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Abstract

The search for the curl component (B mode) in the cosmic microwave back-
ground (CMB) polarization induced by inflationary gravitational waves is de-
scribed. The canonical single-field slow-roll model of inflation is presented,
and we explain the quantum production of primordial density perturbations
and gravitational waves. It is shown how these gravitational waves then give
rise to polarization in the CMB. We then describe the geometric decompo-
sition of the CMB polarization pattern into a curl-free component (E mode)
and curl component (B mode) and show explicitly that gravitational waves in-
duce B modes. We discuss the B modes induced by gravitational lensing and
by Galactic foregrounds and show how both are distinguished from those
induced by inflationary gravitational waves. Issues involved in the experi-
mental pursuit of these B modes are described, and we summarize some of
the strategies being pursued. We close with a brief discussion of some other
avenues toward detecting/characterizing the inflationary gravitational-wave
background.
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1. INTRODUCTION

The daily vistas encountered by the inhabitants of Earth feature seashores, mountains, cliffs, ice,
fire, raging storms, and a sky that meets the ground through a horizon that may be jagged or
straight. Our astronomical vista is similarly complex, with a startling display of stars, binary stars,
compact objects, intergalactic gases and dust, an array of galaxies, and clusters of galaxies, no two
of which look precisely alike. Our cosmic vista, however, is far simpler. When we look to the
greatest observable cosmic distances, the Universe is virtually the same everywhere, with only
tiny departures from homogeneity. It turns out that these subtle inhomogeneities, which through
heroic experimental efforts have now been mapped with formidable precision, exhibit nontrivial
but still surprisingly simple patterns. According to the standard cosmological model, these are
seeded by primordial quantum perturbations that are imprinted onto the early Universe by a
process of rapid exponential expansion known as inflation.

The era of precision cosmology was ushered in during the past decade by ever more accu-
rate measurements of the distribution of mass in the Universe on cosmic distance scales using
galaxy surveys (Amendola et al. 2013, Dawson et al. 2013) and through measurements of temper-
ature fluctuations and polarization in the cosmic microwave background (CMB) (Bennett et al.
2013, Adam et al. 2015a). Together, these measurements indicate that the early Universe was
homogeneous to better than one part in 10,000. They indicate that departures from homogeneity
are adiabatic—i.e., they preserve the ratios of the different components of matter (baryons, dark
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matter, radiation, and neutrinos) in the Universe. As discussed below, the primordial inhomo-
geneities (which hereafter we refer to as density perturbations) are well described by an impres-
sively simple structure, a nearly scale-invariant spectrum with a Gaussian distribution of Fourier
amplitudes.

The goal of early-Universe cosmology is to quantify the observed features of the Universe and
to develop a physical model to account for them. Up until several decades ago, the number of
such models was huge, and they made a large array of predictions for the nature of primordial
perturbations: for the Fourier-space spectrum; for correlations between the different Fourier
amplitudes; for spatial structures like cosmic strings, textures, and monopoles; for fluctuations in
the ratios of baryons, dark matter, radiation, and/or neutrinos, etc. Today, the vast majority of
these models are dead, ruled out by the onslaught of precise measurements. The overwhelming
majority of those that survive involve inflation (Brout et al. 1978, Kazanas 1980, Starobinsky
1980, Guth 1981, Sato 1981, Albrecht & Steinhardt 1982, Linde 1982a), a period of accelerated
expansion in the very early Universe (within the first fraction of a nanosecond of the Universe), and
explain primordial perturbations as quantum fluctuations in the spacetime metric during inflation
(Mukhanov & Chibisov 1981, Guth & Pi 1982, Hawking 1982, Linde 1982b, Starobinsky 1982,
Bardeen et al. 1983).

The simplest and canonical model for inflation—namely single-field slow-roll (SFSR)
inflation—made a number of predictions that have been confirmed by a sequence of increasingly
precise experiments over the past two decades. These include the predictions that (a) primordial
perturbations are adiabatic; (b) the spectrum of primordial perturbations should be very nearly
scale invariant, but not precisely scale invariant; (c) the distribution of primordial perturbations
should be very nearly Gaussian; and (d) there should be primordial perturbations that are super-
horizon (i.e., with wavelengths larger than the Hubble radius) at the time of CMB decoupling.
The consistency of these predictions with all current cosmological data suggests that inflation is
an idea that should be taken seriously and studied further.

Still, inflation raises its own set of questions (e.g., what set it in motion?), and the literature is
teeming with detailed implementations. The focus of early-Universe cosmology in the forthcom-
ing years is to further test the notion of inflation and narrow the range of inflationary models and
scenarios. Given that we are talking about physics from 13.8 billion years ago, when the relevant
energy scales were well beyond those at accelerator laboratories, this is an ambitious quest. Be-
cause observable fossils from that time are few and far between, any conceivable empirical avenue
to inflation should be pursued.

In addition to the predictions for primordial density perturbations discussed above, SFSR
inflation also predicts the existence of a stochastic background of gravitational waves (GWs)
(Starobinsky 1979, Rubakov et al. 1982, Fabbri & Pollock 1983, Abbott & Wise 1984) that then
induce a specific gradient-free “B-mode” pattern in the polarization of the CMB (Kamionkowski
et al. 1997a,b; Seljak 1997; Seljak & Zaldarriaga 1997; Zaldarriaga & Seljak 1997). This review
focuses on these B modes and their role in addressing the physics of inflation. When first considered
in 1996, the amplitude of these B modes could have been just about anything, in the best-case
scenario easily detectable and in the worst-case scenario way too small to ever be seen. As we shall
discuss, though, recent measurements of the spectral index (Knox 1995; Jungman et al. 1996;
Komatsu et al. 2009; Calabrese et al. 2013; Ade et al. 2014a, 2015c) suggest, within the context
of SFSR inflation, that the B-mode signal may be strong enough to be detectable by experiments
planned for the next 5–10 years, making this a particularly exciting time.

Below we begin by reviewing the basics of inflation, starting with the homogeneous cosmic
evolution during inflation and then discussing the generation of density perturbations and GWs.
We discuss how GWs produce polarization in the CMB and then describe the decomposition of the
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polarization pattern into two distinct geometric components: a curl-free (E mode) part and a curl
(B mode) part. We do so first within the context of a flat-sky approximation before moving to the
full-sky formalism. Next, we show explicitly that GWs give rise to B modes, whereas primordial
density perturbations do not (at linear order in the perturbation amplitude). We then discuss
the B modes induced by lensing of the CMB by density inhomogeneities along the line of sight
(Zaldarriaga & Seljak 1998) and also how these lensing-induced B modes can be distinguished
from primordial B modes (Kesden et al. 2002, Knox & Song 2002). The remainder of the article
discusses the detectability of the signal, strategies for detection, and issues involved in separating
a cosmic signal from that due to Galactic foregrounds. We close with a brief discussion of some
other avenues toward detection and characterization of the inflationary gravitational wave (IGW)
background.

Before proceeding with our review, we provide an incomplete list of reviews of related subjects.
An early review (Brandenberger 1985) and much of the formalism for cosmological perturbations
were elaborated by Kodama & Sasaki (1984), Mukhanov et al. (1992), and Bertschinger (1993)
and then updated by Malik & Wands (2009). Olive (1990) reviewed inflation models around 1990,
followed by Lyth & Riotto (1999). Lidsey et al. (1997) reviewed SFSR inflation, and then several
more recent articles review models for inflation beyond SFSR. These include a review of curvaton
models (Mazumdar & Rocher 2011), one about models with gauge fields (Maleknejad et al. 2013),
and others of models that embed inflation in string theory (Baumann & McAllister 2009, 2015;
Westphal 2015). Martin et al. (2014) classifies a broad range of inflationary models. Bartolo et al.
(2004) discusses non-Gaussianity and inflation. The recent Planck Satellite (Planck) inflation papers
(Ade et al. 2014c, 2015d) also provide very nice up-to-date discussions of inflation. Kamionkowski
& Kosowsky (1999) reviewed connections between particle physics and the CMB; Hu & Dodelson
(2002) reviewed the theory of CMB fluctuations; and Lewis & Challinor (2006) discussed lensing
of the CMB. Hu & White (1997a) provided a short but elegant early review of CMB polarization,
and this review builds and expands upon an earlier review (Cabella & Kamionkowski 2004). The
review by Samtleben et al. (2007) on CMB polarization complements this review in its deeper
coverage of experimental techniques. Finally, Buonanno & Sathyaprakash (2015) provide a recent
review of the direct search for GWs.

2. INFLATION BASICS

Inflation has become such a dominant paradigm that we often forget the original motivations—
the flatness problem (why is the present ratio of the energy density relative to the critical energy
density so close to unity?), the horizon problem (why do causally disconnected regions at the
CMB surface of last scatter have the same temperature?), and the monopole problem (Preskill
1979)—at the time, ∼1980, that the idea began to take shape. The solution to all these problems
was provided by a postulated period of accelerated expansion in the early Universe (Guth 1981).

2.1. Homogeneous Evolution

We begin with a review of the classical properties of the inflationary expansion of the Universe.

2.1.1. Kinematics. An expanding isotropic and homogeneous Universe is described by a
Friedmann-Robertson-Walker (FRW) spacetime, with line element ds2 = −dt2 + a2(t)dx2, in
terms of a scale factor a(t) that parameterizes the physical distance that corresponds to a given
comoving distance. As the Universe expands [i.e., the scale factor a(t) increases with time t], the
Hubble length H −1, where H ≡ ȧ/a is the Hubble or growth rate, increases. During radiation and
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matter domination, (d/dt)(aH)−1 > 0, and so the Hubble distance H −1 increases more rapidly
than the scale factor. As a result, with time, an observer sees larger comoving volumes of the
Universe, and objects and information enter the horizon. This observation leads to the horizon
problem: If the Universe began with a period of radiation domination, then how did the ∼40,000
causally disconnected patches of CMB sky know to have the same temperature (to roughly one
part in 10,000)?

If, however, (d/dt)(aH)−1 < 0, then an observer sees with time a smaller comoving patch
(even though the physical or proper size of the observable patch may still be increasing), and
objects/information/perturbations exit the horizon. In this way, the Universe becomes increasingly
smooth, thus explaining the remarkable large-scale homogeneity of the Universe.

The requirement (d/dt)(aH)−1 = [(Ḣ/H2) + 1]/a < 0, where the dot denotes a derivative
with respect to time, implies that we must have ε ≡ −Ḣ/H2 < 1 for inflation. Most generally,
Ḣ �= 0 (so that inflation can end, if for no other reason). As can be seen, however, theory and
measurement suggest ε � 1, implying that the scale factor grows almost exponentially, a(t) ∝ eHt,
during inflation.

If we assume the validity of general relativity, as we do here (although there is a vast literature
on inflation with alternative gravity theories; e.g., La & Steinhardt 1989, De Felice & Tsujikawa
2011, Clifton et al. 2012), then the time evolution of the scale factor satisfies the Friedmann
equations, H2 = ρ/(3M Pl

2) and Ḣ + H2 = −(ρ + 3p)/(6M Pl
2), where p and ρ are the pressure

and energy density of the cosmic fluid, respectively. We work in particle-physics units, with
� = c = 1, and have written Newton’s constant G = (8π M Pl

2)−1 in terms of the reduced Planck
mass, M Pl = 2.435 × 1018 GeV. These two Friedmann equations imply that

ε = (3/2) (1 + p/ρ) , (1)

from which we infer that the equation-of-state parameter w ≡ p/ρ must be w < −1/3 in order
for inflation to occur.

2.1.2. Scalar-field dynamics. In the simplest paradigm for inflation, and that on which we focus,
this exotic equation of state is provided by the displacement of a scalar field φ, the “inflaton,”
from the minimum of its potential V (φ). The homogeneous time evolution of the scalar field then
satisfies, in an FRW spacetime, the equation of motion, φ̈ + 3Hφ̇ + V ′(φ) = 0, where the prime
denotes a derivative with respect to φ. We thus see that the expansion acts as a friction term. The
scalar field has energy density ρ = (1/2)φ̇2 +V (φ) (a kinetic-energy density and a potential-energy
density) and pressure p = (1/2)φ̇2 − V (φ). If V (φ) is nonzero and sufficiently flat and the friction
term in the φ equation sufficiently large, then the kinetic-energy density will be (1/2)φ̇2 < 2V (φ),
in which case p < −ρ/3 and inflation ensues (see Figure 1).

This condition is made more precise by solving the scalar-field equation of motion along with
the Friedmann equation, H2 = (ȧ/a)2 = [

V (φ) + (1/2)φ̇2
]
/(3m2

Pl). During inflation φ varies
monotonically with time t and can thus be used as the independent variable (rather than t). Let us
suppose that the field and potential are defined so that φ̇ > 0 during inflation. We then differentiate
the Friedmann equation with respect to time, obtaining 2H Ḣ = φ̇

[
V ′(φ) + φ̈

]
/(2m2

Pl). Then
rearranging the scalar-field equation of motion, −3Hφ̇ = φ̈ + V ′(φ), we get Ḣ = φ̇2/(2m2

Pl). We
thus infer that

ε = 3
φ̇2/2

V + φ̇2/2
� M Pl

2

2

(
V ′

V

)2

, (2)

where the last expression is the result of the slow-roll approximation, ε � 1, in which φ̇2/2 � V .
Note that in much of the literature, ε is defined in terms of V and V ′ through this relation, rather
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ϕ ϕ

V(ϕ)V(ϕ)

a b

Figure 1
Inflation postulates that at some point in the early history of the Universe, the cosmic energy density was
dominated by the vacuum energy associated with the displacement of some scalar field φ (the inflaton) from
the minimum of its potential. Shown here for illustration are two toy models for the inflaton potential: Panel
a shows a quadratic potential, and panel b shows a hilltop potential. Adapted from Kamionkowski &
Kosowsky (1999) with permission.

than through ε = −Ḣ/H2, as is done here; this is a distinction whose subtlety is unimportant
in this article, although it can be important for quantitative conclusions given the precision of
current measurements. We also define a second slow-roll parameter,

η = −2
Ḣ
H2

− ε̇

2Hε
� M Pl

2 V ′′

V
, (3)

which becomes important below; the approximation in Equation 3 is valid during slow roll, when
η � 1.

2.1.3. Duration of inflation and evolution of scales. The number of e-folds of inflation between
the end of inflation and a time t during inflation is

N (t) ≡ ln
a(tend)
a(t)

=
∫ tend

t
H dt = − 1

2m2
Pl

∫ φend

φt

H
H′ dφ =

∫ φt

φend

dφ

M Pl

1√
2ε(φ)

. (4)

The largest comoving scales exit the horizon first during inflation, and they are the last to re-enter
the horizon later during matter or radiation domination. To evaluate the number of e-foldings
required to solve the horizon problem, consider a physical wave number kphys. Its ratio to the
Hubble scale today is

kphys

a0 H 0
= ak H k

a0 H 0
= ak

aend

aend

areh

areh

aeq

aeq

a0

H k

H 0
, (5)

where ak and H k are the scale factor and Hubble parameter when this particular wave number exits
the horizon; aend is the scale factor at the end of inflation; aeq is the scale factor at matter-radiation
equality; and areh is the scale factor at the time of reheating. Plugging in numbers, we find that
the number of e-foldings between the end of inflation and the time at which the wave number k
exits the horizon is

N (k) = 62 − ln
kphys

a0 H 0
− ln

1016 GeV

V 1/4
k

+ ln
V 1/4

k

V end
− 1

3
ln

V 1/4
end

ρ
1/4
reh

, (6)

where ρ
1/4
reh is the energy density at reheating. If the energy scale of inflation is near the current upper

limit V 1/4 � 1016 GeV (see below), but higher than the energy scale of electroweak symmetry
breaking (V k � 103 GeV), then the number N of e-folds between the time that the largest
observable scales today exited the horizon and the end of inflation falls in the range of 30 � N �
60. Recent treatments that consider different families of inflationary potentials, including current
constraints to the scalar spectral index ns (see below) as well as plausible reheating scenarios, find
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a range of 40 � N � 60 (Dai et al. 2014, Cook et al. 2015, Muñoz & Kamionkowski 2015). More
conservatively, the near scale invariance of primordial density perturbations over the ∼3 orders
of magnitude over which they have been measured tells us that N � 10 at the very least.

2.2. Density (Scalar Metric) Perturbations

We now discuss the production of primordial density perturbations from quantum fluctuations
in the inflaton. Although this involves a straightforward application of the techniques of quantum
fields in curved spacetime (Birrell & Davies 1984), the precise calculation involves a level of
technical detail beyond the scope of this work. Here, we therefore only outline the calculation
schematically and refer the reader to one of the many good pedagogical references (e.g., Lyth &
Riotto 1999, Liddle & Lyth 2000, Dodelson 2003, Mukhanov 2005, Weinberg 2008, Baumann
& McAllister 2015) for the technical details.

If the scalar field φ or Hubble parameter (which is determined at any point by the scalar-field
value at that point) can vary in time, then they can also vary in space. We thus consider the
perturbations to the spacetime metric induced by spatial fluctuations in the scalar field. Because
the energy density is determined by φ, fluctuations in φ will induce fluctuations in the energy
density that then induce fluctuations in the spacetime metric. Although the most general metric
perturbation has ten components, four are unphysical gauge modes. Of the remaining six, two are
tensor degrees of freedom and two are vector degrees of freedom, none of which can be sourced
by perturbations to the scalar field. It can further be shown (e.g., Mukhanov et al. 1992) that
the remaining two scalar degrees of freedom are reduced to one for scalar-field perturbations. In
the comoving gauge, g0μ = 0, the spatial components of the metric in a scalar-field-dominated
Universe are written, gi j = a2(t)exp [2R(x, t)] δi j , in terms of the “curvature perturbation”R(x, t).
Inserting this metric into the Einstein-Hilbert action, combined with the action for the scalar field,
and expanding to quadratic order in the perturbation R, we get

SR =
∫

dt
∫

d3x a3 [(1/2)v̇2 − (1/2)(∇v)2/a2] , (7)

in terms of a new field variable v2 = 2M Pl
2εR2. Here x is a comoving coordinate, and ∇ is a

gradient with respect to x. We now Fourier transform the spatial part of v to write

SR =
∑

k

∫
dt a3 [(1/2)|v̇k|2 − (1/2)(k/a)2|vk|2

]
, (8)

which we recognize as the sum of actions for an ensemble of uncoupled oscillators, one for each
k, and each with frequency k/a .

This can be seen, if we begin with a Lagrangian, L = (1/2)v̇2 − (1/2)k2v2, by making the
variable substitutions v = √

mx and k2 = ω2 = κ/m. We then obtain the Lagrangian L =
(1/2)mẋ2 − κx2 for a simple harmonic oscillator of displacement x, mass m, spring constant κ ,
and angular frequency ω. We also know that in both the quantum and classical treatments, the
average kinetic and potential energies are equal, and equal to half the total energy. Moreover, in
the quantum-mechanical ground state, these are both found to be �ω/2. It thus follows that the
probability density to find the oscillator with amplitude v is Gaussian, with variance 〈v2〉 = �/(2ω).

Returning to Equation 8, variation of the action for each Fourier mode k results in an equation
of motion,

v̈k + 3Hv̇k + (k/a)2vk = 0, (9)

for the time evolution of each vk. This is the equation of motion for a simple harmonic oscillator
with a time-dependent frequency k/a (the time dependence arises because of the stretching of the
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wavelength of a comoving Fourier mode) and a friction term 3H that arises from the expansion.
Consider the system at some range of times t centered around a time T well before horizon exit
(k/a  H ) with a spread of times |t − T | � H−1. Over this range of times, the cosmic expansion
is negligible, as is the friction, and the classical solution is simply sinusoidal. The amplitude of the
oscillation, in the ground state, is fixed by the requirement 〈v2〉 = 1/[2(k/a)] expected from our
discussion of the quantum simple harmonic oscillator. We thus identify vk(t) = [2Ek]−1/2e−i Ek ,
for k  aH, as the early-time mode function for the ground state of the oscillator, where we have
identified Ek = k/a as the energy and � = 1. The complete solution to Equation 9, with this
normalization at early times, is

vk(t) = H
(2k3)1/2

(
i + k

aH

)
e−ik/aH . (10)

We see that at late times, after horizon crossing (k � aH), the solution approaches |vk|2 →
H2/(2k3). From this, we infer that the inflationary expansion converts subhorizon quantum fluc-
tuations in the curvature to classical superhorizon curvature perturbations. These then become
the density perturbations seen in the CMB and that seed the growth of large-scale structure in
the later Universe. We moreover see that the primordial curvature perturbation is a realization of
a random field in which each Fourier amplitude Rk is selected from a Gaussian distribution with
variance,

〈|Rk|2
〉 = H2/(4M Pl

2εk3). We then define the curvature power spectrum,


2
R(k) ≡ k3

2π2

〈|R|2〉 = 1
8π2

H2

M Pl
2ε

� 1
24π2

V
M Pl

4ε
, (11)

which is the contribution per logarithmic interval in k to the real-space curvature variance〈R2
〉 = ∫ d ln k
2

R(k) (the last term is based on the relation H2 ∝ V , from the Friedmann equation,
which is valid during slow-roll inflation). From current constraints, 
2

R � 2.2 × 10−9 (now mea-
sured to �1% at 2σ ; Ade et al. 2015c), we infer an upper limit V 1/4 ≤ 6.6 × 1016 ε1/4 GeV to the
energy scale of inflation. If we assume ε � 0.1, then this is V 1/4 � 3.7 × 1016 GeV.

The spectral index ns(k) for the matter power spectrum is determined by the logarithmic
derivative of the power spectrum with respect to wave number through

ns(k) − 1 ≡ d ln 
2
R(k)

d ln k
. (12)

The scale factor a varies much more rapidly than H during inflation, and we evaluate the power-
spectrum amplitude at k = aH. Therefore, d ln k = dk/k � da/a = (ȧ/a)dt = Hdt. From this,
and using 
2

R(k) ∝ H2/ε, we infer ns − 1 = 2η − 6ε in terms of the slow-roll parameters ε and η

defined above. A spectrum with ns = 1, the “Peebles-Harrison-Zel’dovich” spectrum (Harrison
1970, Peebles & Yu 1970, Zel’dovich 1970), was postulated well before the advent of inflation
simply because this power-law index keeps the perturbation amplitude small on large scales (to
preserve the large-scale homogeneity of the Universe) and on small scales [to preserve the successes
of Big Bang nucleosynthesis (BBN)]. Inflation then provided a physical mechanism for generating
perturbations with ns � 1. If inflation is at work, though, then some departure from ns = 1 is to be
expected. In SFSR inflationary models, ns − 1 can be either positive (in which case the spectrum
is said to be “blue”) or negative (a “red” spectrum). Planck data now indicate ns = 0.968 ± 0.006,
a �5σ discrepancy with ns = 1 (Ade et al. 2014a, 2015c), confirming earlier indications (Komatsu
et al. 2009, Calabrese et al. 2013). The finding ns �= 1 thus supports the notion of inflation. If
interpreted within the context of slow-roll inflation, it places very important new constraints on
the slope and curvature of the inflaton potential by constraining 6ε − 2η = 0.032 ± 0.006.

Note also that the power-law index is expected to run with scale (Kosowsky &
Turner 1995); i.e., the primordial power spectrum is not a pure power law. In particular,
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HEURISTIC UNDERSTANDING OF INFLATIONARY GRAVITATIONAL WAVES

Here we present in simple heuristic terms the origin of IGWs. Consider first a black hole. As shown in
Figure 2, it has an event horizon, a spherical surface beyond which, according to (classical) general relativity,
objects and information disappear without a trace. Hawking showed, however, that when quantum mechanics is
taken into consideration, the horizon glows—it emits electromagnetic radiation (Hawking 1975). Hawking’s argu-
ment also applies, however, to any radiation field with massless quanta, and so the black hole also radiates GWs. In
an FRW Universe with an accelerated expansion, there is also a horizon, a spherical surface beyond which (according
to general relativity) objects and information disappear. This time, though, the observer sees this spherical surface
from the inside, rather than the outside. Just as was the case with the black hole horizon, this horizon also radiates
GWs, according to quantum mechanics. These GWs are produced throughout inflation, and the expansion rate
and thus horizon temperature are nearly constant during inflation. These GWs thus remain, after inflation, as a
primordial-GW background with a nearly scale-invariant spectrum.

dn/d ln k = −16εη + 24ε2 + ξ 2, where ξ 2 ≡ (m4
Pl/64π2)(V ′V ′′′/V 2). Current constraints are

consistent with the small value for this running, which is expected if ε, η � 0.1 (Ade et al. 2015c).

2.3. Gravitational Waves (Tensor Metric Perturbations)

Maxwell’s equations in the absence of sources result in a wave equation for the electromagnetic
fields. The propagating solutions to these equations are electromagnetic waves, which come with
two different linear polarizations. The quanta of these waves are photons. Likewise, the sourceless
Einstein’s equations for the spacetime metric imply propagating GWs that come in two linear
polarizations, denoted + and ×; the quanta of these GWs are gravitons. (See the sidebar Heuristic
Understanding of Inflationary Gravitational Waves and the illustration in Figure 2.)

GWs are waves in the transverse (∂ i hi j ) and traceless (hi
i ) components of the metric per-

turbation, defined in the FRW Universe in terms of the spatial components of the metric,
by gi j = a2(δi j + 2hi j ). The Einstein-Hilbert action for the metric, expanded to quadratic

Quantum excitation
of massless modes

(photons)

Classical Classical

Horizon

Horizon

a   Black hole

Black hole analogy

b   Inflationary Universe

Quantum excitation
of massless modes

(GWs)

Figure 2
(a) Hawking radiation from a black hole event horizon. (b) Hawking radiation from an event horizon in an accelerating Friedmann-
Robertson-Walker spacetime. The “classical” arrows indicate the direction of information flow according to classical general relativity.
Abbreviation: GW, gravitational wave.
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order in hi j , is

Sh = 1
4

∫
dt
∫

d3x a3 M Pl
2
[

(1/2)
(
ḣi j
)2 − 1

2a2

(
∂khi j

)2]
. (13)

When written in terms of Fourier modes and in terms of the two GW polarizations, of amplitudes
h+ and h×, this becomes

SR =
∑

p=+,×

∑
k

∫
dt a3 [(1/2)|v̇p,k|2 − (1/2)(k/a)2|vp,k|2

]
, (14)

with vp = (M Pl/2)h p . Equation 14 is identical to Equation 8, apart from the sum over polarizations.
In other words, each Fourier mode and polarization state of the GW has an amplitude that behaves
like that of a simple harmonic oscillator. Following the same reasoning that led to Equation 11,
we find a GW power spectrum (after summing over the two polarizations),


2
h(k) ≡ 2

k3

2π2

〈∣∣h p,k
∣∣2〉 = 2

π2

H2

M Pl
2 . (15)

Given that H2 ∝ V during inflation, the GW amplitude is thus determined entirely by the energy
density of the Universe during inflation.

The GW amplitude is often reported as a tensor-to-scalar ratio,

r ≡ 
2
h


2
R

= 16ε � 0.1

[
V

(2 × 1016 GeV)4

]
, (16)

where the measured value of 
2
R was used in the last step. The current bound r � 0.1 (Ade et al.

2015a,d) thus provides a slightly stronger constraint on the energy density than the bound from
measurement of the scalar amplitude.

As with density perturbations, the GW power spectrum is k independent only to the extent
that the Hubble parameter H is constant during inflation. Most generally, the inflaton φ rolls
down the potential V (φ), and so H decreases as inflation proceeds. There is thus a tensor spectral
index,

nt = d ln 
2
h(k)

d ln k
= −2ε. (17)

which is required to be negative in SFSR inflation; i.e., IGWs are said to have a red spectrum.
This arises because the energy density during inflation is monotonically decreasing with time.

2.3.1. How big is r? Given the considerable effort required to seek IGWs, it is important to ask
how big the IGW amplitude r is expected to be. Although there are indeed reasonable models
that allow for almost arbitrarily small r (as we illustrate below), there are a variety of arguments
that suggest a value of r � 10−3, accessible experimentally within the next 5–10 years.

Within the context of SFSR inflation, the value of r is given once a potential V (φ) is speci-
fied. As Equation 16 indicates, the GW amplitude is fixed by the energy density V during inflation
(Starobinsky 1979, Rubakov et al. 1982, Fabbri & Pollock 1983, Abbott & Wise 1984). Originally,
the inflaton was thought to have something to do with a Higgs field associated with grand unifi-
cation. If so, then a value V 1/4 ∼ 1016 GeV (the grand unification energy scale in supersymmetric
theories; Dimopoulos et al. 1981) was to to be expected, leading to a GW amplitude in the ballpark
of r ∼ 0.01–0.1. In the years since then there have been a plethora of ideas that identified the
inflaton with new physics associated with Peccei-Quinn symmetry breaking (Turner & Wilczek
1991), supersymmetry breaking (Kachru et al. 2003), electroweak symmetry breaking (Knox &
Turner 1993), and a number of other ideas for new physics at energy scales well below that of
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A WORKED EXAMPLE: POWER-LAW POTENTIALS

Here we illustrate the evaluation of the inflationary observables—the scalar and tensor power-spectrum amplitudes
and their spectral indexes—for a class of inflationary models described by power-law potentials (Linde 1983). We
thus take the inflaton potential to be V (φ) = (1/2)m4−αφα , where m is a parameter with dimensions of mass or energy,
and α is the power-law index. Using the formulas derived in Section 2, the number of e-foldings of inflation between
the time that the field takes the value φ and the time its value is φend at the end of inflation [when ε(φ) � 1] is N �
(φ2 −φ2

end)/(2αM Pl
2). The slow-roll parameters are then given in terms of N by ε = α/(4N ) and η = (α−1)/(2N ).

We also have the scalar spectral index ns − 1 = −(2 + α)/(2N ) and r = 4α/N . From the value ns � 0.968 from
Planck, we infer, for power-law potentials, N = 62.5 [1 + (α − 2)/4][(1 − ns)/0.032]−1, ε � 0.008 (α/2)[1 +
(α − 2)/4]−1[(ns − 1)/0.032], and r � 0.13(α/2)[1 + (α − 2)/4]−1[(ns − 1)/0.032]. Using φ2

end � α2 M Pl
2/2 [from

ε(φend) � 1], we infer that the energy density at the end of inflation is V (φend) = m4−α(αM Pl/
√

2)α/2. We also
infer that the inflaton must traverse a distance of 
φ � 16 (α/2)1/2[1 + (α − 2)/4]1/2[(1 − ns)/0.032]−1/2 M Pl during
inflation.

CONSTRAINTS
FROM ns:

φ2 inflation:
best-fit r | 3σ bound

0.13 | 0.057

Monodromy φ:
best-fit r | 3σ bound

0.087 | 0.038

Monodromy φ2/3:
best-fit r | 3σ bound

0.065 | 0.028

R2 inflation:
best-fit r | 3σ bound

0.003 | 6 × 10−4

Natural inflation:
3σ bound

0.04

Higgs-like potential:
3σ bound

0.03

grand unification. In these models, r is predicted to be far smaller—e.g., as small as r ∼ 10−52

if the energy scale of inflation is V 1/4 ∼ 1 TeV, as may occur if the inflaton has something to
do with electroweak symmetry breaking. Thus, until recently, the question of whether the GW
signal was strong enough to be detected boiled down, in the minds of many theorists, to whether
inflation had to do with grand unification.

With empirical evidence in the past few years indicating that ns �= 1, the thinking on the
magnitude of r has shifted. The reasoning, which can be presented in several ways, suggests
a value r � 0.001, although the arguments are never fully conclusive. One argument is based
simply upon the relations ns − 1 = 2η − 6ε and r = 16ε. If η ∼ ε, then ns � 0.968 implies
ε ∼ 0.01. In this case a value r ∼ 0.1 is to be expected. If for some reason η � ε, then the 3σ

limit 1 − ns � 0.014 implies r � 0.037.
There are then lower limits to r that can be obtained within the context of any particular

class of inflaton potentials. For example, for the power-law potentials considered above, 1 − ns �
0.014 implies r � 0.057(α/2)[1 + (α − 2)/4]−1. (See the sidebar A Worked Example: Power-
Law Potentials.) For α = 1 and α = 2/3 (two values that arise in axion-monodromy models of
inflation; McAllister et al. 2010, Silverstein & Westphal 2008), the limit evaluates to r � 0.038
and r � 0.028, respectively.

Power-law potentials constitute just one of a number of families of inflaton potentials that is far
too big to review here. We thus instead just provide a few illustrative examples. Natural inflation
(Adams et al. 1993, Freese & Kinney 2015) involves a potential V (φ) ∝ 1 − cos(φ/v), where v is a
parameter. The analytic relations are not as simple as those for power-law relations; still, one finds
r � 0.04 for the 3σ upper limit 1 − ns � 0.05 (Muñoz & Kamionkowski 2015). Inflation with a
Higgs-like potential, V (φ) ∝ (φ2 −v2)2, where v is a parameter (Kaplan & Weiner 2004), requires
r � 0.03 for 1 − ns � 0.05 (Muñoz & Kamionkowski 2015). One can consider a scenario where
ε � η, in which case r could be far smaller than in the hitherto considered example. The unusually
small slope V ′ this scenario requires can be arranged if the inflaton is near a local maximum of V (φ).
Given that V ′ changes as the inflaton rolls away from the maximum, this scenario requires some
tuning, and simple implementations of this idea (for example, in Higgs-like inflation, where the
field begins near a local maximum of the potential) still result in values of r � 0.01. Alternatively,
a low value of r can be generated by inflection-point inflation (Itzhaki & Kovetz 2007), wherein
the inflaton happens to occupy a point in a potential where both V ′ and V ′′ are very small.
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Other small-r potentials arise from inflation models based on alternative gravity. For example,
in Starobinsky’s R2 model (Starobinsky 1980, Mukhanov & Chibisov 1981, Ellis et al. 2013,
Buchmuller et al. 2013), the action for gravity contains a quadratic term in the Ricci scalar R
in addition to the linear term that appears in the usual Einstein-Hilbert action. The resulting
dynamics can be mapped onto those of SFSR inflation with a fairly exotic-looking potential.
This model predicts r = 3(ns − 1)2, which yields r � 0.003 for the Planck central value of
ns � 0.968 and r � 6 × 10−4 for the 3σ limit 1 − ns � 0.014. The same prediction holds for
the Higgs Inflation (Bezrukov & Shaposhnikov 2008) and α-attractor models (Kallosh & Linde
2013, Galante et al. 2015). Several potentials [e.g., a Coleman-Weinberg potential (Coleman &
Weinberg 1973) and others (Kinney & Mahanthappa 1996)] considered prior to the discovery of
ns � 1 to illustrate that r could be virtually arbitrarily small predict, with current constraints to
ns, values of r � 0.01 (W.H. Kinney, private communication). Although this does not rule out
the possibility that r � 0.001 in SFSR, it indicates the increased pressure on low-r SFSR models
provided by the measurement of ns.

The estimates done here (and listed in the sidebar), which have assumed a specific 3σ error
range for ns, actually simplify the actual current constraints to the model parameter space. As
shown in Figure 3, experiments provide joint constraints to the ns-r parameter space (Ade et al.
2015d), and so the constraints to models are generally stronger than what we have assumed
here.
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Figure 3
The current constraints, from the Planck Collaboration (Ade et al. 2015d), of the scalar spectral index ns and tensor-to-scalar ratio r .
Shown are predictions for a variety of slow-roll models. “Concave” and “convex” refer to the sign of the second derivative V ′′ of the
inflaton potential. Abbreviations: lowP, large-scale WMAP polarization; SB SUSY, spontaneously broken supersymmetry.
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2.3.1.1. Large-field versus small-field models. There is an interesting model-independent argu-
ment that suggests a qualitative difference between SFSR models with r � 10−3 and those with
r � 10−3 (Turner 1993, Lyth 1997). This “Lyth bound” follows from Equation 4 and the relation
r � 16 ε. If ε is roughly constant during inflation, then we infer that the distance 
φ traversed by
the inflaton during inflation is


φ

M Pl
�
√

r
8

N �
( r

10−3

)1/2
(

N
10

)
, (18)

where the inequality comes from the fact that there may be many more e-folds of inflation that
precede those required for observations within our horizon. Thus, r � 10−3 requires 
φ > M Pl,
a large-field model of inflation, whereas r � 10−3 allows for 
φ � M Pl (a small-field model).

Although the construction of any workable SFSR potential requires what virtually any particle
theorist would consider fine tuning (in order to sustain slow-roll for the required number of
e-folds), large-field models pose an even greater challenge for model builders. Suppose we Taylor
expand the potential about its minimum (assumed to be V = 0):

V (φ) = 1
2

m2φ2 + φ2
∞∑

p=1

λp

(
φ

M Pl

)p

. (19)

We can always choose the coefficients λp so that ε, η � 1 at some particular value of φ. These
coefficients, though, are expected to receive contributions 
λp (φ) from quantum corrections that
are themselves functions of φ. These corrections are then expected to vary by order unity over
distances 
φ � M Pl. It is thus difficult to see how a generic potential can preserve ε, η � 1
over an inflaton displacement of 
φ � M Pl. This problem is averted if there are symmetries that
set some of these coefficients or the corrections to zero, and a theoretical industry has developed
to construct string-inspired models that preserve ε, η � 1 with large-field excursions (Baumann
& McAllister 2009, 2015). It should also be emphasized that the boundary between small-field
and large-field models is blurry (Itzhaki & Kovetz 2009). Still, an experiment with a detection
sensitivity of r ∼ 10−3 would provide a fairly definitive statement about the validity (or otherwise)
of large-field SFSR models.

2.3.1.2. Beyond-SFSR inflation. As is discussed below, the predictions of SFSR inflation are
in exquisite agreement with a wealth of precise measurements, and there are no experimental
nor observational results that drive us to introduce any new physics beyond that found in SFSR
inflation. Still, SFSR inflation should be viewed as no more than a working or toy model, and a vast
theoretical literature that explores ideas for beyond-SFSR inflation has evolved. In many of these,
the connections between ns and r found in SFSR models are either revised or lost. For example,
in models with modifications to the kinetic term in the inflaton Lagrangian (Armendariz-Picon
et al. 1999, Alishahiha et al. 2004), the GW amplitude can be suppressed by multiplication by the
speed of sound cs for inflation perturbations, and this speed of sound may be very small. Even so,
the remarkable success of the simplest SFSR model, along with current constraints to ns, make a
compelling case, many theorists would agree, for a measurement sensitive to r ∼ 0.001.

In this context, it is worth mentioning that an important property of simple models of
inflation—that a measurement of the amplitude of tensor modes is in one-to-one correspon-
dence with the energy scale of inflation—has been augmented in models involving spectator fields
that are excited from the vacuum during inflation and possibly enhance the tensor fluctuation
spectrum (Barnaby et al. 2012, Cook & Sorbo 2012, Senatore et al. 2014). However, these models
appear to require complex setups (Carney et al. 2012, Kleban et al. 2015) and tend to produce
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tension with constraints on scalar fluctuations and non-Gaussianity (Mirbabayi et al. 2015, Özsoy
et al. 2015).

3. FROM GRAVITATIONAL WAVES TO THE COSMIC
MICROWAVE BACKGROUND

We now show how GWs induce temperature fluctuations and polarization in the CMB. Following
the pioneering work of Polnarev (1986) (see also Cabella & Kamionkowski 2004), we first derive
the angular distribution of photon intensities in the presence of a GW. Suppose that the Universe
is filled with photons that do not scatter. In this case, the photon energies are affected only by the
form of the metric. Consider a single monochromatic plane-wave GW, which appears as a tensor
perturbation to the FRW metric,

ds2 = a2(η)
[
dη2 − dx2(1 + h+) + dy2(1 − h+) + dz2] , (20)

where η is the conformal time and

h+(x, η) � h(η)e ikηe−ikz (21)

describes a plane wave propagating in the ẑ direction. This is a linearly polarized GW with
“+” (rather than “×”) polarization. Here h(η) is the amplitude; at early times when kη � 1,
h(η) � const, but then h(η) redshifts away when kη � 1. If we construct the Einstein tensor Gμν

from the metric, Equation 20, then the vacuum Einstein equation Gμν = 0 leads to the wave
equation for h+(x, t). The “�” symbol is used in Equation 21 because the GWs do not propagate
in a vacuum but rather in a Universe filled with a cosmic fluid. The anisotropic stress of this fluid
(to which the neutrino background contributes after neutrinos decouple) modifies slightly the
time evolution, a calculable ∼10% correction to Equation 21 (Weinberg 2004, Dicus & Repko
2005, Pritchard & Kamionkowski 2005).

Photons that propagate freely through this spacetime experience a frequency shift dν during an
expansion interval dη determined by a geodesic equation, which in this spacetime takes the form

1
ν

dν

dη
= −1

2
(1 − μ2) cos 2φe−ikz d

dη
(heikη), (22)

where μ is the cosine of the angle that the photon trajectory makes with the z axis, and φ is
the azimuthal angle of the photon’s trajectory. This redshifting is polarization independent, but
polarization is then induced by Thomson scattering of this anisotropic radiation field. To account
for the polarization, we must follow the time evolution of four distribution functions (DFs)
fs(x, q; η) (Crittenden 1993, Crittenden et al. 1993, 1995), where q is the photon momentum,
for s = I , Q, U , and V , the four Stokes parameters required to specify the polarization. The
original (unperturbed) DF is f̄ I (q, x; η) = [ehν/kBT (η) − 1]−1, where kB is the Boltzmann constant
and T (η) is the unperturbed CMB temperature at conformal time η, and f̄Q = f̄U = f̄V = 0.
We then define perturbations 
se i k·x = 4δ fs/(∂ f̄ /∂ ln T ), suppressing an index k for notational
economy. Thomson scattering induces no circular polarization, so 
V = 0 at all times. Because
the gravitational redshift and Thomson scattering are frequency independent, the evolution of
the DF is the same for all frequencies. Because the e i k·x spatial dependence of the DFs is separated
out in the definition of 
s, the perturbed DFs are functions 
s(q̂ ; η) only of the direction q̂ of
the photon and the conformal time η. Finally, if we define perturbation variables 
̃s by


I = 
̃I (1 − μ)2 cos 2φ, 
Q = 
̃Q(1 + μ)2 cos 2φ, 
U = 
̃U 2μ sin 2φ, (23)

the new variables 
̃s(μ; η) are now functions only of μ, and there is a relation 
̃Q = −
̃U for
the GW, a consequence of the fact that the orientation of the photon polarization is fixed by the
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direction of the photon with respect to the GW polarization tensor. As a result, the Boltzmann
equations for the DFs reduce to two equations (Crittenden et al. 1993, Ma & Bertschinger 1995,
Kosowsky 1996),

˜̇
I + ikμ
̃T = −ḣ − κ̇
[

̃T − �

]
, ˜̇
Q + ikμ
̃Q = −κ̇ [
P + �] , (24)

where dots denote a derivative with respect to conformal time. Here, the variable

� ≡
[

1
10


̃I0 + 1
7

̃T 2 + 3

70

̃T 4 − 3

5

̃Q0 + 6

7

̃Q2 − 3

70

̃Q4

]
(25)

is given in terms of the Legendre moments 
̃I�(η) = (1/2)
∫ 1

−1 dμ 
̃I (μ; η)P�(μ) (and similarly for

̃Q�), where P�(μ) is a Legendre polynomial. The quantity κ̇δ = (dκ/dη)dη is the contribution to
the Thomson optical depth in the conformal-time interval dη.

Equations 24 and 25 look complicated but describe relatively simple physics. The left-hand
sides of Equation 24 are simply the Lagrangian time derivatives for a Fourier mode of wave number
k. The ḣ in the first equation accounts for the intensity variation (described above) induced by the
gravitational redshift; its absence from the second equation is because the gravitational redshift is
polarization independent. As the presence of the differential Thomson optical depth κ̇ suggests,
the terms on the right-hand sides of Equation 24 involving �, 
̃I , and 
̃P account for Thomson
scattering. They are derived using the dependence dσT /d� ∝ (ε̂i · ε̂ f )2 of the Thomson differential
cross section on the polarization vectors ε̂i and ε̂ f of the initial- and final-state photons. This
dependence also explains why a quadrupolar anisotropy in the incoming radiation is required to
generate the linear polarization signal, as was first realized by Rees (1968).

Still, Equations 24 and 25 constitute a set of coupled partial integro-differential equations. In
practice, they are solved numerically by expanding 
̃I and 
̃Q in terms of their Legendre moments
and thus recasting the equations as an infinite set of coupled Boltzmann equations for 
̃I�(η) and

̃Q�(η) (Crittenden et al. 1993, Kosowsky 1996). They are then solved numerically by integrating
from some early time and truncating the hierarchy at some sufficiently high �.

We return to these equations later, but for now we show in Figure 4b the resulting CMB
temperature-polarization pattern induced by one GW propagating in the ẑ direction (Cald-
well et al. 1999). The quadrupolar variation (i.e., the cos 2φ dependence) of the temperature-
polarization pattern can be seen as one travels along a curve of constant latitude, and the wave-like
pattern can be seen as one moves along a line of constant longitude. It can be seen that as we move
along the line of constant longitude, there are variations in Q, the component of the polarization
perpendicular/parallel to those constant-longitude lines. It can also be seen, however, that there
are variations in U , the component of the polarization at 45◦ with respect to constant-longitude
lines. This, as we discuss below, is a signature of the B mode in the CMB polarization pattern
induced by the GW. This is to be contrasted with the polarization pattern, shown in Figure 4a,
for a single Fourier mode of the density field. In this case, there is no variation along lines of
constant latitude, and there is only variation in Q, and thus no B mode.

Still, inflation predicts not a single GW of given wave vector and polarization but rather a
statistically isotropic stochastic background of GWs. The next step is thus to understand how to
represent the polarization pattern induced by this stochastic background.

4. HARMONIC ANALYSIS FOR COSMIC MICROWAVE
BACKGROUND POLARIZATION

We therefore turn to the mathematical description of the polarization. Stokes parameters Q and
U are coordinate-dependent quantities. Suppose that they are measured with respect to some
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a

b

Figure 4
(a) The cosmic microwave background temperature-polarization pattern induced by one Fourier mode of
the density field (i.e., a scalar metric perturbation). The polarization pattern varies along a direction
parallel/perpendicular to lines of constant longitude that align with the direction of the wave. The induced
polarization pattern is thus a pure E mode. (b) The same for a single gravitational wave (i.e., a single Fourier
mode of the tensor field). We see that in this case, there is variation of the polarization not only
parallel/perpendicular to lines of constant longitude but also along directions 45◦ with respect to these lines.
There is thus a B mode induced.

x-y axes and that we then consider some other x′-y ′ axes rotated by an angle α with respect to
the x-y axes. Under this rotation, the Stokes parameters (Q, U ) transform as components of a
symmetric trace-free (STF) 2 × 2 tensor,

[
Q U
U −Q

]
⇒
[

cos α sin α

− sin α cos α

][
Q U
U −Q

][
cos α − sin α

sin α cos α

]
. (26)
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Alternatively and equivalently, if we represent the polarization by a complex number P = Q + iU ,
then P → Pe2iα under a rotation of the coordinate axes by an angle α; i.e., the polarization is a
spin-2 field.

Anything we say about Stokes parameters Q and U is thus tied to the coordinate system we
choose. We therefore want to find a coordinate-system-independent representation of this tensor
field if we are to make statements about physics that are independent of the coordinate system.
Later, we do this on the full sky, but we first do the simpler case of a flat sky (which also serves as
a good approximation to a small region of the sky).

4.1. Harmonic Analysis on a Flat Sky

Once the polarization, Q(θ ) and U (θ ), has been measured as a function of position θ = (θx, θy ) on
a flat region of sky, we have measured the polarization tensor field,

Pab = 1√
2

[
Q(θ ) U (θ )
U (θ ) −Q(θ )

]
, (27)

where the normalization is chosen so that PabPab = Q2 + U 2, so that the conventions for the
E and B modes defined below agree with those of Seljak & Zaldarriaga (1997) and Zaldarriaga
& Seljak (1997), and so that they are identified with the G and C modes of Kamionkowski et al.
(1997a,b) through aG

(�m) = aE
�m/

√
2 and aC

(�m) = aB
�m/

√
2.

We now define gradient (E modes) and curl (B modes) components of the tensor field that are
independent of the orientation of the x-y axes by

∇2 E = ∂a∂bPab , ∇2 B = εac ∂b∂cPab , (28)

where εab is the antisymmetric tensor.
If we write

Pab (θ ) =
∫

d2�

(2π )2
P̃ab (�)e−i�·θ , P̃ab (�) =

∫
d2θPab (θ )e i�·θ , (29)

the Fourier components of E(θ ) and B(θ ) are[
Ẽ(�)
B̃(�)

]
= 1√

2

[
cos 2ϕ� sin 2ϕ�

− sin 2ϕ� cos 2ϕ�

][
Q̃(�)
Ũ (�)

]
, (30)

where ϕ� is the angle � makes with the x̂ axis. This relation can be inverted,[
Q̃(�)
Ũ (�)

]
=

√
2

[
cos 2ϕ� − sin 2ϕ�

sin 2ϕ� cos 2ϕ�

][
E(�)
B(�)

]
. (31)

Thus, for a pure B mode in the x̂ direction (ϕ� = 0), we have (as shown in Figure 5b) Q̃(�) = 0 and
Ũ (�) = B̃(�). For a pure E mode in the x̂ direction, we have (as shown in Figure 5a) Q̃(�) = Ẽ(�)
and Ũ (�) = 0. Thus, in an E mode, the polarization varies parallel/perpendicular to the direction
of the Fourier mode, whereas for a B mode the polarization varies along directions at 45◦ with
respect to the direction of the Fourier mode.

Because the combined temperature and polarization map is described by three sets, T̃ (�), Ẽ(�),
and B̃(�), of Fourier components, the two-point statistics of the temperature-polarization field are
determined by a total of six power spectra, CX1,X2

� , defined by〈
X̃ 1(�)X̃ 2(�′)

〉 = (2π )2δ(� + �′)CX1X2
� , (32)
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E modea b B mode

→

Figure 5
Shown are the polarization patterns associated with (a) a single E mode and (b) a single B mode with a
horizontal wave vector �. The E mode features a variation of the polarization along directions
parallel/perpendicular to the direction of � (Stokes parameter Q in a coordinate system aligned with �),
whereas in the B mode the variation in the polarization is along directions 45◦ with respect to � (Stokes
parameter U in coordinates aligned with �). (From C. Bischoff, personal communication.)

where X1, X2 = {T, E, B}. Here the angle brackets denote an average over all realizations of the
temperature map.

Now suppose we have a given temperature-polarization map and then consider a parity inver-
sion, e.g., a reflection about the x axis. Then

θy → −θy , Q → Q, U → −U , �x → �x, �y → −�y . (33)

Also,

T̃ (�) → T̃ (�), Ẽ(�) → Ẽ(�), B̃(�) → −B̃(�). (34)

Thus, T and E have the same parity, whereas B has the opposite parity. If the physics that gives
rise to temperature-polarization fluctuations is parity conserving, we then expect CTB

� = CEB
� = 0.

In this case, the statistics of the temperature-polarization map are determined entirely by the four
power spectra, CTT

� , CTE
� , CEE

� , and CBB
� .

4.2. Harmonic Analysis on the Full Sky

If our maps extend beyond a small region of the sky, we then have to deal with the curvature of
the sky. We thus generalize the tensor Fourier analysis that we carried out above for STF 2 × 2
tensors to tensors that live on the 2-sphere. Our discussion follows Kamionkowski et al. (1997a);
a different but equivalent formalism is presented by Zaldarriaga & Seljak (1997). In the usual
spherical polar coordinates (θ, φ), the sphere has a metric, gab = diag(1, sin2 θ ). The polarization
tensor Pab must be symmetric Pab = Pba and trace-free gabPab = 0, from which it follows that

Pab (n̂) = 1√
2

[
Q(n̂) U (n̂) sin θ

U (n̂) sin θ −Q(n̂) sin2 θ

]
, (35)

where the factors of sin θ follow from the fact that the coordinate basis (θ, φ) is orthogonal but
not orthonormal.

We use a colon (:) to denote a covariant derivative on the surface of the sphere (e.g., Sa
:a

denotes the divergence of Sa ) and a comma (,) to denote a partial derivative [e.g., S,a = (∂S/∂xα)].
Appendix A of Kamionkowski et al. (1997a) reviews the rules of differential geometry on the sphere
in the notation we use here.

Any STF 2 × 2 tensor field on the sphere can be written as the gradient, E:ab − 1
2 gab E :c

c , of
some scalar field E(θ, φ), plus the curl, (1/2)

(
B:ac ε

c
b + B:bc ε

c
a

)
, of some other scalar field B(θ, φ).
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For comparison, a vector field is analogously decomposed as Va = ∇a E + εab∇b B. Because any
scalar field on the sphere can be expanded in spherical harmonics (e.g., for the temperature),

T (n̂)
T0

= 1 +
∞∑

�=1

�∑
m=−�

aT
�m Y�m(n̂), where aT

�m = 1
T0

∫
dn̂ T (n̂)Y ∗

�m(n̂), (36)

it follows that the polarization tensor can be expanded in terms of basis functions that are gradients
and curls of spherical harmonics,

Pab (n̂) = T0

∞∑
�=2

�∑
m=−�

[
aE

�mY E
(�m)ab (n̂) + aB

�mY B
(�m)ab (n̂)

]
. (37)

The expansion coefficients are given by

aE
�m = 1

T0

∫
dn̂Pab (n̂)Y E ab ∗

(�m) (n̂), aB
�m = 1

T0

∫
dPab (n̂)Y B ab ∗

(�m) (n̂), (38)

and

Y E
(�m)ab = N �

[
Y(�m):ab − 1

2
gab Y(�m):c

c
]

, Y B
(�m)ab = N �

2

[
Y(�m):ac ε

c
b + Y(�m):bc ε

c
a

]
, (39)

constitute a complete orthonormal set of basis functions for the E and B components of the
polarization. The quantity N � ≡ √2(l − 2)!/(l + 2)! is a normalization factor chosen so that∫

dn̂ Y X ∗
(�m)ab (n̂) Y X′ ab

(l ′m′) (n̂) = δ��′δmm′ , (40)

for XX′ = EE, EB, and BB. Also, we can integrate by parts to write, alternatively,

aE
�m = N �

T0

∫
dn̂ Y ∗

�m(n̂)Pab
:ab (n̂), aB

�m = N �

T0

∫
dn̂ Y ∗

(�m(n̂)Pab
:ac (n̂)εc

b . (41)

Finally, because T , Q, and U are real, we get aX ∗
�m = (−1)maX

�,−m, where X = {T, E, B}. The
temperature-polarization power spectra are now〈

aX ∗
�m aX′

�′m′
〉
= CXX′

� δ��′δmm′ , (42)

for XX′ =TT, EE, BB, TE, TB, and EB. The C� here reduce in the small-angle (large-�) limit
with those in Section 4.1 as long as the angles in the flat-sky limit are given in radians.

The Y E
(�m)ab and Y B

(�m)ab are explicitly given by

Y E
(�m)ab = N �

2

⎡⎣ W�m X �m sin θ

X �m sin θ −W�m sin2 θ

⎤⎦ , Y B
(�m)ab = N �

2

⎡⎣ −X �m W�m sin θ

W�m sin θ X �m sin2 θ

⎤⎦ , (43)

where

W�m(n̂) ± i X �m(n̂) =
√

(l + 2)!
(l − 2)! ±2Y�m(n̂), (44)

in terms of the spin-2 harmonics ±2Y�m used by Seljak & Zaldarriaga (1997), Zaldarriaga & Seljak
(1997), and Hu & White (1997b). If we replace (Q, U ) by (U , −Q), then E → −B and B → E.
This tells us, therefore, that a pure-E polarization pattern becomes a pure-B pattern if we rotate
each polarization vector by 45◦, and vice versa, as can be also inferred from the flat-sky treatment.
Examples of E- and B-type polarization patterns are shown in Figure 6. The parity properties of
T, E, and B found in the flat-sky treatment remain valid on the full sky.
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Figure 6
(a) A polarization pattern composed only of E modes and (b) one composed only of B modes. As indicated on the right, it is seen that
around hot spots (red) the polarization pattern of the E mode is tangential, and around cold spots radial (blue). The polarization pattern
surrounding hot and cold spots of the B mode show a characteristic swirling pattern (with different orientations around hot and cold
spots).

5. E AND B MODES FROM GRAVITATIONAL WAVES

We now return to the polarization pattern induced by a single GW, of + polarization, of wave-
length k propagating in the ẑ direction. The upshot of Section 3 is that this GW induces a
polarization tensor (Kosowsky 1996),

Pab
k,+(θ, φ) = T0

4
√

2

∑
�

(2�+1)P�(cos θ )
̃Q�

[
(1 + cos2 θ ) cos 2φ 2 cot θ sin 2φ

2 cot θ sin 2φ −(1 + cos2 θ ) csc2 θ cos 2φ

]
. (45)

If we expand this in tensor spherical harmonics, the resulting coefficients are (Kamionkowski et al.
1997a, Zaldarriaga & Seljak 1997)

aE k,+
�m =

√
π (2� + 1)

4(δm,2 + δm,−2)−1

[
(� + 2)(� + 1)
̃Q,�−2

(2� − 1)(2� + 1)
+ 6�(� + 1)
̃Q�

(2� + 3)(2� − 1)
+ �(� − 1)
̃Q,�+2

(2� + 3)(2� + 1)

]
, (46)

and

aB k,+
�m = −i

2
√

2

√
2π

(2� + 1)
(δm,2 − δm,−2)

[
(� + 2)
̃Q,�−1 + (� − 1)
̃Q,�+1

]
. (47)
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E AND B MODES FROM DENSITY PERTURBATIONS

The same lines of reasoning that conclude that both E and B modes are induced by GWs demonstrate that density
perturbations do not produce a curl. Consider a single Fourier mode of the density field in the ẑ direction. Then the
Sachs-Wolfe effect induces an intensity variation proportional to (cos2 θ − 1/3). Any electron at the surface of last
scatter now sees a quadrupolar intensity variation that is aligned with the θ̂ direction or the direction perpendicular.
We thus find that for k||ẑ, U (n̂) = 0, so

Pab (θ, φ) =
∑

�

sin2 θ
̃s
Q� P�(cos θ )

[
1 0
0 − csc2 θ

]
, (51)

where 
̃a
Q� are the polarization moments for a density perturbation. One finds from this polarization pattern

aE
�m �= 0, but aB

�m = 0. This happens because Pabεc
b = 0 which follows because Pab is diagonal and independent

of φ. Therefore, a curl component (B mode) in the CMB arises at linear order in perturbation theory only from
primordial GWs.

We have thus shown explicitly that both the E and B components are nonzero for a GW, confirm-
ing the heuristic arguments above. (See the sidebar E and B Modes from Density Perturbations.)

This particular GW (in the ẑ direction with + polarization) contributes

CBB, k,+
� = 1

2l + 1

∑
m

|a B
�m|2 = π

2

(
� + 2

2� + 1

̃Q,�−1 + � − 1

2� + 1

̃Q,�+1

)2

(48)

to the BB power spectrum, and similarly for CEE
� , with the replacement B → E in Equation 48.

Because CBB
� is a rotationally invariant quantity, any GW of this wave number k pointing in any

direction, with either polarization, will contribute similarly to CBB
� . We thus obtain the BB power

spectrum from the stochastic GW background by summing all Fourier modes,
∫

d 3k/(2π )3, and
over both GW polarization states. The final result for CBB

� is thus

CBB
� = 1

2π

∫
k2 dk

[
� + 2

2� + 1

̃Q,�−1(k) + � − 1

2� + 1

̃Q,�−1(k)

]2

, (49)

and analogously for CEE
� . Note that the cross-correlation power spectrum vanishes, CEB

� =∑m=�

m=−�(a
E∗
�maB

�m)/(2�+1) = 0, as it should, because aE
(�m) ∝ (δm,2 + δm,−2) while aB

(�m) ∝ (δm,2 − δm,−2)
for a + polarization GW propagating in the ẑ direction, and similarly for CTB

� (see the sidebar
Chiral Gravitational Waves).

Figure 7 shows results of numerical evaluation of Equation 49 using CAMB, a code to compute
the anisotropies in the CMB (Lewis et al. 2000), with the Planck 2015 cosmological parameters
(Ade et al. 2015c). The recombination peak in the power spectrum [multiplied by �(� + 1)/2π ] at
� ∼ 100 arises from GWs that enter the horizon around the time of CMB decoupling at redshift
z � 1,100. The power drops at smaller � because longer-wavelength modes were superhorizon
at the time of decoupling and thus have a suppressed effect on subhorizon physics. The power
drops at higher � because the amplitudes of shorter-wavelength GWs, which entered the horizon
earlier, have begun redshifting away by the time of CMB decoupling. The reionization bump at
� � 10 (Ng & Ng 1996, Zaldarriaga 1997) arises from rescattering of the CMB by free electrons
that were reionized at redshift z ∼ 8 by ultraviolet radiation from the first stars. The wiggles at
higher � arise from the difference in phases of GWs at different wavelengths at the time of CMB
decoupling (Pritchard & Kamionkowski 2005, Flauger & Weinberg 2007). The overall amplitude
scales with the tensor-to-scalar ratio r .
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CHIRAL GRAVITATIONAL WAVES

As discussed above, TB and EB cross-correlations may arise if the physics that gives rise to CMB temperature-
polarization fluctuations is parity breaking. Chiral GWs—a GW background with an asymmetry between the density
of right- and left-circularly polarized GWs—provide a mechanism to induce such parity-violating correlations (Lue
et al. 1999, Contaldi et al. 2008). Chiral GWs arise if there is a Chern-Simons modification to gravity ( Jackiw & Pi
2003, Alexander & Yunes 2009) during inflation (Lue et al. 1999) or a parity-breaking gravitational action during
inflation (Contaldi et al. 2008), or if inflation involved Horava-Lifshitz gravity (Takahashi & Soda 2009). Chiral
GWs also arise in models of inflation with a background gauge field (Adshead et al. 2013, Maleknejad et al. 2013),
and an analogous mechanism could also work in the late Universe (Bielefeld & Caldwell 2015). The chirality of the
GW background may also be connected to the cosmic baryon asymmetry (Alexander & Martin 2005, Alexander
& Gates 2006, Alexander et al. 2006). Because IGWs induce B modes only at multipole moments of � � 100,
the cosmic-variance limit to the sensitivity of any measurement to the chirality of the IGWs is significant, and
the prospects to detect chiral GWs are reasonable only if the tensor-to-scalar ratio r is relatively large and if the
chirality is significant (Gluscevic & Kamionkowski 2010, Ferté & Grain 2014).
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Figure 7
Polarization power. Spectra are shown for primordial B modes with r = {0.1, 0.01, 0.001} (cyan) and
lensing-induced B modes (magenta). The ±1σ uncertainty due to the current constraint on τ , the optical
depth to reionization, is indicated for the r = 0.1 case by the (cyan) shading (the cyan dotted line is the result
with no reionization). A 90% delensed signal is also shown for comparison (dashed magenta line). Plots were
generated using CAMB (Lewis et al. 2000) with Planck 2015 best-fit parameters. Adapted from Ade et al.
(2015c) with permission. Abbreviation: IGW, inflationary gravitational wave.
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Numerical solution to the hierarchy of coupled integro-differential equations required to evolve
the 
Q�(k) forward in time from the primordial Universe until today is computationally intensive.
They can be formally integrated (Zaldarriaga & Harari 1995) to provide line-of-sight expressions
(Seljak & Zaldarriaga 1996),

CEE
� =

∫
d ln k 
2

h(k)

⎧⎨⎩
η0−ηls∫

0

dxg(η0 − x)�(η0 − x)
[
− j�(x) + j ′′

� (x) + 2 j�(x)
x2

+ 4 j ′
�(x)
x

]⎫⎬⎭
2

,

CBB
� =

∫
d ln k 
2

h(k)

⎧⎨⎩
η0−ηls∫

0

dxg(η0 − x)�(η0 − x)
[

2 j ′
�(x) + 4 j�(x)

x

]⎫⎬⎭
2

, (50)

for the EE and BB power spectra, respectively. Here x is a distance along the line of sight and η0

and ηls are the conformal times for today and at last scatter, respectively. Also, g(η)dη is the fraction
of CMB photons that last scatter between conformal times η and η+dη. The strange combinations
of spherical-Bessel functions can be understood as follows: The transverse-traceless part of the
three-dimensional spatial metric—i.e., the part that describes GWs—can be decomposed into
three-dimensional total angular momentum (TAM) waves (Dai et al. 2012), eigenfunctions of
wave number k of the Laplacian and of total (orbital plus spin) angular momentum quantum
numbers � and m. There are two such sets of TAM waves that can be labeled E and B. The
arrangements of spherical-Bessel functions that appear in Equation 50 are then the coefficients
(Dai et al. 2012, their equation 94) in the projection from the three-dimensional E and B TAM
waves onto the respective two-dimensional polarization tensor spherical harmonics on the surface
of the sky.

6. LENSING-INDUCED B MODES

Above we showed that density perturbations do not induce a curl in the polarization. However,
that derivation assumed only linear perturbations, in which each Fourier mode of the density field
is considered independently. B modes may still arise from the density at higher order.

The largest relevant nonlinear effect in the CMB is weak gravitational lensing (or cosmic shear)
of the primordial CMB temperature-polarization pattern by density perturbations between us and
the CMB surface of last scatter (Zaldarriaga & Seljak 1998, Lewis & Challinor 2006). Lensing
displaces the temperature and polarization from a given direction θ at the surface of last scatter to
an adjacent position θ + δθ :⎡⎢⎣T

Q
U

⎤⎥⎦
obs

(θ ) =

⎡⎢⎣T
Q
U

⎤⎥⎦
ls

(θ + δθ ) �

⎡⎢⎣T
Q
U

⎤⎥⎦
ls

(θ ) + δθ ·∇

⎡⎢⎣T
Q
U

⎤⎥⎦
ls

(θ ), (52)

where δθ = ∇� is the lensing deflection, and � is a projection of the three-dimensional gravita-
tional potential �(x) along the line of sight n̂.

The generation of B modes by lensing is most easily seen in the flat-sky limit. If there is no
B mode at the surface of last scatter, then (cf. Equation 31) Q̃(�) = 2Ẽ(�) cos 2ϕ� and U (�) =
−2E(�) sin 2ϕ�. Thus,

∇Q(θ ) = −2i
∫

d2�

(2π )2
Ẽ(�) cos 2ϕ� � e−i�·θ , (53)
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and similarly for ∇U (θ ) with cos → − sin. The deflection angle is likewise

�̃(θ ) = −i
∫

d2�

(2π )2
�(�) e−i�·θ �. (54)

Thus, the perturbation to Q and U induced by GWs is

δQ(θ ) = (∇Q)·(∇�) =
∫

d2�

(2π )2
e i�·θ (∇Q · ∇�)�, (55)

where

δQ(�) ≡ [(∇Q) · (∇�)]� = 2
∫

d2�1

(2π )2
[�1 · (� − �1)]Ẽ(�1)�̃(� − �1) cos 2ϕ�1 , (56)

δU (�) ≡ [(∇U ) · (∇�)]� = −2
∫

d2�1

(2π )2
[�1 · (� − �1)]Ẽ(�1)�̃(� − �1) sin 2ϕ�1 . (57)

Although the original map had (by assumption) no curl, the lensed map does; from Equation 30,

B(�) = 1
2

[sin 2ϕ� δQ(�) − cos 2ϕ� δU (�)] =
∫

d2l1

(2π )2
[�1 · (� − �1)]E(�1)�(� − �1) sin 2ϕ�1 . (58)

If the power spectrum for the projected potential is C��
� , then the B-mode power spectrum from

lensing is

CBB
� =

∫
d2l1

(2π )2
[�1 · (� − �1)]2 sin2 2ϕ�1 C��

|�−�1|C
EE
�1

. (59)

In Figure 7, we show numerical results for the lensing B-mode power spectrum (Zaldarriaga &
Seljak 1998, Kesden et al. 2002, Knox & Song 2002). Given the extraordinary current precision of
the standard �CDM parameters, the predictions for this B-mode power spectrum are very precise,
especially at the � ∼ 10–100 range where the GW signal peaks. [Neutrino masses (Abazajian et al.
2015b) and/or the effects of nontrivial dark energy may affect lensing-induced B-mode power
(Benson et al. 2014).] These lensing-induced B modes have now been detected in the range of
200 � � � 1,500 by several experiments. Detection through cross-correlation with tracers of
the projected potential (see below) was reported by the South Pole Telescope (SPT) polarization-
sensitive camera (SPTPol; Hanson et al. 2013), POLARBEAR (Ade et al. 2014h), and the Atacama
Cosmology Telescope (ACT) polarization-sensitive receiver (ACTPol; van Engelen et al. 2015),
and then detections in autocorrelation were reported by POLARBEAR (Ade et al. 2014g), the
Background Imaging of Cosmic Extragalactic Polarization 2 and the Keck Array (BICEP2/Keck;
Ade et al. 2014f ), and SPTPol (Keisler et al. 2015).

As is clear from Figure 7, if r is large enough, then the recombination peak in the B-mode
power spectrum will stand out (given sufficiently precise experiments) from the lensing power
spectrum, and even more so the reionization bump. There are, however, prospects to distin-
guish the B modes caused by lensing from those caused by GWs. Measurement of higher-order
temperature-polarization correlations induced by lensing can be used to reconstruct the deflec-
tion angle, δθ (θ ) = ∇�(θ ), as a function of position on the sky (Seljak & Zaldarriaga 1999,
Zaldarriaga & Seljak 1999, Hu & Okamoto 2002, Kesden et al. 2003), and these may then be used
to reduce the lensing-induced curl (Kesden et al. 2002, Knox & Song 2002, Seljak & Hirata 2004).
Heuristically, lensing will stretch the CMB temperature-polarization patterns in some small re-
gion of the sky and thus induce a local departure from statistical isotropy, a preferred direction in
the temperature-polarization correlations over some small patch of sky. Lensing-reconstruction
algorithms then map this local departure from statistical isotropy as a function of position on the
sky.
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We illustrate this by explaining how lensing reconstruction works with a temperature map and
then discuss the generalization to polarization. In the absence of lensing, each Fourier mode T̃ (�)
of the temperature field is statistically independent,

〈
T̃ (�)T̃ (�′)

〉 = 0, for � �= �′. However, if there
is lensing, an observed Fourier mode T̃ (�) has contributions from all pairs of temperature and
projected-potential Fourier modes T̃ (�1) and �̃(�2) that have � = �1 + �2. Thus, with lensing,〈

T̃ (�1)T̃ (�2)
〉 = f (�1, �2)�̃(�) for �1 �= �2, (60)

in the presence of some fixed projected potential �(θ ) with Fourier components �̃(�). Here,
f (�1, �2) = CTT

� (�·�1)+CTT
� (�·�2). Each �1-�2 pair of observed temperature modes, with �1 + �2 =

�, then provides an estimator �̂(�) = T̃ (�1)T̃ (�2)/ f (�1, �2) for �̃(�). The optimal estimator for
the Fourier components of projected potential is then obtained by adding, with inverse-variance
weighting, all the estimators from all �1-�2 pairs with �1 + �2 = � (Hu & Okamoto 2002),

�̂(�) = A(�)
∫

d2�1

(2π )2
T̃ (�1)T̃ (�2)F (�1, �2), (61)

F (�1, �2) ≡ f (�1, �2)
2CTT,t

�1
CTT,t

�2

, A(L) = L2
[∫

d2�1

(2π )2
f (�1, �2)F (�1, �2)

]−1

, (62)

where CTT,t
� is the total observed (signal plus noise) power spectrum. Thus, with these estimators,

the projected potential can be determined as a function of position across the sky from the
measured temperature map. The projected-potential measurement can then be used to “delens”
the observed polarization pattern, i.e., to reconstruct the polarization pattern at the surface of last
scatter from the (lensed) temperature-polarization pattern that is observed (Kesden et al. 2002,
Knox & Song 2002).

Similar estimators that use polarization, as well as temperature, can be constructed analogously
(Hu & Okamoto 2002). There are then in addition to the TT estimator described above, EE,
TE, EB, TB, and BB estimators, with coupling coefficients f (�1, �2) as given in Table 1. The
precision with which �̃(�) can be reconstructed depends on the number of small-scale coherence
patches in the temperature-polarization map that can be used as sources with which the shear
can be reconstructed. Thus, high angular resolution and high sensitivity are required. Because
the polarization power spectrum peaks at � ∼ 1,000, rather than � ∼ 200, there are more small-
scale coherence patches in the polarization than in the temperature. Given that there are (under
the null hypothesis of no GWs) no B modes in the primordial map, there is no cosmic-variance
contribution to the EB lensing estimator, and this turns out to ultimately provide the most power
in lensing reconstruction (Hu & Okamoto 2002). Thus, a high-sensitivity and high-resolution
polarization map is required to optimize lensing reconstruction.

CMB lensing has recently entered the era of detection. The effects of lensing of the Wilkinson
Microwave Anisotropy Probe (WMAP) temperature map were discovered through cross-correlation
with the NVSS [National Radio Astronomy Observatory (NRAO) VLA (Very Large Array) Sky

Table 1 Minimum variance filters for different lensing potential estimatorsa

XX′ fXX′ (�1, �2) XX′ fXX′ (�1, �2)

TT CTT
�1

(� · �1) + CTT
�2

(� · �2) EE [CEE
�1

(� · �1) + CEE
�2

(� · �2)] cos 2ϕ12

TE CTE
�1

(� · �1) cos 2ϕ12 + CTE
�2

(� · �2) EB [CEE
�1

(� · �1) − CBB
�2

(� · �2)] sin 2ϕ12

TB CTE
�1

(� · �1) sin 2ϕ12 BB [CBB
�1

(� · �1) + CBB
�2

(� · �2)] cos 2ϕ12

aWe define ϕ12 ≡ ϕ�1 − ϕ�2 , where ϕ�1 , ϕ�2 are the angles between �1, �2 and the x axis, respectively.
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Survey] radio survey (Smith et al. 2007) and several other tracers of the mass distribution (Hirata
et al. 2008) and then through autocorrelation in ACT (Das et al. 2011) and SPT (van Engelen et al.
2012). An all-sky map of the projected mass density was more recently constructed from lensing
of the Planck maps (Ade et al. 2014b). The effects of lensing on the CMB polarization have now
also been detected—these are the B-mode detections discussed above. The possibility of tracing
the projected potential by using lensing of galaxies (Marian & Bernstein 2007) and 21-cm maps
(Sigurdson & Cooray 2005) has also been considered although the latter is somewhat futuristic.

7. FOREGROUND CONTRIBUTIONS TO B MODES

The largest IGW B-mode signal allowed by current observational limits is O(10) nK, and a sen-
sitivity to a tensor-to-scalar ratio as small as r ∼ 10−3 implies a B-mode signal four orders of
magnitude smaller. Detecting a primordial CMB signal of this amplitude is a daunting task. As
polarization is measured in bolometer experiments by taking the difference between the temper-
ature at two orthogonal, colocated axes (once for Q and then at a 45◦ angle for U ), uncontrolled
variations in temperature along these axes can be mistaken for proper polarization fluctuations.
Unfortunately, spread out between us and the last-scattering surface at z � 1,100, there is a long
line of obtruding foregrounds that hinder our ability to accurately measure temperature differ-
ences at CMB frequencies. Measurements from the ground are obscured by contributions from
man-made electromagnetic interference and atmospheric noise, which contribute at all frequen-
cies. In nearby outer space, zodiacal light (emission from the interplanetary dust cloud) generates
pollution on frequencies �100 GHz. Further out, there are various sources of contamination from
localized objects, including inverse-Compton scattering of CMB photons from hot electrons in
intracluster gas [the Sunyaev-Zel’dovich effect (Sunyaev & Zel’dovich 1972, 1980; Birkinshaw
1999)] at 10–300 GHz and synchrotron emission from active galactic nuclei at �100 GHz, as well
as extragalactic dust emission (the cosmic IR background, the integrated effect from high-redshift
galaxies) at �100 GHz (Ade et al. 2014d).

7.1. Galactic Foregrounds

For large-angular-scale polarization, however, the dominant foregrounds are Galactic in origin,
mainly in the form of diffuse synchrotron and thermal dust emissions [free-free emission from
accelerated electrons in the ionized gas and anomalous dust emission (Kogut et al. 1996, Leitch
et al. 1997)—which is most likely due to electric dipole radiation from small spinning dust grains—
provide additional subdominant contributions], both of which involve the Galactic magnetic field.
Together they render the Galactic plane virtually unusable for cosmological observations, leaving
the sky at high Galactic latitudes as the focus of CMB analysis. In order to extract a CMB signal that
is as clean as possible, a considerable portion of the sky is masked. Multifrequency measurements
are then used to separate the components of the radiation in the remaining regions, relying on
the fact that their intensities differ in frequency dependence.

7.1.1. Synchrotron. Galactic synchrotron emission is dominant at frequencies below 100 GHz,
and both WMAP and Planck have observed its polarization signature at frequencies from 30 to
90 GHz [up until then the only all-sky template was the Haslam map (Haslam et al. 1982), at
a much lower frequency of 408 MHz]. These multifrequency measurements have been used to
fit a spectral brightness temperature index of βs ∼ −3 above 20 GHz (Adam et al. 2015b). As
many of the upcoming CMB polarization experiments intend to take data at �90 GHz, improved
understanding of this foreground is essential.
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BICEP2

In March 2014 the BICEP2 Collaboration reported detection of B-mode power at 150 GHz and � ∼ 40–100 in
excess of that expected from lensing (Ade et al. 2014f ). The B-mode signal was found to have no correlation with
existing dust-polarization templates and to have an amplitude in excess of that expected from dust. The potentially
extraordinary implications of this measurement attracted considerable scrutiny, and arguments were made that
uncertainties in the various dust templates may have been underestimated (Flauger et al. 2014, Mortonson & Seljak
2014). Data from Planck (Adam et al. 2016) on polarized dust emission at high Galactic latitude then indicated
that pre-Planck dust models had underestimated the polarization. A subsequent joint analysis of BICEP2/Keck and
Planck data discovered a significant correlation between the BICEP2/Keck 150-GHz polarization map and the
Planck 353-GHz map, indicating that the entire BICEP2 B-mode excess could be attributed to dust, leaving an
upper limit r ≤ 0.12 (95% C.L.) to the tensor-to-scalar ratio (Ade et al. 2015a).

7.1.2. Dust. Above 100 GHz, thermal emission from asymmetric dust grains in the ISM, which
align themselves with the Galactic magnetic field, induces a strong polarization signal, which
depends on the composition, shape, and size of the grains (Martin 1971, Draine & Fraisse 2009,
Ali-Haimoud 2013, Andersson et al. 2015). Early templates for Galactic dust were based on
smoothed maps of starlight polarization (Page et al. 2007). Although starlight polarization has
been demonstrated to be a good tracer of dust polarization (Ade et al. 2015b), this approach
is limited by the sparsity of the data and the fact that the stars reside at different distances.
Other templates have relied heavily on models for the Galactic magnetic field, and over the years
several such models have been developed (e.g., O’Dea et al. 2012, Delabrouille et al. 2013). In the
absence of solid observational data, however, theoretical templates inevitably involve considerable
guesswork, and theoretical templates of Galactic dust-emission foregrounds before the advent of
high-frequency data from the Planck satellite turned out to underestimate the amplitude of dust
polarization at high Galactic latitudes. (See the sidebar BICEP2.)

The Planck High Frequency Instrument has recently provided full-sky temperature and po-
larization maps at frequencies ranging from 100 to 857 GHz (corresponding to 3 mm to 350 µm
wavelengths). Focusing on 353-GHz data at high Galactic latitudes, the E and B angular power
spectra of dust polarization were constrained in the multipole range of 40 < � < 600 (Adam et al.
2016). The frequency dependence was found to be consistent with a modified blackbody emis-
sion with power-law emissivity εν ∝ νβd and temperature Td with best-fit values βd = 1.59 and
Td = 19.6 K. It was also shown that both CEE

� and CBB
� spectra are well described by power laws

with exponents αEE,BB = −2.42 ± 0.02, almost independent of the region of sky. The amplitudes,
however, were shown to vary considerably across the sky. Though no region of sky was found to
be clean enough to enable IGW detection without foreground subtraction, Planck did identify in
each Galactic hemisphere several patches of sky at high Galactic latitudes with considerably lower
foreground amplitudes, which could be useful targets for future IGW B-mode searches.

7.1.3. Dust-polarization puzzles. Although dust and lensed E modes provide a satisfactory fit
to all current measurements, several results remain unexplained. For example, both WMAP (Page
et al. 2007) and Planck (Adam et al. 2016) have found a systematic difference in amplitude between
dust E and B modes, roughly CBB

� = 0.5CEE
� , which is almost independent of Galactic latitude. This

disagrees with the expectation CBB
� � CEE

� if the polarization orientation is coherent over large
patches with small-scale modulations in amplitude (Zaldarriaga 2001, Kamionkowski & Kovetz
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2014). It has been postulated that this could be explained by magnetohydrodynamic turbulence
in the ISM (Hirata 2014) or by its magnetized filamentary structure (Ade et al. 2015e).

In addition, the frequency dependence of the dust-polarization fraction as observed by Planck
(see Ade et al. 2014i, their figure 13) has an opposite trend compared to the longstanding pre-
dictions from models of silicate or carbonaceous dust grains (see Draine & Fraisse 2009, their
figure 8). Models involving magnetic nanoparticles (namely ferromagnetic or ferrimagnetic iron
grains; Draine & Hensley 2013) may explain the observed increase of polarization dust fraction
with frequency.

It is also reasonable to wonder whether foreground polarizations measured at different fre-
quencies trace the same depths in the ISM and thus have the same polarization pattern on the sky
(a tacit assumption in such analyses). The correlation between the BICEP2 150-GHz maps and
the Planck 353-GHz maps (Ade et al. 2015a) suggest that they do to some extent, but the detailed
validity of this assumption warrants further study.

8. THE SEARCH FOR B MODES

We now consider the prospects of achieving an experimental sensitivity to a tensor-to-scalar ratio
r ∼ 10−3 and discuss experimental issues and strategies.

8.1. Detectability Basics

In principle, an experiment provides the polarization Stokes parameters Q and U at each point on
the sky from which the 2�+1 spherical-harmonic coefficients aBB

�m are then obtained from Equation
41. The theory predicts that each of these a�m is drawn from a Gaussian distribution with variance
CBB

� = 〈|aBB
�m |2〉. We thus construct an estimator ĈBB

� = ∑�

m=−� |a�m|2/(2� + 1), and this estimator
has a root variance

(

CBB

�

) = [2/(2� + 1)]1/2CBB
� [because the root variance with which we can

measure the variance σ 2 of a Gaussian distribution from N measurements is (2/N)1/2σ 2].
In practice, things are complicated by detector noise in the measurement and imperfectly

subtracted foreground contributions to the CMB polarization, and by the fact that measurements
may be available only over a fraction fsky of the sky. If we are interested in detecting IGW-induced
B modes, there is also contamination from lensing-induced B modes. The estimator for C igw

� (for
notational economy, we drop the BB superscript in the remainder of this section) is then obtained
by subtracting from the measured C� the expected contributions of C lens

� , C fg
� , and Cn

� caused by
lensing; the imperfectly subtracted foregrounds; and detector noise, respectively. The root variance
with which we can measure C igw

� then becomes (
C�) = [2/(2�+1) fsky]1/2(C igw
� +C lens

� +C fg
� +Cn

� ).
The increase by f −1/2

sky in the root variance arises from the decrease in sky coverage.
To evaluate the detectability of IGW B modes, we parameterize the IGW-induced B-mode

power spectrum C igw
� = 10 r C igw

� (r = 0.1) in terms of the power spectrum C igw
� (r = 0.1) for a

tensor-to-scalar ratio r = 0.1 and an amplitude r . Each measured multipole moment Cobs
� then

provides an estimator r̂� = 0.1 (Cobs
� − C lens

� − C fg
� − Cn

� )/C IGW
� (r = 0.1) to the amplitude r .

The error to this estimator, under the null hypothesis r = 0, is (σ �
r )2 = 0.01 [2/(2� + 1)](C lens

� +
Cn

� + C fg
� )2. These estimators can then be added with inverse-variance weighting to obtain the

minimum-variance estimator for r . This estimator has a root variance,

σr � 0.1
fsky

⎧⎨⎩
�max∑

�=�min

(2� + 1)
2

[
C IGW

� (r = 0.1)

C fg
� + Cn

� + C lens
�

]2
⎫⎬⎭

−1/2

, (63)

for an experiment that covers a fraction fsky of the sky and measures multipole moments from a
minimum �min to a maximum �max.
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Figure 8
The summand from Equation 63 for the detectability of inflationary gravitational wave B modes, with
C fg

� = 0 (solid line), i.e., in the absence of foregrounds but with detector noise and lensing-induced B modes
included, and Cn

� = C lens
� = 0 (dotted line), i.e., in the absence of lensing-induced B modes and detector noise.

This figure shows the contributions of various multipole moments to the signal-to-noise (S/N) ratio,
assuming the hypothetical situation of no foregrounds (solid line) or no detector noise nor lensing
(dotted line).

8.2. The Effects of Different Contaminants

We now address the main contaminants to the IGW B-mode signal, including B modes induced
by lensing or foregrounds, as well as instrumental noise.

8.2.1. Lensing-induced B modes. Before including the effects of foregrounds and detector
noise, let us first consider the signal-to-noise ratio available in the hypothetical situation of a
no-noise and foreground-free measurement, i.e., Cn

� = C fg
� = 0. In this case there would be a

cosmic-variance limit to the measurement of r from lensing-induced B modes, and Figure 8 plots
the summand of Equation 63 as a function of �. As shown there, the vast majority (�99%) of the
signal-to-noise ratio on the sky is in the reionization bump, at � � 10 (Kamionkowski & Kosowsky
1998); only ∼1% is at � � 10. If we were to restrict measurements to � � 10, the vast majority of
the signal-to-noise ratio is at � � 150 (the recombination bump in C igw

� ).
Evaluating the sum in Equation 63, we can calculate σr , the smallest detectable (at 1σ ) tensor-

to-scalar ratio r , for experiments with access to different multipole ranges. For 2 ≤ � ≤ 10, we
get σr � 4 × 10−5 (τ/0.078)−2, whereas for 10 � � � 150 we get σr � 3 × 10−4 f −1/2

sky (Kesden
et al. 2002, Knox & Song 2002, Lewis et al. 2002). Here, we have included the ∝τ−2 scaling with
the reionization optical depth (Ng & Ng 1996, Zaldarriaga 1997) for the low-� measurement
and the f −1/2

sky scaling for the high �. Although (with no foregrounds) the vast majority of the
signal-to-noise ratio is at � � 10, an experiment that maps only ∼1% of the sky (and thus uses
only � � 10) could still have a �3σ sensitivity to a tensor-to-scalar ratio as small as r ∼ 0.01, even
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with no delensing. As we see below, delensing by a factor of 10 is conceivable with forthcoming
experiments, in which case r ∼ 0.001 could be detected at �3σ , even with fsky ∼ 1%.

8.2.2. Detector noise. We now include the effects of detector noise, still ignoring foregrounds.
The power spectrum induced by detector noise is Cn

� = 4π fskyNET2
array/tobs (for multipole mo-

ments � � θ−1
fwhm accessible with a beam width θfwhm), where the noise equivalent temperature

(NET) of the array is defined as NETarray = s /
√

N det in terms of the NET s of each detector
and the number N det of detectors in the array. Here tobs is the integration time on this fraction
fsky of the sky. We now note that the lensing-induced power spectrum is also well approximated
by a constant C lens

� � 1.8 × 10−6 µK2 over the range � � 150 of interest here. [Powers are also
sometimes quoted as a sensitivity (C�)1/2, wherein the lensing power is 4.6 µK arcmin.] The dis-
tribution of the signal-to-noise ratio with � is, with detector noise, thus again exactly as shown in
Figure 8.

The fsky scaling of Cn
� for an experiment that limits its observations to a fraction fsky of the sky

implies that a lower Cn
� can be achieved by integrating deeply on a smaller patch of sky. This has

important implications ( Jaffe et al. 2000, Keating, et al. 2003), as discussed below, for the choice
of the fraction of the sky surveyed, especially for many of the suborbital experiments that cannot
access � � 10.

8.2.3. Foregrounds. As discussed above, the principal foregrounds—synchrotron and dust emis-
sion from the Milky Way—can be disentangled using measurements of the polarization at multiple
frequencies. There will, however, always be some residual foreground contribution to any realistic
CMB polarization map. Here, we use the scaling C fg

� ∝ �−2.42, determined empirically for WMAP
and Planck for � � 40, and we assume that this scaling extends down to � � 10 (although the
validity of this assumption is unknown). We set the foreground amplitude to the best-fit values
measured by Planck at 353 GHz on scales 40 < � < 370 over the BICEP2 field, extrapolated down
to 150 GHz (see Kovetz & Kamionkowski 2015 for details on the extrapolation). The contribu-
tions to the signal-to-noise ratio with which a nonzero value of r can be distinguished from the
null hypothesis r = 0, assuming no detector noise nor lensing, are shown in Figure 8. They are
distributed more evenly in � than the summands assuming no foregrounds, with a significant peak
at � ∼ 100.

8.3. Experimental Strategies

Above we saw roughly speaking the effects of different contaminants on the IGW de-
tectability. These considerations are ingredients in the development of experimental strategies
to detect IGWs. These ingredients must then be amalgamated with a number of logistical/
experimental/hardware issues—e.g., detector technologies and sensitivities, atmospheric fre-
quency windows, the availability of telescopes, funding constraints—in the development of exper-
iments. Here we discuss some of the issues, illustrate some of the trade-offs, and summarize some
of the strategies currently being considered.

We begin by plotting in Figure 9 in a unified but somewhat unconventional way the contribu-
tions of the various ingredients to the signal-to-noise ratio. The IGW B-mode signal is plotted as√

(2� + 1)/2C igw
� for three fiducial values for the tensor-to-scalar ratio, r = {0.1, 0.01, 0.001}. The

prefactor
√

(2� + 1)/2 is chosen because (C igw
� )2 is multiplied by the square of this factor in the

expression, Equation 63, for the signal-to-noise ratio. The foreground, noise, and lensing B-mode
signals are then plotted with no scaling � prefactor. In this way, the contributions of foregrounds,
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Figure 9
Balance of power. Spectra with

√
(2� + 1)/2 scaling are shown for primordial B modes with

r = {0.1, 0.01, 0.001} (cyan), lensing of B modes (magenta), and a fiducial dust foreground (green). The
amplitude and shape of this fiducial foreground were set to the best-fit values measured by Planck at 353 GHz
on scales 40 < � < 370 over the BICEP2 field, extrapolated down to 150 GHz. Whether this extends to
larger scales is unknown. Noise spectra are plotted [without the

√
(2� + 1)/2 scaling] for the CLASS (solid

black), CMB-S4 (dotted black) and BICEP2 (dashed gray) experiments. Scales inaccessible to BICEP2 owing to
its limited sky coverage are shaded (light gray). Abbreviation: IGW, inflationary gravitational wave.

noise, and lensing to the signal-to-noise ratio with which a nonzero value of r can be distinguished
from the null hypothesis r = 0 are represented viscerally.

For the foregrounds, the amplitude of the plotted signal is taken to match the best-fit value
measured by Planck over the BICEP2 field, as explained above. The foregrounds in other regions
of sky may be smaller or larger. The foregrounds can be reduced, though, relative to what we have
shown, with multifrequency measurements, as we discuss below. For illustration, we also show
noise power spectra for the Cosmology Large Angular Scale Surveyor (CLASS; predicted) and
BICEP2 instruments, as well as the planned Stage-IV CMB experiment (CMB-S4) sensitivity (see
below), plotted as Cn

� [i.e., without the
√

(2� + 1)/2 scaling] on the scales accessible given their beam
size. The parameter sets tobs, NETarray, fsky, and θfwhm used for the noise estimates for BICEP2,
CLASS, and CMB-S4 (assuming 105 detectors) are 590 days, 18.75 µK

√
sec, 0.01, 30 arcmin;

3 years, 7 µK
√

sec, 0.7, 2 deg; and 2 years, 1.5 µK
√

sec, 0.75, 3 arcmin, respectively.
We next calculate σr as a function of various experimental parameters. We evaluate Equation 63

under the null hypothesis (C igw
� = 0), replacing C lens

� → (1 − αL)C lens
� and C fg

� → βfgC fg
� , where

1 − αL parameterizes the residual lensing contribution after delensing, and βfg parameterizes the
residual foregrounds after multifrequency component separation. Although imperfect subtraction
can lead to a residual bias in r (Katayama & Komatsu 2011, Remazeilles et al. 2015), note that we
consider here only the contribution to the variance. The detector noise is directly proportional
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Figure 10
Smallest detectable tensor-to-scalar ratio r . We show (a) the dependence on the sky coverage fsky, (b) delensing efficiency (where
1 − αL quantifies the lensing residual), (c) foregrounds (where βfg denotes the fractional amount of foreground residuals from the
fiducial value we have assumed here; see Figure 9), and (d) detector sensitivity (through NETarray). We show how the smallest
detectable tensor-to-scalar ratio r (at 1σ ) depends on each parameter, whereas all other parameters are held fixed according to different
scenarios, which are chosen to cover the range of interesting cases. We adopt the instrumental sensitivity considered by Wu et al.
(2014), i.e., a NET per detector of s = 350 µK

√
sec, assume a total of 2 years of observation, and use the fiducial amplitude of dust

polarization from Figure 9.

to NET2
array, whereas the dependence of Cn

� on fsky introduces a trade-off between the detector
noise and the other contributions. The effects of these parameters on σr are shown in Figure 10.

8.3.1. Sky coverage. The chosen sky coverage of an experiment depends on the strategy
employed.

8.3.1.1. Small-sky strategy (no lensing). If access to the reionization peak at � � 10 is unavailable,
then in the ideal case of no lensing, the ideal B-mode observation is achieved by prolonged
integration on an ∼25 deg2 patch of sky ( Jaffe et al. 2000). This is demonstrated in Figure 10,
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as there is a sweet spot in the two cases where the detector noise is dominant compared to the
other contributions. The sensitivity weakens on larger patches because of the increase in Cn

� with
fsky. The sensitivity then weakens on smaller patches because of the decrease in the signal for
measurements restricted to � � 100 that then miss much of the recombination peak.

8.3.1.2. Lensing and the small-sky strategy. If an experiment has noise Cn
� � (1 − αL)C lens

� , then
the measurement is detector-noise dominated, and it will be cosmic-variance (lensing) limited oth-
erwise. In the former case, the sensitivity of the measurement to r may be improved by decreasing
the sky coverage of the survey; the fsky reduction in Cn

� overtakes the f −1/2
sky statistical increase in

the prefactor of Equation 63 ( Jaffe et al. 2000). Still, as fsky is reduced, �min is increased, and if fsky

is reduced too much, then the reduction in the signal-to-noise ratio (the area under the curve in
Figure 8) outweighs the reduction in Cn

� .
Once the detector-noise contribution to the power spectrum is reduced to Cn

� � 2×10−6 µK2 �
C lens

� , this small-sky strategy must be revisited (Kesden et al. 2002, Verde et al. 2006). In
Figure 10, it is evident, for example, that when the detector noise is high (i.e., comparable with
or higher than the lensing contribution), there is nothing to gain by delensing. However, as we
begin to access smaller tensor-to-scalar ratios, delensing becomes increasingly important. Further
improvements in sensitivity to r must then come from increased sky coverage, to deal with the
lensing-induced cosmic variance, or from delensing (discussed more below), to directly reduce
the lensing contribution. In practice, the small-sky strategy has already been pursued on larger,
∼400 deg2, patches to deal with systematic effects and foregrounds, for redundancy, and to avoid
the lensing contribution, which rises (relative to the IGW contribution) rapidly with �. Given the
rapid improvements in NETarray, the lensing issue becomes increasingly important.

8.3.1.3. The large-sky strategy. If an experiment can map the polarization over most of the sky,
then it can access the huge amount of information in the reionization peak, � � 10. Lensing is not
an issue for the foreseeable future for such an experiment, but such a strategy requires effective
isolation of foregrounds. See, e.g., Watts et al. (2015) for a discussion of the large-sky strategy.

Regardless of the strategy (small-sky or large-sky), any experiment will never be able to use data
from the entire sky. Techniques have therefore been developed to apply the E/B decomposition
on a cut sky (Lewis et al. 2002, Hu et al. 2003, Smith 2005, Pearson et al. 2014).

8.3.2. Beam size. Because C igw
� decays exponentially at � � 100, high angular resolution is not

strictly needed to detect IGW B modes. If the CMB map is to be used for delensing, however, it
requires very high angular resolution, as discussed below.

8.3.3. Detector noise. The dependence on the sensitivity of the instrument is more straightfor-
ward. Figure 10 shows how improved sensitivity can lead to better sensitivity to r given the choice
of other parameters. As discussed above, the sensitivity of the small-sky strategy is limited only by
detector noise as long as Cn

� � C lens
� , and further improvements to the sensitivity, in the absence

of delensing, then drive the survey to larger sky fractions. Given, however, that Cn
� ∝ f −1/2

sky , the
detector noise must continue to improve in order for the detector-noise power Cn

� to continue to
remain smaller than C lens

� as fsky is increased.

8.3.4. Frequency coverage. The dependence on the frequency coverage is harder to quantify
and depends on the desired sensitivity to r , the relative contributions of dust and synchrotron
emission [which may depend on the region(s) of sky covered], atmospheric windows (for terres-
trial observations), the technologies and sensitivities available at the different frequencies, and
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the availability of reliable external templates for the foreground polarization. It is clear, though,
that measurements in more frequencies over the same patch enable better foreground removal
(as discussed above, the main foreground contributions, due to synchrotron and dust emission,
quickly dominate as one pulls away in frequency to either side of the CMB observability peak
at ∼100 GHz). In Figure 10, we examine the effect of lower foreground residuals under several
scenarios for the remaining experimental parameters.

8.3.5. Delensing. We have swept a huge amount of dirt under the rug through the introduction of
the delensing parameter αL, as delensing is an ambitious, sophisticated, and challenging endeavor.
One possibility is that delensing may be performed with external data sets that can be used to map
the lensing potential. For example, measurements of the cosmic IR background currently provide
as good a lensing template as anything else (Sherwin & Schmittfull 2015), and forthcoming galaxy
surveys, like the Large Synoptic Survey Telescope, may reduce the lensing B modes by a factor of
∼2 (Marian & Bernstein 2007). However, the most likely source for delensing at the level required
to access r ∼ 0.001 will be small-angular-scale fluctuations in the CMB.

Although it may ultimately be done by an experiment that also measures the � � 150 IGW
B modes, a delensing measurement requires angular resolution far better (up to � ∼ 2000) than
that required for IGW B modes. A measurement with resolution required to reach multipole
moment � at wavelength λ requires a dish of size D ∼ λ� ∼ 4 m (�/2.000)(ν/150 GHz)−1, and
so the telescope-diameter requirements for delensing are roughly ten times those for the IGW B
modes. Delensing is also optimized with high-angular-resolution maps of the polarization, as well
as of temperature. The precise level of delensing depends on a variety of experimental parameters,
as discussed, for example, by Smith et al. (2012), Simard et al. (2015), and Errard et al. (2015).
However, to illustrate, we note that the lensing-induced B-mode power may be reduced by a
factor of ∼5 with a polarization map having a beam size of ∼5 arcmin and noise level of 1 µK.
The SPT-3G project expects to be able to delens by a factor of ∼4 by 2019 (Benson et al. 2014).

8.4. Current/Forthcoming Experiments

We now provide a brief listing of some of the experiments under way, in development, or being
discussed. There are several that focus a single telescope on a chosen patch of sky to target the re-
combination peak and perhaps, if the detector-noise level warrants, delens with higher-resolution
data from the same experiment or from external data sets. Current and future experiments be-
longing to this class include the ABS (Atacama B-mode Search; Staggs et al. 2015), ACTPol
(Naess et al. 2014) and its successor AdvACT, the BICEP/KECK series (Ade et al. 2014e, 2015f ),
POLARBEAR and the future Simons Array (Arnold et al. 2014), and SPTPol (Hanson et al. 2013)
and its successor SPT-3G (Benson et al. 2014). A similar strategy is employed by the QUBIC
(Q&U Bolometric Interferometer for Cosmology) interferometer (Battistelli et al. 2012). There
are then a smaller number of suborbital projects that employ a wide-sky-coverage telescope or
aggregate several ground-based telescopes and pursue the reionization scales � � 10. Typically,
ground-based telescopes can reach higher resolution compared to satellites, which may enable a
more efficient delensing process. CLASS (Essinger-Hileman et al. 2014), with �70% sky coverage,
is one experiment of this type, whereas under the CMB-S4 plan, several ground-based telescopes
such as those named above are planned to collaborate in generating a combined, nearly full-sky,
map (Wu et al. 2014, Abazajian et al. 2015a). Balloon-borne CMB experiments have less adaptivity
and observing time than ground-based telescopes, but they experience less atmospheric interfer-
ence and can access higher frequencies, which may enable more efficient component separation.
The EBEX (E and B Experiment; Reichborn-Kjennerud et al. 2010), the LSPE (Large-Scale
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Polarization Explorer; Aiola et al. 2012), the PIPER (Primordial Inflation Polarization Explorer;
Lazear et al. 2014), and SPIDER (Crill et al. 2008) are balloon experiments; the latter two tar-
get larger areas of the sky than most of the small-sky, ground-based missions. There are then
discussions of satellites to take full-sky polarization data and fully capture the reionization peak.
Proposals for future missions include the COrE (Cosmic Origins Explorer; Armitage-Caplan et al.
2011), CMBPol (CMB Polarization mission; Baumann et al. 2009), EPIC (Experimental Probe of
Inflationary Cosmology; Bock et al. 2009), PIXIE (Primordial Inflation Explorer; Kogut et al. 2011),
PRISM (Polarized Radiation Imaging and Spectroscopy Mission; André et al. 2014), and LiteBIRD
[Lite (Light) satellite for the studies of B-mode polarization and Inflation from cosmic background Ra-
diation Detection; Matsumura et al. 2013]. A satellite experiment could also map the full sky with
sufficiently high resolution to delens the entire sky and thus use the IGW information also in
the recombination peak. Such a mission would, however, require a far larger mirror and thus
be more costly. It would, however, also enable a broad range of interesting high-� science apart
from IGW B modes. More details about possible future experimental endeavors are described
by Baumann et al. (2009), Abazajian et al. (2015a), and Errard et al. (2015); see also Creminelli
et al. (2015).

8.5. Mitigating Dust

As discussed above, Planck has identified a handful of relatively clean ∼400 deg2 patches of sky
accessible to observatories in the Southern Hemisphere. Given Planck’s noise limitations, however,
it is still unclear whether any of these patches is far cleaner, and thus a better B-mode target, than
the others, and if so which ones. One possibility is a brief initial high-frequency integration (Kovetz
& Kamionkowski 2015), either from the ground (at 220 GHz) or from a balloon (at 353 GHz)
to identify the cleanest such patch before beginning a deep B-mode integration at lower (CMB)
frequencies. Such a strategy can conceivably improve the ultimate sensitivity to r by a factor of
2–3 over a blind selection of one of the cleanest patches. It would also provide high signal-to-noise
dust-polarization templates on all six of these regions. There are also adaptive-survey strategies
(Kovetz & Kamionkowski 2016) that can be employed to seek low-dust-amplitude regions while
simultaneously performing a B-mode integration.

There are additional cross-checks that can be employed in the event that a nominal IGW
B-mode signal is identified even after multifrequency component separation. Although the GW
signal is expected to be Gaussian, the B modes from dust contamination should be highly non-
Gaussian (as are the lensing-induced B modes; in fact it is their characteristic non-Gaussianity
that allows them to be delensed). If, for example, the orientation of the dust-induced polarization
is relatively coherent on large patches of the sky, which may be expected given the large-scale
coherence of Galactic magnetic fields, then the resulting B modes will have a locally hexadecapolar
departure from statistical isotropy, composed primarily of Fourier modes aligned primarily in
directions at 45◦ with respect to the polarization orientation (Zaldarriaga 2001, Kamionkowski
& Kovetz 2014). Statistical estimators seeking this type of departure from statistical isotropy are
then easily constructed (Kamionkowski & Kovetz 2014) in analogy with lensing-reconstruction
estimators. To illustrate, we show in Figure 11 the hexadecapolar symmetry that results from
having a constant orientation angle over the observed sky patch.

9. OTHER PATHS TO INFLATIONARY GRAVITATIONAL WAVES

There are other possibilities to detect IGWs. Although these are perhaps a bit further down
the road than B modes, they may help characterize the GW background, in case of detection,
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B modes: constant orientation
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Figure 11
A B-mode map calculated from a randomly generated, statistically isotropic Q map and a U = 0 map, to simulate a constant
polarization orientation. Here, there is a local hexadecapolar departure from statistical isotropy, dominated by Fourier modes oriented
at 45◦ with respect to the polarization orientation. More generally, the local departures from statistical isotropy due to a slowly varying
orientation angle can be captured with appropriate statistical estimators (Kamionkowski & Kovetz 2014). (Compare with Figure 6b.)

by complementing the CMB measurement, which probes GWs with ∼10−17 Hz frequencies,
with measurements at far higher frequencies (Chongchitnan & Efstathiou 2006; Smith et al.
2006a, 2008). The idea to seek the inflationary background with GW detectors was considered
by Liddle (1994), Bar-Kana (1994), Turner (1997), Smith et al. (2006a, 2008), and Caldwell et al.
(1999), and has motivated mission concept studies for space-based GW observatories like the
Big Bang Observer (Phinney et al. 2004, Crowder & Cornish 2005) and DECIGO (DECi-hertz
Interferometer Gravitational wave Observatory; Seto et al. 2001).

There is also the possibility of seeking IGWs via their effects on the large-scale galaxy dis-
tribution. The GW background may give rise to local quadrupolar departures from statistical
isotropy in primordial perturbations (Maldacena 2003; Seery et al. 2009; Giddings & Sloth 2011,
2012; Jeong & Kamionkowski 2012; Jeong & Schmidt 2012; Schmidt & Jeong 2012b; Bramante
et al. 2013). It may also gravitationally lens the galaxy distribution (Dodelson et al. 2003, Masui
& Pen 2010, Schmidt & Jeong 2012a, Schmidt et al. 2014), the CMB (Cooray et al. 2005; Li
& Cooray 2006; Dodelson 2010; Book et al. 2012b; Dai et al. 2012, 2013a), or the 21-cm back-
ground (Pen 2004, Book et al. 2012a); affect the intrinsic alignments of elliptical galaxies (Chisari
et al. 2014; Schmidt et al. 2014, 2015) via the tidal-alignment model (Catelan et al. 2001); or
have consequences for precision astrometry of quasars (Book & Flanagan 2011). These effects
arise in SFSR inflation but are very small, at best. They may, however, be larger in solid in-
flation (Dimastrogiovanni et al. 2014, Akhshik 2015), nonattractor inflation (Dimastrogiovanni
et al. 2014), quasi-single-field inflation (Dimastrogiovanni et al. 2015), and globally anisotropic
models (Emami & Firouzjahi 2015). Strictly speaking, the precise distinction between early-time
and late-time effects of GWs on the galaxy distribution depends on the gauge choice, an issue
explored and clarified in recent work (Dai et al. 2013b, 2015; Pajer et al. 2013).

A constraint to the primordial GW amplitude at frequencies ν � 10−11 Hz higher than those
accessible with the CMB or large-scale structure can be obtained from BBN (Allen 1996)—such
GWs would act as an additional relativistic degree of freedom. This bound can then be extended
to ν � 10−15 Hz and improved with measurements of small-scale CMB fluctuations, which now
improve upon the BBN bound to the number of relativistic degrees of freedom (Smith et al. 2006b,
Sendra & Smith 2012, Pagano et al. 2015). Still, these upper bounds are probably too weak to be
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constraining for SFSR inflation, although they may be of interest for models that predict a blue
(nt > 0) GW spectrum (Brandenberger et al. 2014).

10. CONCLUSIONS

We have described the quest for the B modes, the curl component of the CMB polarization, that
arise from IGWs. Until recently, the lack of existing constraints to inflationary models allowed
an almost arbitrarily small value for the tensor-to-scalar ratio r that parameterizes the strength
of the B-mode signal. The plot has thickened in recent years, however, with measurements that
show with increasing confidence that the scalar spectral index ns departs from unity. Although
model dependencies prevent an absolutely conclusive statement, SFSR models of inflation gen-
erally predict, with current constraints to ns, values of r within striking distance of experimental
capabilities on a ten-year timescale.

The challenge now will be to make these measurements, and a massive global effort is under
way. We summarized in Section 8 the issues that face experimentalists and the prospects for their
resolution. There may also be room for new ideas (e.g., to cross-correlate the reionization-bump
B modes with galaxy surveys; Alizadeh & Hirata 2012) to facilitate the pursuit of IGWs.

Of course, if r is not too much smaller than the current upper bound r � 0.09 (from the
combination of temperature and polarization constraints), then a detection may be just around
the corner. If so, the obvious next step will be to characterize the GW background through
measurements of the spectral index nt (Boyle et al. 2015, Huang et al. 2015), tests of the Gaussianity
of these B modes, and the chirality of the GW background, and perhaps with complementary
measurements of the GW background at much smaller wavelengths.

The prospects for a fairly definitive test of the prevailing SFSR models of inflation have mo-
tivated considerable efforts in the pursuit of precise measurements of CMB polarization. The
detection of a signal, if/when it occurs, will provide an entirely new window back to 10−38 s after
the cosmic singularity; provide evidence, albeit indirect, for interesting new physics at the grand
unified theory scale; constitute a detection of GWs; and moreover, provide the first empirical
information about the quantum behavior of the spacetime metric. All this may occur on a ten-year
timescale, so pay attention!
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Muñoz JB, Kamionkowski M. 2015. Phys. Rev. D 91:043521 arXiv:1412.0656
Naess S, Hasselfield M, McMahon J, et al. 2014. J. Cosmol. Astropart. Phys. 1410:007
Ng KL, Ng KW. 1996. Ap. J. 456:413
O’Dea DT, Clark CN, Contaldi CR, MacTavish CJ. 2012. MNRAS 419:1795
Olive KA. 1990. Phys. Rep. 190:307
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