to correlate cell-specific transcriptome profiles with gene regulatory
elements or other cellular information (metabolome, proteome, etc.). (e) Combining single-cell
transcriptomic profiles with spatial information can reveal cell-to-cell communication signals as seen in
ligand-receptor-mediated pathways. ( f ) Data depository and integration initiatives, like the Plant Cell Atlas
(65), aim to unify experimental conditions and sample processing to allow a standardized analysis and
integration of scRNA-seq data sets as valuable community resources. Abbreviations: mRNA, messenger
RNA; tSNE, t-distributed stochastic neighbor embedding; UMAP, uniform manifold approximation and
projection.
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87), there are clear challenges to implementing the technology in genetically poorly characterized
and emerging model plant species. In many cases, a set of well-defined marker genes to annotate
cell clusters is simply not available, and generating fluorescent reporter lines for dozens of cluster-
specific genes might be technically challenging due to long generation times or low-efficiency in
plant transformation. Spatial transcriptomics approaches offer spatially resolved single-cell tran-
scriptomes within whole tissue sections, which can be used to circumvent the need to generate sin-
gle cells or have sets of tissue-specific marker genes to annotate cell identities (51, 59) (Figure 3e).
Furthermore, keeping cells within the tissue can help to maintain spatial responses, including, for
example, transient transcriptional responses between cells induced by internal [e.g., ligands (25)
(Figure 3e)] or external cues such as chemicals, fertilizers, or pathogens.

Given that plant cells are differentially but highly responsive to their environment and this
changes over development, the use of scRNA-seq in high-resolution phenotyping and breeding
applications (including yield, abiotic/biotic stress resistance, and plant immunity) has immense
potential, but requires processing of many samples. Sample multiplexing can be useful to test the
variety of individual cell sensitivities and responses during chemical screens or chemical concen-
tration tests. Multiplexing using lipid-tagged indices for single-cell and single-nucleus RNA-seq
(MULTI-Seq) uses lipid- or cholesterol-conjugated oligonucleotides that bind to plasma mem-
branes to provide cells from each sample with an additional barcode (56). Other techniques use
oligo-tagged antibodies to label cells from the same sample before pooling samples together (76,
77). Pooling samples prior to library preparation and sequencing lowers costs by an order of mag-
nitude. The associated loss of sequence coverage might not be a problem when studying specific
processes or for breeding purposes, as it can be sufficient to evaluate a subset of genes by enriching
for a specific panel of gene expression using, for example, Constellation DropSeq (C-DropSeq)
(84). Although targeted gene panels reduce the overall information obtained from a single-cell
transcriptome, they offer a higher sensitivity.

Many of the key cellular responses to environmental stimuli occur in differentiated cells, which
are difficult to liberate using enzymatic digestion.Additionally, some plant species might be specif-
ically recalcitrant to tissue dissociation. In these cases, profiling nuclei in single-nucleus RNA-seq
(snRNA-seq) could offer a solution (26, 54, 81). Nuclei enrichment has been used widely in plants
to obtain cell-type-specific transcriptomes (for a review, see 3). Fluorescence-activated nuclei sort-
ing, for example, was used to capture transcriptomes from rare cells, such as phloem companion
cells (93) or embryonic cells (74). Recently, Arabidopsis root nuclei were used to profile the open
chromatin regions using snATAC-seq (21, 26). In theory, the open chromatin state of a cell could
act as a readout for transcriptional activity (63). Indeed, snRNA-seq and snATAC-seq results cor-
related for most cell types, but snRNA-seq identified a novel cell cluster that was not captured in
scRNA-seq data sets (26). Although the identity of this cluster has yet to be assigned, it suggests
that these nuclei might come from cells that are not captured via enzymatic digestion (26).

3.3. Standardization and Community Building

scRNA-seq data sets contain a wealth of information that is of use to a broad range of plant scien-
tists. However, to ensure that these large, high-dimensional data sets can be properly mined and
used by the community, we need to implement standardized procedures and protocols for sam-
ple preparation, quality control, data analysis, and validation. Establishing detailed experimental
design guidelines could provide a standard for the amount of technical and biological replicates
required per experiment and suggest means to properly validate the data via appropriate controls.
In the case of previously uncharacterized tissue types or plant species, bulk RNA-seq data of undi-
gested tissues can be profiled to provide useful controls to separate gene expression changes that
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are triggered during tissue dissociation (7, 19, 21, 26, 41, 47, 67, 68, 73, 81, 87, 91). Additionally,
a quantitative indication of tissue digestion efficiency across cell types and developmental stages
would also be beneficial during analysis to determine potential biases in the profiled cell popu-
lation (39, 72, 73, 83, 87, 88). A set of experimental and analysis guidelines could be formulated
based on dedicated benchmark studies, which are not available in the plant field so far.

To allow comparisons between the quickly increasing number of experiments performed by
many different research groups across the field, guidelines for batch effect correction will become
very important. Moreover, when comparing different tissues and/or different species, unsuper-
vised multiple data set integration algorithms will need to be developed to compensate for the
complete absence or variable relative composition of individual cell types across samples (13).
In such cases, gene panels related to biological processes or functions could be used in machine
learning algorithms to automatically define cell identities across tissues and species (Figure 3f ).
A recent machine learning approach identified several novel marker genes for Arabidopsis root cell
types (92), showing its potential in capturing detailed clustering signatures. This will, however,
require well-defined and reliable Gene Ontology (GO)-term annotations in both model and non-
model plant species. Computational simulations indicate that heterogeneity in the cell cycle can
even override cell identity transcriptomes (4). To circumvent this problem, removal of variation
contributed by the cell cycle has lately also been implemented in plant single-cell transcriptome
data sets (49, 71). Machine learning approaches can be used to give an unbiased estimation of
parameters that trigger variation among cells and data sets (12). These and other initiatives will
allow us to build integrated virtual plant databases, such as the Plant Cell Atlas (65).

SUMMARY POINTS

1. Single-cell approaches are established in the plant field, and the portfolio of technologies
is rapidly expanding.

2. Efficient cell isolation is a bottleneck for some tissues and plant species.

3. Single-cell transcriptomics offers solutions to solve longstanding questions in funda-
mental and applied plant research.

4. Unified experimental design and analysis methods are crucial to allow efficient data in-
tegration and comparison.

5. Initiatives such as the Plant Cell Atlas will assist in uniting data sets and research tools
for the entire community.
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