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Abstract

Temperature is a key environmental cue that influences the distribution and
behavior of plants globally. Understanding how plants sense temperature
and integrate this information into their development is important to de-
termine how plants adapt to climate change and to apply this knowledge
to the breeding of climate-resilient crops. The mechanisms of temperature
perception in eukaryotes are only just beginning to be understood,withmul-
tiple molecular phenomena with inherent temperature dependencies, such
as RNAmelting, phytochrome dark reversion, and protein phase change, be-
ing exploited by nature to create thermosensory signaling networks. Here,
we review recent progress in understanding how temperature sensing in four
major pathways inArabidopsis thaliana occurs: vernalization, cold stress, ther-
momorphogenesis, and heat stress. We discuss outstanding questions in the
field and the importance of these mechanisms in the context of breeding
climate-resilient crops.
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Developmental
plasticity: the
modulation of plant
form by integrating
environmental
information into the
regulation of growth
and developmental
processes

Ambient
temperature:
temperature in a range
that does not activate
strong cold or heat
stress responses in the
plant (∼12–27°C for
Arabidopsis thaliana)

Molecular motion:
the movement of
molecules or
constituent particles in
a certain direction

Thermosensor:
a molecular entity that
receives and converts
temperature stimuli
into recognizable
molecular signals
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1. INTRODUCTION

Plants have adapted to live in almost every ecological niche on earth, encompassing a remarkable
range of temperatures from approximately −80°C to 70°C (81). The ability to thrive across such a
wide range of climates is a reflection of their developmental plasticity and ability to adapt. Broadly,
adaptation can be considered as passive or active. Passive mechanisms include hard-wired genomic
traits such as amino acid composition and protein structure. Extremophiles, for example, have
more rigid proteins with increased hydrogen bonds (17).Activemechanisms enable plants to adjust
their growth and development to respond to sudden changes in temperature as well as anticipate
seasonal change and future stresses. Some of these changes are visible on a macroscale, such as the
opening of buds in the spring, while others are apparent only at a subcellular level. Such specific
and targeted responses require both the perception and transmission of temperature information.

Temperature has wide-ranging effects on plants, influencing different aspects of metabolism,
growth, and development. In general, low temperatures lead to reduced enzyme activity, rigidifi-
cation of membranes, destabilization of protein complexes, stabilization of RNA secondary struc-
tures, accumulation of reactive oxygen species (ROS), impairment of photosynthesis, and leakage
across membranes. Similarly, high temperatures cause proteins to unfold and aggregate, mem-
branes to become more fluid, and changes that can be seen in the organization of cellular struc-
tures, including organelles and the cytoskeleton.Major protective responses to heat stress include
enhanced production of phytohormones, such as abscisic acid, antioxidants, and other protective
molecules, and transcriptional induction of a suite of genes encoding heat shock proteins (HSPs).
While all plants respond to temperature, the most well-studied system is Arabidopsis thaliana,
owing to its excellent tractability.Arabidopsis has four key temperature response pathways: (a) ver-
nalization, the conferring of flowering competency in response to prolonged cold; (b) the cold
stress pathway that protects plants against chilling stress (CBF induction); (c) thermomorphogen-
esis, the acceleration of growth and flowering in response to elevated ambient temperatures; and
(d) the heat shock response to protect against cellular damage by high temperature stress. These
pathways use temperature information to trigger major adaptive responses of both development
and stress signaling to enhance adaptation.

Temperature is molecular motion and affects all components of the cell. Unlike many other
stress and hormone responses, there is no distinct ligand to signal temperature, and so identifying
thermosensors remains challenging. Likewise, temperature sensing may occur at multiple entry
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Master temperature
sensor:
a thermosensor that is
able to convey
temperature
information to
multiple response
pathways

points within a signaling pathway.The broad effects of temperature on all cellular components also
mean that any molecule in the cell can potentially act as a thermosensor. As further details of plant
thermosensing mechanisms emerge, De Smet and colleagues (134) have proposed that putative
plant thermosensors should obey the following three criteria: (a) temperature directly impacts
the biochemical properties of the thermosensor, (b) the modified properties of the sensor play an
important role in the signal transduction of the temperature response, and (c) these modifications
lead to relevant changes in plant physiology and/or morphology.

As a consequence of the complexity and interconnectedness of temperature signaling, different
models have been proposed for how temperature information is integrated into cellular responses.
Conceptually, a master temperature sensor could sense and communicate temperature informa-
tion to all downstream pathways. For example, in animals, transient receptor potential (TRP)
channels are major temperature sensors that activate stimulus-responsive transcription factors
and lead to the induction of delayed response genes (70, 126). An equivalent system in plants
might enable multiple distinct pathways to be activated downstream of a given sensor. Conversely,
temperature perception could reflect an integration of the activities of hundreds or thousands of
different molecules in the cell responding individually to temperature. In this case, temperature
perception is an emergent property from the broad behavior of cellular processes responding pas-
sively to changes in kinetic rates. As we learn more about temperature perception pathways in
the cell, it is becoming apparent that a hybrid of these models exists. Molecules with very dis-
tinctive temperature-perceiving behaviors have been identified (i.e., thermosensors), indicating
that multiple nodes throughout temperature response networks have evolved the ability to incor-
porate temperature information. Having distinct thermosensors is likely necessary since plants
demonstrate considerable temperature sensitivity. For example, lettuce germination responds to a
temperature change of as little as 1°C (6). Indeed, the described thermosensors exploit biophysical
properties of proteins and RNA that feature cooperative responses that enable a small temperature
difference to result in a significant molecular response—a sensitivity and switch-like behavior that
is not available to most molecules in the biological temperature range. The evolution of multiple
temperature-sensing nodes within a given pathway may represent a mechanism to make pathways
robust against noise and provide a means to integrate temperature information.

In this review, we summarize the current knowledge of how plants sense and integrate tem-
perature information in the context of the most well-studied temperature-controlled behaviors
in Arabidopsis. We detail each of the established thermosensing mechanisms to date and highlight
gaps in our knowledge.We conclude with a discussion of challenges and opportunities in the field.

2. AN OVERVIEW OF KEY TEMPERATURE PATHWAYS IN PLANTS

2.1. Vernalization

Many temperate plants employ a mechanism to avoid flowering during the winter months when
frost could kill flowers and developing seeds. The ability to delay flowering until a prolonged cold
period has been experienced (vernalization) is present in many Arabidopsis accessions, where this
pathway has been extensively studied and is described by excellent reviews (117, 141). Vernal-
ization in Arabidopsis is conferred by two key genes: FRIGIDA (FRI) and FLOWERING LOCUS
C (FLC) (Figure 1). FRI encodes a plant-specific scaffold protein that forms a large transcrip-
tion activator complex, composed of FRI, FRI-LIKE 1 (FRL1), FRI ESSENTIAL 1 (FES1),
SUPPRESSOR OF FRI 4 (SUF4), and FLC EXPRESSOR (FLX), that is required for the tran-
scriptional activation of FLC (28). FLC encodes a MADS-box transcription factor that represses
flowering in a dose-dependent manner (3, 9). High levels of FLC repress the expression of flo-
ral integrator genes such as FLOWERING LOCUS T (FT), FLOWERING LOCUS D (FD), and

www.annualreviews.org • Temperature Sensing in Plants 343



[ ]

Flowering

Floral
integrators

FLC

FRI/FRL1
condensates

VIN3

VRN1
VRN5

NTL8

FLX

SUF4

SDG7

FRI

FRL1

FES1

Indirect activation
Activation
Repression

Figure 1

Long-term cold sensing during vernalization in Arabidopsis. Vernalization in Arabidopsis is conferred by two
key genes: FLC and FRI. FRI encodes a plant-specific scaffold protein that forms a transcriptional activator
complex composed of FRI, FRL1, FES1, SUF4, and FLX and is required for the transcriptional activation of
FLC.Upon exposure to low temperatures, FRI and its interacting homolog, FRL1, undergo liquid–liquid
phase separation to form nuclear condensates that do not colocalize with an active FLC locus. Prolonged
cold also transcriptionally activates VIN3, one of many epigenetic modifying enzymes (dashed circles) that
repress FLC. While SDG7 negatively regulates VIN3, accumulation of the NAC transcription factor NTL8
through growth promotes VIN3 accumulation at low temperatures. Collectively, these two pathways
converge to repress FLC in the cold, relieving the repression of floral integrator genes such as FT, FD, and
SOC1, and enable the activation of flowering. Abbreviations: FD, FLOWERING LOCUS D; FES1, FRI
ESSENTIAL 1; FLC, FLOWERING LOCUS C; FLX, FLC EXPRESSOR; FRI, FRIGIDA; FRL1,
FRI-LIKE 1; FT, FLOWERING LOCUS T; NTL8, NAC WITH TRANSMEMBRANE MOTIF1-
LIKE 8; SDG7, SET DOMAIN-CONTAINING PROTEIN 7; SOC1, SUPPRESSOR OF
OVEREXPRESSION OF CONSTANS 1; SUF4, SUPPRESSOR OF FRI 4; VIN3, VERNALIZATION
INSENSITIVE 3; VRN, VERNALIZATION.

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), which in turn, results in
delayed flowering (96, 118). In Arabidopsis, repression of FLC by prolonged cold is achieved
by a number of genes involved in histone modification and include VERNALIZATION 1
(VRN1), VERNALIZATION 2 (VRN2), VERNALIZATION 5 (VRN5), and VERNALIZATION
INSENSITIVE 3 (VIN3) (15, 48, 50, 87, 115, 140).

2.2. Cold Stress

Cold is a significant abiotic stress affecting crop production and the geographical distribution of
plant species (13, 152). Plants generally encounter two forms of low temperature stress: chilling
(0–15°C) and freezing (below 0°C) (Figure 2). When exposed to low, nonfreezing tempera-
tures, plants can acquire the ability to cold acclimate, that is, “to increase tolerance to severe
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Low temperature stress–sensing mechanisms in plants. At the onset of cold stress, lipid membranes rigidify,
which leads to the activation of membrane-associated proteins, including calcium channels (ANN1, CNGC
channels) and the calcium/calmodulin-regulated receptor-like kinase CRLK1. Activation of these proteins
may lead to a rapid influx of calcium into the cytoplasm ([Ca2+]cyt), which activates a range of calcium and
MAPK signaling cascades. COLD1, a plasma membrane– and endoplasmic reticulum–located protein, has
also been described as a cold sensor in rice. At low temperatures, COLD1 activates the GTPase activity of
RGA1, which similarly triggers an influx of calcium into the cytosol; however, whether COLD1 is itself a
calcium-permeable channel or interacts with other channels remains to be determined. In Arabidopsis,
protein translation rate is also proportional to temperature and leads to a calcium influx via an unknown
mechanism. CaM is a multifunctional intermediate calcium-binding messenger protein that binds to
CAMTA transcription factors, which activate the CBF/DREB1 protein family. CBF transcription factors
bind to the promoters of COR genes through CRT/DRE. Abbreviations: ANN1, ANNEXIN1; CaM,
calmodulin; CAMTA, CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR; CBF, C-repeat
binding factor; CNGC, cyclic nucleotide-gated calcium; COLD1, CHILLING TOLERANCE
DIVERGENCE 1; COR, cold-regulated; CRT, C-repeat; DRE, dehydration-responsive element; DREB1,
dehydration-responsive element-binding1; GTPase, guanosine triphosphatase; MAPK, mitogen-activated
protein kinase; RGA1, rice G protein α subunit 1.

cold (freezing) stress as a result of prior exposure to moderately suboptimal (chilling) tempera-
tures” (113, pp. 36–37). Adaptation to low temperatures is controlled by the C-repeat binding
factor (CBF)/dehydration-responsive element-binding1 (DREB1) protein family, which activates
the promoters of cold-regulated (COR) genes through C-repeat (CRT)/dehydration-responsive
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elements (DREs) (144). In Arabidopsis, CBF1–CBF3 are rapidly induced in response to low
temperature stress (95, 120).

2.3. Thermomorphogenesis

Plants adjust their morphology and development in response to elevated ambient temperatures.
Collectively, this process is known as thermomorphogenesis and in Arabidopsis includes responses
such as the elongation of hypocotyls, stems, petioles and roots; leaf hyponasty; and a reduction
in leaf blade size (23, 110) (Figure 3). These responses lead to an open rosette structure that
promotes efficient leaf cooling (32, 104). A central regulator of plant thermomorphogenesis is
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Figure 3

Temperature sensing during thermomorphogenesis. At elevated ambient temperatures, three main temperature-sensing mechanisms
have been described. PIF7 mRNA forms a hairpin structure within its 5′ UTR. Upon an increase in temperature, this structure partially
unfolds to facilitate translation initiation leading to increased PIF7 protein. PhyB exists in two stable, interconvertible forms: a Pr state
that is biologically inactive and a Pfr state that is active. Under red light, phyB is converted to a Pfr homodimer that promotes the
inactivation of PIF transcription factors, including PIF4. High temperatures promote the reversion of phyB back to its inactive Pr state
in a process known as thermal reversion, which enables PIF4 and PIF7 to activate thermomorphogenesis genes. Additionally, at low
temperatures, ELF3, a component of the EC in addition to LUX and ELF4, represses the expression of PIF4.When temperatures
increase, ELF3 forms liquid droplets through liquid–liquid phase separation that prevents its integration into the EC, which in turn
relieves repression of PIF4.While unlinked to the above processes, TOT3 was found to be a regulator of the thermomorphogenic
pathway that impinges on BR signaling. Arrow size indicates the propensity for a reaction to occur. Abbreviations: BR, brassinosteroid;
EC, evening complex; ELF, EARLY FLOWERING; LUX, LUX-ARRHYTHMO; mRNA, messenger RNA; phyB, phytochrome B;
PIF, PHYTOCHROME INTERACTING FACTOR; TOT3, TARGET OF TEMPERATURE 3; UTR, untranslated region.
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Priming: pre-exposure
of plants to an eliciting
factor that enables
them to become more
tolerant to later biotic
or abiotic stress

the PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) transcription factor (77). PIF4 is
temperature regulated both transcriptionally and posttranslationally (46, 58, 105, 148) and or-
chestrates reprogramming of the transcriptome in response to elevated ambient temperatures in
Arabidopsis (65). While some components of the thermomorphogenic pathway may act indepen-
dently of PIF4 (27, 75, 119, 135), the core signaling pathway is dominated by PIF4 and other
factors that regulate plant growth and development in response to temperature and changing
light conditions (35).

2.4. Heat Stress

In all living organisms, temperatures above the optimum are perceived as heat stress (78)
(Figure 4). High temperatures negatively affect seed germination, photosynthetic capacity, water
use efficiency, cell growth and division, flowering, pollen viability, and plant productivity (55). To
cope with heat stress, plants have evolved a variety of responses to protect cellular homeostasis and
minimize damage. One such response is the upregulation of heat shock factors (HSFs) that are an
integral part of the transcriptional regulation of heat protective genes, such as HSPs. HSPs are
generally thought of as molecular chaperones; however, under stress, HSPs have also been shown
to play wider roles in maintaining membrane integrity, ROS scavenging, and the production of
antioxidants and osmolytes (72). Upon exposure to sublethal high temperatures (priming), many
plant species adjust their stress response and metabolism to be able to cope with successive lethal
temperatures.This ability is known as acquired thermotolerance, and understanding themolecular
mechanism of this process is integral to improving plant performance at high temperatures.

3. MAJOR HYPOTHESES IN THE FIELD

3.1. Searching for an Elusive Master Temperature Sensor

Penfield (106, p. 615) noted that “one of the great unknowns in plant science is how temperature
signals are perceived.”As one of themost thermally sensitivemacromolecular structures in the cell,
the plasma membrane has long been proposed as a primary candidate for temperature sensing in
plants (8, 99). Subtle changes in temperature can affect various properties of cellular membranes,
including fluidity, thickness, permeability, and packing (99).While membrane lipids lack catalytic
ability on their own, changes in their physical state strongly affect the folding,mobility, and activity
of integral or membrane-associated proteins (59). These changes can have deleterious effects on
cellular function but at moderate levels can serve as a mechanism for thermosensing (59).

To date, several membrane-associated proteins have been proposed as potential thermosen-
sors. For example, as temperature stress is known to elicit rapid increases in cytosolic calcium
(Ca2+), researchers have proposed that calcium channels may act as plant thermosensors. Yang
and colleagues (89) recently showed that theArabidopsisCa2+-permeable transporter ANNEXIN1
(ANN1) mediates cold-triggered Ca2+ influx into the cytosol and the establishment of freezing
tolerance (Figure 1). Interestingly, AtANN1 is also upregulated by heat stress (Figure 4) and
has been shown to positively regulate heat-induced increases in cytosolic calcium as well as ac-
quired thermotolerance (137). Furthermore, the potential role of cyclic nucleotide-gated calcium
(CNGC) channels in temperature stress has been investigated, particularly at elevated temper-
atures. Goloubinoff and colleagues (42, 114) have proposed that CNGCb in Physcomitrella patens
and CNGC2/CNGC4 in Arabidopsis play a conserved role in activating the heat stress response
via heat-induced cytosolic Ca2+ increases (Figure 4). Loss-of-function alleles in genes encoding
these channels actually have a higher expression of heat shock genes, suggesting that the mecha-
nism may be quite complex (42, 114). In rice, two closely related CNGC proteins, OsCNGC14
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Figure 4

Sensing high temperatures as part of the heat stress response in Arabidopsis. At high temperatures, lipid
membranes become more liquid, which leads to the activation of calcium channels, including ANN1 and
CNGC channels. Activation of these proteins may lead to a rapid influx of calcium into the cytoplasm
([Ca2+]cyt). As cytosolic cAMP levels increase at elevated temperatures and are able to activate CNGCs,
researchers have proposed that enzymes with AC activity may also act as membrane-associated temperature
sensors. High temperatures promote the misfolding and aggregation of proteins. If left to accumulate to
high enough levels, misfolded proteins can outcompete HSF proteins for binding with HSPs, such as
HSP70. This triggers the release of the HSF, which promotes further expression of HSP70 in an
autoregulatory manner. Many temperature-responsive genes are bound by nucleosomes containing the
histone variant H2A.Z, which is involved in stabilizing the +1 nucleosome to repress gene expression by
reducing the accessibility of chromatin to transcriptional activators and RNA polymerases. H2A.Z is rapidly
displaced from nucleosomes in response to increased ambient temperatures, and HSF binding at elevated
temperatures is required to promote H2A.Z nucleosome depletion and transcriptional activation at
heat-responsive genes. Abbreviations: AC, adenylyl cyclase; ANN1, ANNEXIN1; ATP, adenosine
triphosphate; cAMP, 3′,5′-cyclic adenosine monophosphate; CNGC, cyclic nucleotide-gated calcium; HSF,
heat shock factor; HSP, heat shock protein.

and OsCNGC16, were found to be important in generating cytosolic calcium signals in response
to heat and cold, suggesting a potential overlap in the calcium signaling response to both high
and low temperature stress (33). Furthermore, CNGC6 in Arabidopsis has been found to mediate
heat-induced Ca2+ influx at the plasma membrane and facilitate the expression of HSP genes
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(47). Interestingly, Gao et al. (47) observed that during mild heat shock, cytosolic 3′,5′-cyclic
adenosine monophosphate (cAMP) levels increased, CNGC6 was activated by cytosolic cAMP,
and exogenous cAMP promoted the expression of HSP genes. Such findings have led some to
hypothesize that proteins with adenyl cyclase activity, rather than Ca2+ channels themselves, may
act as membrane-associated temperature sensors (127) (Figure 4). Recently, an adenylyl cyclase
[RPP13-like 3 (RPP13-LK3)] that is required for heat-induced cAMP synthesis and induction of
HSP expression in maize has been identified (145).

In mammals, heat perception is mediated by both the TRP cationic channel family and the
TWIK-RELATEDPOTASSIUM (TREK) channel family present in neurons,with elevated tem-
peratures leading to depolarization and increased action potential firing of corresponding neurons
(131, 132).While plants lack TRP homologs, the same criteria used to describe temperature sen-
sors in animal cells have been used to identify CHILLING TOLERANCE DIVERGENCE 1
(COLD1), a plasma membrane– and endoplasmic reticulum–located protein in rice (92). Upon
chilling, COLD1 activates the guanosine triphosphatase (GTPase) activity of rice G protein α

subunit 1 (RGA1), which triggers an influx of calcium into the cytosol and enhanced cold tol-
erance (92) (Figure 2). It will be interesting to see if COLD1 is confirmed as a temperature
sensor.

Many receptor-like protein kinases (RLKs), including two-component histidine kinases and
G protein–associated kinases, have also been shown to play roles in temperature sensing at the
plasma membrane. For example, it was discovered over a decade ago that a subset of A-type
Arabidopsis response regulators (ARRs) involved in a multistep two-component signaling system
involved in cytokinin signaling are significantly upregulated at low temperatures (63). As cold-
inducible expression of A-type ARR genes is significantly reduced in Arabidopsis histidine kinase
(AHK) mutants, AHK2 and AHK3 were postulated to be involved in mediating cold expres-
sion of A-type ARR genes independently of endogenous cytokinin levels (63). Additionally, the
Arabidopsis calcium/calmodulin-regulated receptor-like kinase CRLK1 is also upregulated at low
temperatures (146) (Figure 2). Genetic studies showed that CRLK1 positively regulates plant re-
sponses to chilling and freezing stress and interacts with MEKK1, a member of the MAP kinase
kinase kinase family (146). Recently, TARGETOFTEMPERATURE 3 (TOT3), a MITOGEN-
ACTIVATED PROTEIN KINASE KINASE KINASE KINASE (MAP4K), has been shown to
localize to the plasma membrane and control warm temperature–responsive growth in plants
(135) (Figure 3). TOT3 was found to be a regulator of the thermomorphogenic pathway that
impinges on brassinosteroid signaling in Arabidopsis; however, TOT3 also plays a central role in
the thermal response in wheat (135). Furthermore, another plasma membrane–localized protein
kinase, COLD-RESPONSIVE PROTEIN KINASE 1 (CRPK1), has been shown to phospho-
rylate 14-3-3 proteins that cause their nuclear localization to downregulate CBF transcription
factors (91).

Several lines of evidence therefore support a role of the plasma membrane in signaling in re-
sponse to changing temperatures. Definitive proof of temperature sensing at a molecular level for
these systems is challenging and typically requires structural information (26). Additionally, mem-
brane fluidity is carefully adjusted under fluctuating temperature conditions tomaintain a constant
viscosity via the expression of genes encoding lipid desaturases (93), suggesting that membrane
fluidity cannot convey absolute temperature information but only relative changes in tempera-
ture. Interestingly, perturbing biosynthesis of the phospholipid phosphatidylglycerol at cellular
membranes of phloem companion cells has recently been shown to have direct consequences on
temperature-responsive pathways, such as flowering (124). Therefore, determining if thermosen-
sory behavior mediated by plasma membrane fluidity can be demonstrated mechanistically will be
significant.
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3.2. The Distributed Model

A plausible explanation for the reduced growth of plants at lower temperatures is that chemical
reactions and metabolism are slower in the cold, leading directly to reduced growth rates. The
discovery of multiple genotypes, however, where growth remains fast even at low temperature,
for example, della loss-of-function mutants (80) as well as the phyABCDE mutant, which shows
considerable elongation growth even at 12°C (68), indicates that plants control their growth rates
to adapt to local temperature conditions. While extremes of temperature will always limit viabil-
ity, it is clear that plants operate considerable control over growth and development within the
ambient temperature range, presumably reflecting a means to anticipate and be primed for future
conditions. Carbon balance within the plant is highly complex, reflecting a coordination between
photosynthesis, sink–source partitioning, and growth, and it is also highly influenced by temper-
ature (116), leading to the proposal that carbon balance may transmit temperature status in the
plant. For example, modulating photosynthesis through changing light levels enhances the effects
of high temperature under certain conditions, leading Vasseur et al. (130) to propose that carbon
balance may be a temperature sensor. A final example of distributed temperature sensing is in the
vernalization pathway, in which the perception of prolonged low temperatures may be mediated
by growth rate. The model proposes that while cell division and growth slow down considerably
at low temperatures, protein production rates remain high, leading to the accumulation of the
regulatorNTL8,which promotes expression of the vernalization geneVIN3 (150) (Figure 1).De-
termining how widespread such distributed mechanisms are, and the extent to which they control
temperature responses compared to discrete thermosensory molecules, will be interesting.

3.3. The Integrated Model

While no evidence has been found for a master sensor conveying temperature information tomul-
tiple pathways, the discovery of several thermosensing mechanisms suggests that pathways have
acquired thermal responsiveness via particular nodes (often at the level of genes, transcripts, or
proteins) becoming temperature dependent.As temperature is a physical parameter that influences
cellular structures through simple thermodynamic effects (60), such a decentralized temperature-
sensing system provides an opportunity to recruit multiple components to provide temperature
information, which may enable rapid adaptation of new temperature traits as well as network ro-
bustness. Such a network architecture in Escherichia coli, where multiple thermosensory steps are
coupled with feedback, enables robust responses to temperature (37). The ability to sense tem-
perature in various cellular compartments (71) and across different temporal scales would lead to
enhanced flexibility of stress-signaling pathways and also the ability to fine-tune temperature re-
sponses to achieve temperature resilience in energetically favorable ways. In the following section,
we explore the main thermosensors and hypothesize how these mechanisms may potentially work
together to achieve enhanced temperature tolerance in a changing environment.

3.3.1. Phytochromes. Crosstalk between light and temperature signaling is fundamental to
plant growth and development (44). When activated by red light, phytochromes bind and
promote the inactivation of the basic helix-loop-helix (bHLH) transcription factors known as
PHYTOCHROME-INTERACTING FACTORS (PIFs). Conversely, in the presence of far-red
light or elevated ambient temperatures, phytochrome function is reduced,which leads to the accu-
mulation of active PIFs and the promotion of hypocotyl elongation through enhanced expression
of auxin biosynthesis genes such as YUCCA8 (YUC8) (68, 77, 85).Hypocotyl elongation is primar-
ily driven by PIF4, PIF7, and, to some extent, PIF5 (29, 43, 77) and results in an open architecture
that enhances leaf cooling (32).
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Phytochrome B (phyB) is the main photoreceptor controlling the growth of Arabidopsis
seedlings exposed to different shade conditions (22). Like other phytochromes, phyB is a ho-
modimeric chromoprotein, with each subunit harboring a covalently bound phytochromobilin
chromophore (85). The two stable, interconvertible forms of phyB are a red-light-absorbing bi-
ologically inactive Pr state and a far-red-light-absorbing biologically active Pfr state (18, 109)
(Figure 3). While the Pr state arises upon assembly with bilin, formation of the active Pfr state
requires red light, and levels are strongly influenced by the red:far-red ratio (85). In addition, phyB
Pfr can spontaneously revert back to Pr in a light-independent process known as thermal rever-
sion (112). Thermal reversion of phyB in the dark or low light is highly temperature dependent,
occurring faster at 27°C than at lower ambient temperatures (68, 85). In this way, repression of
elongation growth is rapidly released during nighttime at warm temperatures. The biophysical
basis of the temperature dependence of thermal reversion is not known.

In recent years, strong connections between phyB and the PIF4-auxin pathway have been es-
tablished. While thermal reversion was thought to occur most predominantly in the dark, recent
work has shown that phyB also senses temperature in the light. In a study by Chen and colleagues
(108), daytime temperature sensing of phyB required the participation of the transcriptional ac-
tivator HEMERA (HMR), which was found to interact with PIF4 to induce the expression of
PIF4 target genes and was necessary for the accumulation of PIF4 at elevated ambient tempera-
tures. Similarly, four SUPPRESSOR OF PHYA-105 (SPA) genes have been shown to act as positive
regulators of thermomorphogenesis by controlling the phyB-PIF4 module (84). Although SPAs
were necessary for stabilizing PIF4 in vitro and in vivo, SPAs promote destabilization of phyB at
elevated temperatures (84). As PIFs have been shown to induce degradation of phyB at elevated
ambient temperatures (86, 98), Lee et al. (84) propose that increased levels of PIF4 may support
phyB degradation to fine-tune thermomorphogenesis. As phyB has the ability to undergo phase
separation via a self-associating C terminus and a disordered N-terminal extension (25), deter-
mining if there is a relationship between protein phase change behavior and thermal reversion
will be interesting.

The low temperature response is also influenced by phyB sensing as phytochromes are essen-
tial for the full development of cold acclimation in Arabidopsis (73, 122). Low red:far-red light ratio
derepresses circadian-gated CBF transcription and increases the expression of COR genes at 16°C
(45), suggesting a negative role of phyB in modulating CBF expression and the cold acclimation
response. Yang and colleagues (64) showed that CBF transcription factors interact with PIF3 dur-
ing cold stress to attenuate codegradation of PIF3-phyB.Cold-stabilized phyB acts downstream of
CBFs to positively regulate freezing tolerance bymodulating the expression of stress- and growth-
related genes, including PIF1, PIF4, and PIF5 (64). Therefore, the CBF-PIF3-phyB module may
serve as a molecular hub to integrate cold- and phytochrome-mediated light-signaling networks
to allow plants to adapt to low temperature stress (64).

3.3.2 Phase separation. The role of biomolecular condensates in forming membraneless com-
partments within cells is emerging as an important organizing and signaling concept (38). While
plant cells possess a plethora of biomolecular condensates ranging from those with general de-
scriptors such as cellular bodies, aggregates, and puncta to those of specific compartments such
as the nucleolus, Cajal bodies, and stress granules, evidence suggests that many condensates form
through a process termed liquid–liquid phase separation (38), in which a solute (e.g., a protein
or nucleic acid) that is homogeneously distributed within a solution demixes into two (or more)
distinct phases that stably coexist with one another (38). As phase separation is dependent on a
number of parameters, including pH, concentration of the solute, and temperature (38), the forma-
tion of biomolecular condensates serves as an attractive mechanism to regulate cellular processes
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in response to abiotic stresses, including temperature. Indeed, work from the Wigge group (67)
has shown that EARLY FLOWERING 3 (ELF3), a component of the evening complex (EC) of
the evening loop of the plant central oscillator, reversibly forms liquid droplets in response to in-
creasing ambient temperatures (Figure 3). This biophysical response is conferred by a prion-like
domain (PrD), which contains a polyglutamine repeat (polyQ) whose length correlates with ther-
mal responsiveness (67). At 17°C, ELF3–green fluorescent protein (GFP) localizes to the nucleus
with a diffuse signal. At elevated temperatures (27°C and 37°C), ELF3 condenses into multiple
bright speckles—a behavior that is specific to the PrD (67). Interestingly, increasing the polyQ
length also resulted in a greater tendency to form speckles (67). ELF3 is considered to be a ther-
mosensor, as high ambient temperatures lead to condensation of the ELF3 protein, temporarily
inactivating the EC and allowing increased transcription of downstream targets, such as PIF4.

Similarly, it has recently been shown by Dean and colleagues (153) that during vernalization,
plants are able to sense temperature change through the formation of FRI/FRL1 nuclear con-
densates that do not colocalize with an active FLC locus (Figure 1). In its condensed state, FRI
is unable to activate FLC, leading to derepression of flowering after prolonged cold. This process
is reversible during warm temperature spikes, which buffers FLC shutdown to prevent premature
flowering (153). Interestingly, cold accumulation of FRI is influenced by specific cotranscriptional
regulators and cold induction of a specific isoform of the antisense RNA, COOLAIR (153). The
dynamic portioning of a transcriptional activator in response to natural temperature fluctuations is
an intriguingmechanism to quickly remove a regulatory protein from its target, while maintaining
the possibility to reinstate it when conditions become favorable again.

3.3.3 Nuclear localization. One of the earliest light responses, by either activation or deacti-
vation of phyB, is the change in its subcellular localization (40). During dark-to-light transitions,
photoactivated phyB translocates from the cytoplasm to the nucleus and initially localizes to many
small foci (76, 143). After several hours, larger foci form, hereafter referred to as photobodies (PBs)
(10, 76, 143). By contrast, during light-to-dark transitions, inactivation of phyB by thermal rever-
sion triggers its disassembly from PBs back to small foci within the nucleoplasm (128). In a recent
study byChen and associates (54), investigation of phyB dynamics in relation to changing tempera-
tures revealed that increasing ambient temperatures from 12°C to 27°C progressively reduced the
number of PBs within Arabidopsis hypocotyl and cotyledon cells by stimulating phyB disassembly
from selective thermo-unstable PBs. While PB formation is mediated by the C-terminal mod-
ule of the phyB protein, it was found that the thermostability of PBs depends on the N-terminal
photosensory module of phyB (54). Distinct PB forms were observed that either associated with
nucleoli or occurred independently. The specific function of both nucleolar and nonnucleolar PBs
has yet to be further elucidated; however, nonnucleolar PBs were shown to be the most thermore-
sponsive (54). These findings, in conjunction with a growing interest in phase separation, present
a model whereby multiple temperature-sensing mechanisms may be used to distinguish between
different environmental factors such as light and temperature and so fine-tune their ability to
respond to a changing environment.

A regulator of phyB thermal reversion is PHOTOPERIODIC CONTROL OF
HYPOCOTYL 1 (PCH1) (97). PCH1 acts to stabilize phyB PBs in their active Pfr state.
Surprisingly, warm temperatures reduce PCH1 gene expression and protein stability, suggesting
that PCH1 may act to enhance the effect of thermal reversion on phyB (97). However, the
effects of temperature on phyB nuclear bodies, and likely also on phyB activity, require PCH1.
Therefore, phyB and PCH1 are both necessary to repress the warm temperature response during
the night under mild temperatures, and elevated temperatures lower the activity of both (97).
Controlling the expression and stability of PCH1 provides a mechanism to alter the thermal
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responsiveness of phyB in a temporal and tissue-specific manner. These observations suggest that
PCH1 may play a role as a modulator of the phyB thermosensor.

Elevated ambient temperatures are also known to trigger the nuclear import of
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a ubiquitin E3 ligase that conveys
warm temperature signals to hypocotyl thermomorphogenesis (105). COP1 is a known master
regulator of photomorphogenesis (82). In the dark, COP1 is transported from the cytoplasm into
the nucleus, with such movement being antagonized by the photoactivation of some photore-
ceptors (133). Nuclear localization of COP1 promotes the degradation of its substrates via the
ubiquitin-proteosome pathway (102), including the bZIP transcription factor, ELONGATED
HYPOCOTYL 5 (HY5) (5). Also, Arabidopsismutants impaired in skotomorphogenesis (the abil-
ity of a seedling to develop in the dark) do not exhibit hypocotyl elongation under elevated ambient
temperatures (34), suggesting that the COP1-HY5 module may be involved in plant adaptation
to heat. Park et al. (105) show that at 28°C, COP1 localizes to the nucleus, which leads to en-
hanced degradation of the thermomorphogenic repressor HY5 and alleviation of the suppression
of hypocotyl growth. Nucleocytoplasmic trafficking of COP1 is also affected by various environ-
mental stress conditions; for example, dark-grown seedlings subjected to heat shock have reduced
nuclear COP1 (69). Furthermore, cold stress inhibits nuclear import of COP1 in the dark and is
associated with enhanced freezing tolerance (24).

3.3.4. Chromatin structure. Many temperature-responsive genes are bound by nucleosomes
containing the histone variant H2A.Z (H2A.Z nucleosomes) at the +1 position as well as within
the gene body (30). In a genetic screen for perturbation ofHSP70 expression,mutations inACTIN-
RELATEDPROTEIN 6 (ARP6), a component of the SWI2/SNF2-RELATED 1 (SWR1) complex
necessary forH2A.Z deposition,were identified. Since arp6mutants confer constitutive expression
of both heat shock and thermomorphogenesis, H2A.Z eviction in response to high temperature
was proposed to be a general property of these nucleosomes, and chromatin state may con-
fer temperature-dependent information (66). Follow-up experiments looking at the induction of
HSPs showed that the induction of these genes and eviction of H2A.Z nucleosomes are depen-
dent on the HSFA1 class of HSFs (31) (Figure 4). Similarly, induction of thermomorphogenesis
genes containing H2A.Z nucleosomes requires the activity of PIFs (139). H2A.Z nucleosome
eviction is an active process, requiring the Snf2 adenosine triphosphate (ATP)-dependent chro-
matin remodeling complex INOSITOL REQUIRING80-EIN6 ENHANCER (INO80-EEN)
(122, 125). Specificity of H2A.Z eviction is provided by the PIFs that achieve H2A.Z removal at
target genes through direct interaction with EEN, the Arabidopsis homolog of the chromatin re-
modeling complex subunit INO80 Subunit 6 (Ies6) (122). H2A.Z removal requires direct DNA
binding of PIFs, as H2A.Z depletion is strongly attenuated in pif4 pif5 pif7 triple mutants (122).
These studies and others are consistent with a major role for H2A.Z nucleosomes as modulators
of environmentally responsive gene expression. Analysis of promoter and enhancer regions have
shown that H2A.Z is involved in stabilizing the +1 nucleosome to repress gene expression by re-
ducing the accessibility of chromatin to transcriptional activators and RNA polymerase (25, 106).
Moreover, work by Xue et al. (142) has also shown that the INO80 chromatin remodeling com-
plex (INO80-C) directly interacts with WDR5a, a core component of the Arabidopsis H3K4me3
deposition complex COMPASS-like as well as the SPT4-2 transcription elongation factor. These
genes play an important role in modulating RNA polymerase II elongation to facilitate efficient
transcription as well as H3K4me3 deposition, an epigenetic mark generally associated with ac-
tive transcription. As Xue et al. (142) similarly found that INO80 and EEN directly associate
with PIF4 and that H3K4me3 levels were higher at PIF4 targets (which are also subsequently
lost in pif4) under warm temperatures, this suggests that the INO80-C is required for warm
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temperature–induced H3K4me3 deposition and transcription elongation at PIF4 targets. In ad-
dition, a range of transcription elongation factor mutants show impaired thermomorphogenesis
phenotypes and have elevated H2A.Z levels similar to ino80 and pif4 mutants. This demonstrates
that transcription elongation is essential for H2A.Z eviction at PIF4 target genes and suggests a
mutual dependence of H2A.Z removal and active transcription during thermomorphogenesis. In
summary, the INO80-C connects the eviction of H2A.Z with deposition of active histone modifi-
cation H3K4me3 and transcription elongation to promote expression of temperature responsive
genes.

Warm temperatures have also been associated with deacetylation of H3K9 at +1 nucleosomes
of PIF4 as well as YUC8, and POWERDRESS (PWR), a SANT domain–containing protein
involved in regulating histone accessibility, is required for this response (125). PWR modifies
acetylation status through its physical interaction with HISTONE DEACETYLASE 9 (HDA9),
which results in histone deacetylation at specific loci across the genome (27, 75). Transcriptomic
analysis of pwr-2 mutants showed that there is a global misregulation of genes at elevated tem-
peratures and significant overlap between these genes and those that are H2A.Z-enriched in their
gene bodies (125), thus indicating a potential link between histone deacetylation and H2A.Z nu-
cleosome dynamics in plants. While the interaction between histone deacetylation and H2A.Z
nucleosome dynamics has been known for some time in yeast (138) and mammalian cells (53,
147), this interaction was only recently investigated in plants. Van Zanten and colleagues (129)
have shown that HDA9-mediated H3K9K14 deacetylation leads to the eviction of H2A.Z nucle-
osomes at the YUC8 locus,which, in turn, increases chromatin accessibility and activation of YUC8
at warm ambient temperatures.While H2A.Z nucleosomes were depleted from the YUC8 locus in
response to high temperatures, this response was abolished in hda9-1mutants, demonstrating that
the deacetylation of such nucleosomes in response to elevated temperatures is an important step
in activating gene expression (129). Furthermore, acetylation changes in hda9-1 seedlings were
apparent at the transcriptional start site and gene body of YUC8 at 27°C, while H2A.Z eviction
was also observed upstream of the gene (129). Based on this observation, HDA9-mediated his-
tone deacetylation is not likely to be directly causal for H2A.Z eviction, but may facilitate it. This
model is supported by work in yeast, where the SWR1 histone replacement complex preferentially
binds to acetylated nucleosomes, and so acetylation may, in turn, enhance the exchange of H2A for
H2A.Z nucleosomes (4, 111). Interestingly, in a study that investigated the temperature respon-
siveness of three histone deacetylases,HDA15 had an opposite role in temperature-regulated gene
expression in comparison to HDA9 and HDA19 (119). Mutant hda15 seedlings displayed signifi-
cantly longer hypocotyls compared to wild-type plants at 27°C than at 22°C, indicating that such
plants were hyperresponsive to warm temperatures. Gene expression analyses of hda15 also re-
vealed upregulation of temperature-dependent genes, including YUC8,HSP20, IAA3, IAA19, and
IAA29 and, at a protein level, HDA15 interacts with LONG HYPOCOTYL IN FAR-RED 1
(HFR1) to downregulate gene expression (119). As HFR1 antagonizes the activity of PIF4 (61),
HDA15 potentially controls thermomorphogenesis by repressing PIF4 activity (119). Moreover,
HDA15 has been shown to interact with PIF3 and PIF5 to repress phyB-dependent seed germi-
nation, chlorophyll biosynthesis, and photosynthetic genes in etiolated seedlings (51, 90). Despite
exhibiting similar warm temperature phenotypes, hda9 and hda19mutants display little overlap in
differentially expressed genes at 27°C, suggesting that related histone deacetylation proteins may
function in different pathways involved in thermomorphogenesis (119).

3.3.5. Transcriptional regulation. The EC is a transcriptional repressor complex that is
a key component of the plant circadian oscillator. The EC contains the transcription factor
LUX-ARRHYTHMO (LUX), the scaffold protein ELF3, and ELF4. In addition to regulating
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oscillations of core clock gene expression, the EC is also involved in temperature and light en-
trainment, thus acting as an important environmental sensor that conveys information to growth
and development pathways (100). For example, PIF4 transcription is repressed by the EC (16).
Within the EC, only LUX has an MYBDNA-binding domain, which binds to the PIF4 promoter
and represses its transcription (16).ELF3was identified by quantitative trait locus (QTL)mapping
ofArabidopsismultiparent advanced-generation intercross (MAGIC) lines as amajor locus control-
ling thermomorphogenesis (16). It was found that the genome-wide DNA-binding activity of the
EC is temperature dependent, with binding at 27°C being greatly reduced (39). Consistent with
these findings, in vitro assays have shown that the EC binds more strongly to DNA at 4°C than
at 27°C (121). The temperature-dependent nature of the EC binding to DNA is controlled by
the thermosensor ELF3 (68). Intriguingly, phyB has been observed to co-occur at multiple sites
where the EC is bound genome wide (39), suggesting that these regulators may integrate different
aspects of environmental information.

3.3.6. Alternative splicing. Temperature affects alternative splicing (AS) in both animals and
plants. In Arabidopsis, approximately 870 genes are alternatively spliced under high tempera-
ture conditions (65); however, how temperature regulates AS remains poorly understood. One
well-documented example of AS under different temperature conditions includes FLOWERING
LOCUS M (FLM) and SHORT VEGETATIVE PHASE (SVP), which are repressors of FT and
are regulated upon changes in ambient temperature. FLM is alternatively spliced, producing two
dominant splice variants: FLM-β and FLM-δ, which are formed by the mutual exclusion of exons.
Exon 2 is maintained in FLM-β, while exon 3 is maintained in FLM-δ (83, 107). Low ambient
temperatures (16°C) favor the expression of the repressive isoform FLM-β, and its expression
decreases with increasing ambient temperatures (27°C) (83, 107). FLM-β forms a complex with
SVP, a MADS-domain transcription factor that actively represses flowering by binding to flow-
ering genes such as FT and SOC1 (107). While it was initially thought that FLM-δ may play an
important role in the control of flowering through direct competition with FLM-β at higher tem-
peratures, follow-up research has revealed a less important role for FLM-δ (66). In addition to
the two dominant splice variants of FLM, additional splice variants are also generated at elevated
ambient temperatures (21, 123).These splice variants have been observed to harbor premature ter-
mination codons (PTCs),which are targeted for degradation by nonsense-mediated decay (NMD)
and, as a consequence, lead to a decrease in the number of transcripts available for translation into
the functional FLM-β isoform at higher temperatures (66). At the same time, SVP is degraded by
the 26S proteasome, which limits the activity of the SVP-FLM-β repressor complex at elevated
temperatures and promotes flowering (123). Furthermore, a comparison of flm loss-of-function
mutants showed that expression of FLM-δ alone is not sufficient to promote flowering at ele-
vated temperatures, while FLM-β alone delays flowering (21). Taken together, these data suggest
that temperature-induced AS regulates the level of FLM-β, which plays a role in flowering time
regulation.

Additionally, regulators of the spliceosome, or the spliceosome itself, may be targeted by
temperature-dependent AS. In mammals, CDC-like kinases (CLKs) are known to directly phos-
phorylate serine/arginine (SR) proteins, which are key components of the spliceosome in human
cells. SR proteins contain one or two RNA-binding domains, as well as a serine-/arginine-rich do-
main, that bind to the exonic splicing enhancer to facilitate recognition of the 5′ splice site by the
U1 small nuclear ribonucleoprotein (U1 snRNP) (19). The phosphorylation status of SR proteins
plays a critical role in splicing (49). Interestingly, mammalian CLKs expressed in vitro display ex-
treme sensitivity to temperature change.Using kinase activity assays, CLK activity decreased 75%
during an increase in temperature from 33°C to 37°C,with a complete loss of activity at 40°C (56).
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Temperature sensitivity of the protein is conferred by the kinase activation domain at the carboxyl
end of the protein, which undergoes subtle conformational changes that are temperature depen-
dent and reversible when proteins are exposed to lower temperatures (56). Furthermore, a CLK
homolog in Arabidopsis, FUS3-COMPLEMENTING GENE 2 (AFC2), has recently been revealed
to participate in temperature-responsive AS control and negatively regulate thermomorphogene-
sis in a PIF4-dependent manner (88). AFC2 directly phosphorylates the SR-rich protein splicing
factor (SF) RSZ21, and activity of the protein decreases with increasing ambient temperature (88).
In addition to regulatory factors involved in AS, the splicing machinery itself is also affected by
both low- and high-ambient-temperature-induced AS. In a study by Nimmo and colleagues (62),
RNA-binding splicing factors including POLYPYRIMIDINETRACT BINDING PROTEIN 1
(PTB1) andU2AF65A undergo cold-induced AS isoform switching, such that the balance between
functional and nonfunctional transcripts is temperature dependent.Mutant studies suggested that
PTB1-U2AF65A-SUA (SUPPRESSOR PG ABI3-5; the Arabidopsis homolog of RNA binding
motif protein 5) represents part of a network involved in the perception and transduction of pre-
vailing temperature fluctuations to the plant central oscillator via splicing of the 5′ UTR region
of LATE ELONGATED HYPOCOTYL (LHY) (62). It appears that splicing of the 5′ UTR of LHY
has characteristics of a molecular thermostat, as the ratio of transcript isoforms is sensitive to
temperature changes as modest as 2°C and is scalable over a wide dynamic range of temperature.
Moreover, the putative splice regulator PORCUPINE (PCP) was identified in a strand-specific
RNA sequencing assay conducted in Col-0 seedlings grown at 16°C, 23°C, and 27°C (20). PCP
is downregulated in response to elevated ambient temperatures, and its temperature-dependent
expression could be confirmed via real-time quantitative polymerase chain reaction (RT-qPCR).
Phenotypic analysis of pcp-1 mutants at 16°C revealed defects at the shoot apical meristem and
failure to develop properly formed lateral organs.When the same plants were grown at 23°C,how-
ever, plants grew similarly to the wild type and only displayed subtle phenotypes at low frequency
(20). Shifting pcp-1 mutants grown initially at 23°C to 16°C leads to an arrest in plant growth
and the production of male sterile flowers, while shifting such plants back to 23°C restored mu-
tants to a status like that of the wild type (20). Lastly, in a recent study that showed that PIF4 and
HOOKLESS1 (HLS1) form a coregulatorymodule that leads to a large number of genes being ei-
ther differentially expressed or alternatively spliced at elevated temperatures, further comparative
analyses observed that HLS1/PIF4 coregulated differentially expressed genes and alternatively
expressed genes and exhibited almost no overlap, suggesting that high temperature triggers two
distinct strategies to control plant thermomorphogenesis (65).

Of the Arabidopsis genes known to undergo AS due to elevated temperatures, approximately
96% contain a histone H3 lysine 36 trimethylation (H3K36me3)-enriched region within their
gene body (103). A lack of histone methyltransferases involved in the deposition of H3K36me3
marks leads to altered AS upon a temperature shift from 16–25°C, and mutants defective in writ-
ing, reading, and erasing H3K36me3 marks show altered elevated temperature-induced flowering
(103).These results demonstrate that epigeneticmarks play a significant role in regulating ambient
temperature–induced AS of biological significance, and further studies are required to investigate
the overlap of these two mechanisms.

3.3.7. Protein translation. RNA secondary structures regulate many processes and are sen-
sitive to environmental change. In prokaryotes, messenger RNA (mRNA) stem-loop structures
have been shown to be thermosensory, facilitating ribosome binding and translation (79). In
a ribosome sequencing (ribo-seq) experiment in Arabidopsis, PIF7 was identified as a transcript
that was more highly translated at 27°C (29). Analysis showed that the PIF7 transcript forms a
hairpin structure within the 5′ UTR, which partially unfolds at elevated ambient temperatures to
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facilitate translation initiation (29) (Figure 3). As this high temperature response was reversible
when plants were placed back at lower temperatures and artificial disruption of the PIF7 hairpin
could not complement the thermoresponse of pif7 mutants, this is consistent with PIF7 being
a functional thermosensor (29). Interestingly, similar hairpin sequences were found in several
other high temperature–responsive genes, including HSFA2 andWRKY22 (29). Though it needs
to be confirmed if these genes similarly form stem-loop structures, it is important to note that
regulation of PIF7 translation is not simply due to the presence or absence of a hairpin. While
mutations that strengthen the hairpin do indeed block translation, mutations that disrupt the
hairpin were also seen to reduce translation rates, indicating that the role of mRNA secondary
structures in the regulation of translation is dynamic and not fully understood.

In E. coli, it has long been established that the rate of translation elongation is proportional
to temperature (41). Now this phenomenon has also been observed in plants. In the work of
Guillaume-Schöpfer et al. (52), it was observed that translation rate in Arabidopsis is indeed pro-
portional to temperature and that a reduction in translation rate due to low temperature stress or
cycloheximide (CHX) treatment is sufficient to rapidly induceCOR genes (Figure 2). Importantly,
the response to CHX was specific to the immediate CBF regulon as later-responding cold genes
such as COR15a were not induced. Furthermore, reduced translation rates also triggered a rise in
intracellular free calcium independent of the canonical calcium spike seen in early onset chilling
(52). This delayed calcium signal activated CALMODULIN-BINDING TRANSCRIPTION
ACTIVATOR (CAMTA) transcription factors that are able to directly activate cold-induced gene
expression (Figure 2). Although further work is required to investigate the contribution of trans-
lation rate to temperature sensing, considering the dual function that key cellular processes such
as translation may play during changing temperature conditions is of interest.

3.3.8. Protein stability. The plant heat stress response is a multifactorial trait that functions to
protect macromolecular structures, restore cellular homeostasis, and prevent damage (59). Cellu-
lar defense mechanisms are activated by monitoring the accumulated damage of DNA, protein,
and membranes (8, 36, 99). One highly conserved response to elevated temperatures is the ac-
tivation of HSPs that act as molecular chaperones to promote the correct folding of proteins
and counteract aggregation of proteins. When HSPs bind to misfolded and aggregated pro-
teins, HSF transcription factors are released and bind to heat shock elements (HSEs) of genes
to activate their transcription under stress (2) (Figure 4). In plants, HSPs also contribute to
the thermomorphogenic response. For example, HSP90 has been shown to stabilize the auxin
receptor TRANSPORT INHIBITOR RESPONSE 1 (TIR1), suggesting an overlap in tem-
perature signaling between the heat stress response and thermomorphogenesis (136). HSP90
has also been recently implicated in the induction of HIGH EXPRESSION OF OSMOTICALLY
RESPONSIVE GENES1 (HOS1) under warm temperatures (57).HOS1 is a protein with E3 ubiq-
uitin ligase activity that also acts as a transcriptional regulator. Stabilization of the protein by
HSP90 enablesHOS1-mediated upregulation ofDNA repair and improved thermotolerance (57).
As HOS1 negatively regulates the transcriptional activity of PIF4, it has also been proposed to
repress thermomorphogenic growth under heat stress (74).

At present, there is only limited information on how protein stability and expression of the plant
chaperone network is influenced by ambient temperature in plants. It has recently been shown that
translation ofHSFA2 is enhanced at elevated temperatures, similar to PIF7 (29). Like PIF7,HSFA2
was also identified as having a hairpin structure within its 3′ UTR and so may similarly undergo
relaxation of the hairpin at warm temperatures to promote HSP expression in response to heat.
Autoregulatory feedback is another possible mechanism that may be responsible for temperature-
induced HSP expression. In yeast, HSF1 associates with the chaperone HSP70 at normal growth
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temperatures (151). Under heat shock, misfolded proteins accumulate and outcompete HSF1 for
binding with HSP70. This triggers the release of HSF1, which in turn promotes the expression of
HSP70.Newly synthesizedHSP70 once again competes for HSF1 binding, and a new equilibrium
is established (151).

While such mechanisms have not yet been demonstrated in plants, new techniques such as
proteome-wide analyses of protein thermostability provide a new perspective on the effects of
temperature on plant metabolism. Protein thermostability describes the effect of increased tem-
perature on protein folding (14). It is now possible, through advances in proteinmass spectrometry,
to determine protein thermostability on a proteomic scale. Termed thermal proteome profiling,
this technique has been successfully used to probe the thermostability of proteins in both E. coli
(94) and human cells (11). How such techniques will be applied to plant proteins and the im-
pact of thermal proteome profiling in discovering new temperature-sensing mechanisms will be
significant to witness.

4. FUTURE CHALLENGES AND OPEN QUESTIONS

Significant progress has been made in the last decade in identifying both thermosensors and the
underlying pathways connecting them to developmental and stress response pathways. These
studies highlight the molecular plasticity of plants and their inherent ability to rapidly sense, in-
tegrate, and respond to temperature information across a wide temporal range. Despite these
advances, many open questions remain.

The extent of temperature sensing at the plasma membrane has been actively proposed for
many decades.While the role and mechanism of action of thermosensory TRP channels in mam-
malian cells have been demonstrated, the extent of temperature sensing at the plasma membrane
in plants is less clear. Therefore, determining whether a clear genetic role can be shown for the
activity of a major temperature response pathway being controlled via plasmamembrane signaling
will be very interesting.

Plants can grow to a large size and have complex root and aboveground tissues that are exposed
to different temperature conditions. This raises the question of how local temperature informa-
tion is sensed and integrated, and whether there are systemic temperature signals within the plant.
Interestingly, it appears that roots sense temperature independently of shoots in Arabidopsis, and
known shoot thermomorphogenesis regulators, phytochromes and ELF3, are not primarily in-
volved in the response (1, 12). In aerial tissues, the heat shock response is particularly strongly
induced in the shoot apical meristem, suggesting that specific cell types have different responses
to temperature (101). A common factor in the enhanced root growth in response to temperature is
auxin. The extent to which temperature signals across the plant are integrated and whether there
are systemic temperature signals remain open questions.

In addition to the spatial scale, plants are exposed to differences in temperature from seconds
to months to years. On shorter timescales, observing the molecular changes at the level of cellular
behavior, such as phase change and phytochrome thermal reversion, which occur at a comparable
time span, is often possible. Longer timescale responses require more stable examples of cellular
acclimation ormemory.One of the best examples of this is the vernalization response inArabidopsis,
where silencing of the floral repressor FLC by repressive histone marks plays an important long-
term effect in remembering winter. On a shorter timescale, plants display priming responses to
both heat and cold stress, which can often remain for several days (7).

The earth is currently undergoing an unprecedented period of global heating, which is also
increasing the frequency of extreme weather events. Since many staple crops are particularly vul-
nerable to temperature stress, this is concerning, with historical data indicating that crop yields
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decline significantly for every 1°C increase in temperature (149). However, as plants demonstrate
remarkable plasticity and have the ability to thrive across a wide range of temperatures, consid-
erable genetic variation exists to enable adaptation of crops to future climates. A major challenge
will be advancing our understanding of the mechanisms of temperature perception and adaptation
to different climates with sufficient depth so that we can engineer these responses into crop plants
to enhance their thermal resilience. Such an endeavor will require considerable advances in our
understanding of all the thermosensory mechanisms in plants.While the mechanisms underlying
thermomorphogenesis are becoming more clearly understood, major questions still surround the
activation of heat and cold stress responses and how this is modulated at different temperatures.
A detailed molecular understanding of thermosensory mechanisms and how they act, particularly
to temperature extremes, will represent a key resource for breeding climate-resilient crops.

SUMMARY POINTS

1. Temperature is a significant environmental factor that affects all aspects of plant
metabolism, development, and growth.

2. As temperature is molecular motion and can influence all components of the cell,
identification of plant thermosensors remains challenging.

3. Different models have been proposed to determine how temperature information is
sensed and integrated into downstream responses, including a master temperature
sensor, the distributed model, and the integrated model.

4. While researchers have yet to identify a master sensor that is able to convey temperature
information to multiple pathways, recent findings indicate that plants integrate the tem-
perature response of a broad range of cellular processes, including lipidmetabolism, light
signaling, phase separation of proteins, cellular localization, altered chromatin struc-
ture, transcriptional and translational regulation, alternative splicing, protein stability,
and growth.

FUTURE ISSUES

1. What is the extent of temperature sensing at the plasma membrane and membranes in
general?

2. How widespread are distributed thermosensing mechanisms, and to what extent do they
control temperature responses in comparison to discrete thermosensory molecules?

3. How is local temperature information sensed and integrated? Are there systemic
temperature signals generated by plants?

4. How do temperature perception mechanisms differ at various timescales, and how is
temperature information integrated over time?

5. Can temperature-sensing processes be manipulated to produce climate-resilient crops?
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