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Abstract

In the past few years, significant advances have been made in understanding
the distributions of exoplanet populations and the architecture of planetary
systems. We review the recent progress of planet statistics, with a focus on
the inner�1-AU region of planetary systems that has been fairly thoroughly
surveyed by the Kepler mission. We also discuss the theoretical implications
of these statistical results for planet formation and dynamical evolution.
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1. INTRODUCTION

“Who ordered that?” said the theorist I. Rabi when learning about the unexpected discovery
of muons in 1936. Little did particle physicists know that it would only be the beginning of
uncovering a puzzling particle zoo filled with diverse particles in the next three decades, until
revolutionary theoretical insights were developed to classify the elementary particles. Now nearly
three decades since the astonishing discovery of a hot Jupiter (Mayor & Queloz 1995), the exo-
planet zoo is ever growing—whenever the detection territories grow in breadth or depth, nature
appears to be teeming with new species. Theorists working on planet formation and evolution
face distinctly different sets of challenges from particle physicists: In the popular paradigm,
forming planets from dust grains is a daunting march spanning tens of orders of magnitudes in
mass and involves many physical processes that are too complex for first-principle calculations. In
hindsight, it should probably be of little surprise that a theory involving such complicated physics,
which was anchored by the sole sample of our Solar System,would have limited predictive success.

We review the recent progress of planet statistics and identify patterns emerging from
the known thousands of exoplanets that cover a broad region of the parameter space (see
Figure 1). Robustly identifying patterns in the intrinsic distributions of planets can stimulate
and test theories. Conversely, theoretical advances may also beam the searchlight on fresh obser-
vational ground, as exemplified by the development of the photoevaporation theory leading to
the recent discovery of a radius valley (see Section 2.1.4). Since the last Annual Reviews article on
exoplanet populations (Winn & Fabrycky 2015), the field of planet statistics has made significant
progress. In particular, the large and homogeneous planet sample from the NASA Kepler mission
(Borucki et al. 2010) has provided the best source for statistical studies, but a major shortcoming
of the Kepler data was the initial lack of accurate stellar parameters for both the planet hosts
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Figure 1

Mass versus semimajor axis of known planets, based on the “Confirmed Planets” list from theNASAExoplanet
Archive (Akeson et al. 2013; acquired in September of 2020) and the reliable Kepler planet candidates
(see Section 2 for more details). Using different colors, we differentiate planet detections as well as the
approximate sensitivity curves from ground-based transit (purple), Kepler survey (blue), RV (orange and brown),
microlensing (green), and direct imaging (red). The masses of the Kepler detections are estimated from the
measured radii according to the Chen & Kipping (2017) mass–radius relation. The sensitivity curve of
Kepler is also converted in a similar way from that measured on the period–radius plane (see Section 2.1).
The sensitivity curve for the 10-year Gaia astrometry survey is also shown in red, for which we assume a
Sun-like host at 20 pc and require a 3-σ detection over the expected precision. For space-based
microlensing, we adopt the sensitivity curve of the microlensing survey that will be performed by the Nancy
Grace Roman Space Telescope (formerly known as WFIRST orWide Field Infrared Survey Telescope; Penny et al.
2019). The Solar System planet images are shown at their corresponding locations. Data for the dashed green
line is taken from Penny et al. (2019). Abbreviation: RV, radial velocity.

and the target stars (i.e., the parent sample). In the past few years, substantial efforts have been
dedicated to systematically characterize the Kepler sample and, thus, unleash its potential for
statistical studies. These include asteroseismology (e.g., Chaplin & Miglio 2013, Van Eylen &
Albrecht 2015), the Gaia data releases (Gaia Collab. et al. 2016, 2018), follow-up spectroscopic
programs such as the LAMOST (Large Sky Area Multi-Object Fibre Spectroscopic Telescope;
Cui et al. 2012, Zhao et al. 2012)-Kepler survey (e.g., Dong et al. 2014b, De Cat et al. 2015, Zong
et al. 2018) and the California-Kepler Survey (CKS; Johnson et al. 2017, Petigura et al. 2017), as
well as many projects of the Kepler Follow-up Observation Program (KFOP; Furlan et al. 2017).
Furthermore, substantial works to understand the Kepler pipeline detection efficiency and vetting
false positives have much improved the reliability of Kepler statistical inference (e.g., Christiansen
et al. 2015, Morton et al. 2016). Last but not least, in-depth developments have been recently
made to disentangle the intricate observational biases of multiplanet systems. These efforts have
made it possible to offer new insights into planet distributions and architectures.
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In this review, we first clarify in Sections 1.1 and 1.2 several common confusions in exoplanet
statistical studies. Then, we discuss planet distributions in the inner (�1 AU) and the outer
(∼1–10AU) regions in Sections 2 and 3, respectively. The former is focused on results from the
Kepler mission, and the latter includes updated results from radial velocity (RV) and gravitational
microlensing. A brief discussion of the free-floating planets (FFPs) from microlensing is also
provided. We focus on planets around �1-Gyr-old stars, whereas planets orbiting young stars
found by direct imaging are not discussed (see the review by Bowler 2016). The implications to
theories of planet formation and evolution are discussed in Section 4. Finally, in Section 5, we
summarize and outline the promising directions for future developments.

1.1. On Defining and Interpreting Planet Occurrence Rate

Many statistical studies focus on deriving the intrinsic occurrence rate (or the often inter-
changeably used term, frequency) of planets. But from one study to another, the same term can
carry different meanings. In the following, we clarify these different definitions to avoid further
misinterpretations.

In most studies, the derived occurrence rate is the average number of planets per star, and we
denote it as n̄p, which is defined as

n̄p ≡ Total # of planets
Total # of stars

. 1.

Here, a planet is restricted to lie within a predefined parameter space, often in the period–radius
plane (for the transit method) or the period–mass (or minimum mass mp sin i) plane (for the RV
method). Similarly, a star is restricted to a star-like target of predefined properties. Because a large
fraction of such stars may actually have unresolved stellar companions, the correction for the
impact of the stellar binarity can be important for the inference of the planet-formation efficiency
(see Section 2.5.1).

Another important quantity sometimes referred to as occurrence rate is the fraction of stars
with planets, Fp:

Fp ≡ Total # of planetary systems
Total # of stars

. 2.

Here, a planetary system has at least one planet existing in a predefined parameter space. By defi-
nition, Fp ≤ 1, so it is usually reported as a percentage. However, an occurrence rate reported as
a percentage (i.e., “X% of stars have planets”) does not necessarily mean that it is the fraction of
stars that are hosts of planets, because n̄p is also frequently reported as a percentage.

To distinguish between the two definitions, we refer to n̄p as the frequency of planets and
Fp as the frequency of planetary systems. The ratio of the two measures the average number of
planets per planetary system (within a predefined parameter space), which we call average planet
multiplicity and denote as m̄p:

m̄p ≡ n̄p
Fp

= Total # of planets
Total # of planetary systems

. 3.

Kepler data suggest that multiplanet systems are common, so usually m̄p is larger than unity, and
consequently n̄p and Fp substantially differ from each other. They only become similar when the
average planet multiplicity m̄p → 1, which can happen when either (a) a category of planets with
low intrinsic multiplicity (e.g., short-period giant planets) is concerned or (b) the parameter space
of interest is small enough that systems with more than one such planet are rare.
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The three quantities, n̄p, Fp, and m̄p, are all important for testing theories. To provide a simple
example, with only n̄p measured to be unity, it is possible that all stars have one planet (Fp = 100%
and m̄p = 1) or that half of the stars have two planets (Fp = 50% and m̄p = 2). These two cases
obviously demand different theoretical explanations.

Observationally, the derivations of n̄p and Fp have rather different requirements and follow
different procedures. It is generally more straightforward to derive n̄p, because correcting the
detectability of individual planets concerns observables directly measurable from surveys (e.g.,
orbital periods and planet sizes for transit, assuming that the properties of the stars are known). In
contrast, the detectability of a planetary system usually concerns the intrinsic architecture of the
system, including the planet multiplicity and distributions of the orbital and physical parameters,
many of which may not be directly observable, so the derivation of Fp can rely on assumptions
of these unknowns. This is especially an issue in transit surveys: The derivation of Fp requires
assumptions about the mutual inclinations between planets, and different assumptions can lead to
fairly different values of Fp (see Section 2.2).

In deriving the two frequencies, statistical studies involving multiplanet systems usually
treat the planet occurrence as a Poisson process. This may be a reasonable assumption in the
derivation of the planet frequency n̄p, but it can lead to unreliable results in the derivation of the
planetary system frequency Fp. This Poisson process assumption implies that the presences of
individual planets in the same system are independent and that their physical and orbital prop-
erties are independent of the properties of other planets or of the host star. As discussed later
in this review, such an assumption breaks down in certain circumstances. Below, we provide
a specific example to demonstrate its impact on the planetary system frequency. The fractions
of Sun-like stars with cold giant planets and with planets that Kepler is sensitive to are 10% and
30%, respectively. The fraction of such stars with at least one planet in the joint parameter space
would be 1 − (1 − 30%) × (1 − 10%) = 37% under the Poisson process assumption. However,
this frequency is determined to be ∼30% as a result of the strong correlation between the inner
and the outer planets (Section 3.2). The correlations (or sometimes anticorrelations) between the
occurrences of planets around the same host also suggest that one may not be able to extrapolate
a parameterized distribution of the planetary system frequency to a parameter space that is not
covered by the data.

A number of studies have reported Fp by using the detectability of the first detected (or themost
detectable) planet in the system as that of the whole system (e.g., Cumming et al. 2008, Mayor
et al. 2011, Fressin et al. 2013, Petigura et al. 2013). This approach does not require assumptions
on planet multiplicity or architecture. However, as the detectability of any planet is no greater
than the detectability of the system it resides in, this approach typically tends to overestimate Fp

(Zhu et al. 2018b).

1.2. On Inferring the Frequency of Planets

In this section, we discuss the commonly used methods of inferring the frequency of planets n̄p
from a statistical survey of N� target stars. A popular method is the so-called inverse detection
efficiency method (IDEM), which has been used extensively in the literature, including in many
influential studies (e.g., Mayor et al. 2011; Howard et al. 2012; Fressin et al. 2013; Petigura et al.
2013; Dressing & Charbonneau 2013, 2015). For our illustrative survey, the average number of
planets per star according to IDEM is

n̄IDEM
p = 1

N�

Np∑
i=1

1
pi

= Np

N�

〈
1
p

〉
. 4.
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Here, pi is the survey detection efficiency of the ith ofNp detected planets and 〈·〉 is the average over
all detected planets. IDEM is intuitive, simple to perform, and computationally efficient, as it does
not require computing the detection efficiencies of null detections (which are usually the majority
of the targets), so it is useful in getting a rough estimate of the underlying frequency. However,
this method is not rigorously established in the probability theory and can potentially lead to
biased results (Foreman-Mackey et al. 2014, Hsu et al. 2018). Specifically, with a low detection
efficiency and a small number of detections, Hsu et al. (2018) found that IDEM often leads to
underestimated n̄p because the actual detections typically come from targets with larger-than-
average sensitivities. IDEM can also suffer substantial fluctuations because of the inversion of the
(typically small) detection efficiency.

An approach with sound statistical basis is modeling planet occurrence as a Poisson process
and performing maximum likelihood (ML) analysis (e.g., Tabachnik & Tremaine 2002, Cumming
et al. 2008, Gould et al. 2010, Youdin 2011, Dong & Zhu 2013, Burke et al. 2015). In a given
bin that has Np planet detections, Youdin (2011, see their section 3.1) and Foreman-Mackey et al.
(2014, see their appendix A) show that the ML estimator for planet frequency is

n̄ML
p = Np∑N�

j=1 p j
= Np

N�

1
〈p〉 = Np

N eff
�

; N eff
� ≡ N�〈p〉. 5.

Here, pj is the planetary detection efficiency in the bin for the jth star, regardless of whether the
star yields any actual planet detection or not, and N eff

� is the effective number of target stars.
Unlike in Equation 4, the average here is performed among all target stars. Compared to IDEM,
this method is computationally more expensive while being statistically superior. It is more robust
against fluctuations in the efficiencies of individual detections (as well as null detections) because
the averaging is performed on p rather than 1/p.

Next, we elaborate on incorporating the above approach into the Bayesian framework follow-
ing the simplified Bayesian model of Hsu et al. (2018, see their appendix B) but with some cor-
rections. The posterior probability distribution of planet frequency n̄p for the statistical sample is
given by

P(n̄p|Np,N eff
� ) ∝ P(Np|n̄p,N eff

� )Ppri(n̄p). 6.

The first term on the right-hand side quantifies the probability (or likelihood) of having theNp de-
tections for a given rate n̄p, which under the Poisson process assumption is described by a Gamma
distribution.1 The second term, Ppri(n̄p), is the prior distribution of n̄p. If a conjugate prior is as-
signed as a Gamma distribution with a shape parameter α0 and a rate parameter β0, the resulting
posterior distribution is then a Gamma distribution with the shape parameter α0 + Np and the
rate parameter β0 +N eff

� :

P(n̄p|Np,N eff
� ) ∝ n̄α0+Np−1

p e−n̄p(β0+N
eff
� ). 7.

For a flat prior on n̄p, the two parameters are α0 = 1 and β0 = 0, respectively. For completeness,
the mean and standard deviation of this Gamma distribution posterior are

μ(n̄p) = α0 +Np

β0 +N eff
�

, σ (n̄p) =
√

α0 +Np

β0 +N eff
�

. 8.

1A Gamma distribution can be parameterized in terms of a shape parameter α (>0) and a rate parameter
β (>0). The probability density function of a variable x is f (x; α, β) = (βαxα−1e−β x)/�(α) ∝ xα−1e−βx, where
�(α) is the Gamma function evaluated at α.
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The first expression reduces to the ML estimator of Equation 5 if a log-flat prior on the planet
frequency n̄p is assumed (i.e., α0 = β0 = 0). The expressions given by Equation 8 provide easy-to-
use estimates to report when the number of detections is relatively large. However, when small or
null detections are involved, the posterior probability distribution is fairly non-Gaussian. It is then
more appropriate to report the median value, the 68% credible interval, and/or the 95% upper
limit, all of which can be derived from the cumulative posterior probability distribution. It is also
worth noting that, in the case of null detections, a meaningful upper limit on n̄p cannot be derived
with the log-flat prior because the shape parameter becomes zero and the Gamma distribution is
undefined.We show in Section 2.1 an application of the Bayesian approach to derive the frequency
of planets in the Kepler parameter space.

2. THE INNER PLANETARY SYSTEM

We review in this section planet statistics in the inner region (�1 AU of Sun-like stars), which
is well explored thanks to thousands of planets detected by the RV and transit techniques. We
focus on the best statistical probe by far of the inner region—the large and uniform sample from
the Kepler mission, which is sensitive to transiting planets with radii Rp down to ∼R� and orbital
periods P up to ∼1 year (Borucki et al. 2010).

We first derive a clean baseline sample based on the final Kepler data release (DR25; Thompson
et al. 2018) and the improved stellar parameters from Berger et al. (2020b). The latter work com-
bines the astrometric measurements from Gaia DR2 (Gaia Collab. et al. 2018) with the avail-
able photometric and spectroscopic information to yield stellar radii with a median uncertainty of
4%. Starting from the DR25 planet catalog, we have removed planet candidates with (a) transit
signal-to-noise ratio (S/N) below the nominal threshold (S/N =7.1), (b) NASA Exoplanet Archive
(exoplanetarchive.ipac.caltech.edu) disposition flag being false positive, (c) the derived planetary
radius Rp > 20R�, (d) the orbital period P> 400 days, and (e) the best-fit transit impact parameter
b> 1.We restrict our discussion to Sun-like stars that are defined as main-sequence stars (as clas-
sified by Berger et al. 2018) with effective temperatures between 4,700 K and 6,500 K. The bulk
of this section is about planets around Sun-like hosts, and topics such as correlations with various
stellar properties, such as stellar mass, metallicity and binarity, are discussed in Section 2.5.

The baseline sample contains 2,525 planet detections around 98,213 Sun-like stars. Of all the
transiting planets, 1,451 are found in systems with only one detected transiting planet2 and the
remaining 1,074 are from systems with multiple detected transiting planets. The average observed
multiplicity rate, namely the average fraction of planets from knownmultiplanet systems, is 42.5%.
This is a lower limit on the intrinsic multiplicity rate, as many of the single-planet systems seen
in Kepler are likely part of intrinsic multiplanet systems (see details in Section 2.2). The observed
transit multiplicity distribution in the sample is

(N1,N2,N3,N4,N5,N6,N7) = (1,451, 278, 97, 37, 12, 2, 1), 9.

and no system has more than seven transiting planets.3 Figure 2 illustrates the planets in our
sample in the period–radius plane. Different multiplicities of transiting planets are shown with
different symbols.

2We sometimes use the contraction “tranet” to stand for “transiting planet” in the text and figure legends and
captions.
3Note that the only system in our sample with seven transiting planets, Kepler-90, has been found to contain
one additional planet candidate (Shallue & Vanderburg 2018). However, this additional candidate was not
found by the Kepler DR25 pipeline and thus is not included.
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indicating the observed multiplicity (note that we use the contraction “tranet” to refer to “transiting planet”
in the legend). The gray solid curve indicates the median detection efficiency of the planet search pipeline.
The Solar System planets in the inner region, namely Mercury, Venus, and Earth, are denoted with their first
letters. The median precision on the planetary radius is ∼7%. The radii of Jupiter and Neptune are shown
with horizontal dashed lines. The radius valley at ∼2 R� (see Section 2.1.4) is visible.

2.1. Planet Distribution in the Period–Radius Plane

With the above statistical sample, we derive the planet frequencies in the Bayesian framework of
Section 1.2.The parameter space in the period–radius plane is divided into logarithmically equally
spaced cells.4 In each cell, the number of planet detections,Np, is found and the average detection
efficiency, 〈p〉, is computed via

〈p〉 =
∫ Rp,max
Rp,min

∫ Pmax
Pmin

(R
/a)S(P,Rp)d lnP d lnRp∫ Rp,max
Rp,min

∫ Pmax
Pmin

d lnP d lnRp

. 10.

Here Rp, min,Rp, max,Pmin, and Pmax denote the boundaries of the cell, and R�/a is approximately the
transit geometric probability at semimajor axis a around a Sun-like host.The sensitivity due to sur-
vey detection thresholds at a given period and radius, S(P,Rp), is computed with the KeplerPORTs
code (publicly available at https://github.com/nasa/KeplerPORTs), which was first developed
by Burke et al. (2015) and further updated for Kepler DR25 (Burke & Catanzarite 2017a) by in-
corporating results of transit injection and recovery tests for the final Kepler pipeline (Burke &
Catanzarite 2017b, Christiansen et al. 2020). Updated stellar parameters were used to derive the
mean sensitivity curve.

We adopt a flat prior on n̄p, and its posterior distribution is then described by the Gamma
distribution of Equation 7 with α0 = 1 and β0 = 0. For cells with ≤2 detections, we report the

4Because the typical precisions of planetary period and radius are much smaller than the cell sizes, we ignore
the uncertainties of planetary parameters. See Foreman-Mackey et al. (2014) for how to incorporate the planet
parameter errors in the analysis.
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This figure illustrates the planet frequencies (n̄p) and the observed multiplicity fractions based on the planet sample in Figure 2. The
numbers with error bars are the percentages of planets with periods and radii within the given cell. If there are less than three
detections found within the cell, then the 95% upper limit is reported instead. These upper limits are highlighted in red. The fraction
in each cell denotes the observed multiplicity fraction, namely the fraction of planets in that cell found to reside in multiplanet systems.
We use “N/A” for cells with less than three detections. The red dashed lines mark the regions corresponding to hot Jupiters, hot
Neptune “desert,” and ultrashort-period planets.

95% upper limits, whereas for the rest the means and the standard deviations given by Equation 8
are reported as the measurements and associated uncertainties, respectively.We have verified that
the deviation between the mean and the median is substantially smaller than the uncertainty for
all relevant cells.

The derived planet frequencymap is shown inFigure 3. For any cell withmore than two detec-
tions, we also indicate the observed multiplicity rate of planets in the cell. Again, these multiplicity
rates represent the lower limits on the fraction of planets in those cells that reside in multiplanet
systems. We summarize several key results below.

� The integrated planet frequency is n̄p = 1.23 ± 0.06 for planets with radii in the range of
1–20R� and orbital periods of up to 400 days. This is broadly consistent with results from
previous studies (e.g., Fressin et al. 2013, Petigura et al. 2018, Hsu et al. 2019). As stressed
in Section 1.1, statistical analyses like this one do not yield the fraction of stars with planets
Fp, as the impacts of the multiplicity and the mutual inclination have not been taken into
account (see Section 2.2).

� As has been clear since the earliest Kepler statistical studies, there are generally many more
small planets with radii Rp � 4R� than larger ones for orbital periods P < 400 days. Planet
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frequencies tend to increase from the upper left (large Rp and small P) toward the lower right
(small Rp and large P). In other words, the intrinsic radius distribution is dependent on the
orbital period (e.g.,Dong&Zhu 2013, Foreman-Mackey et al. 2014,Hsu et al. 2018).There
exist some local regions where the general trends break down, such as the radius valley (see
Section 2.1.4).

� Sub-Earths (Rp < 1R�) and Earth-sized planets in Earth-like orbits are not well probed by
Kepler, and thus estimates of their frequencies are most susceptible to the uncertainties of
survey sensitivity estimates. As a result, there remain large discrepancies on their intrinsic
frequencies in the literature (seeWinn& Fabrycky 2015, their table 2, and Burke et al. 2015,
their figure 17).

� Kepler planets commonly reside in multiplanet systems in most parts of the period–radius
plane, with some notable exceptions such as the hot Jupiter region (Steffen et al. 2012; see
Section 2.1.1 for more discussion). The intrinsic multiplicity rates are likely higher than the
observedmultiplicity rates shown inFigure 3.We defer to Section 2.2 for further discussion.

The above method to derive the planet frequency n̄p is nonparametric. An alternative approach
employs a parameterized planet distribution function and then constrains the associated param-
eters. The parametric approach has been widely used in statistical studies of various detection
techniques, including transit (e.g., Youdin 2011, Howard et al. 2012, Dong & Zhu 2013, Burke
et al. 2015), RV (e.g., Tabachnik & Tremaine 2002, Cumming et al. 2008), and microlensing (e.g.,
Gould et al. 2010, Clanton & Gaudi 2016, Suzuki et al. 2016) studies. It is also commonly used in
simulations of generating synthetic planetary systems (e.g., Mulders et al. 2018, He et al. 2019).
The commonly adopted planet distribution function is separable between the orbital period (or
semimajor axis) and the planetary radius (or mass):

d2N
d lnPd lnRp

∝ dN
d lnP

dN
d lnRp

. 11.

The distributions of the orbital period and the planetary radius are usually parameterized as power
laws or broken power laws.The use of such a separable function implicitly assumes that the period
(radius) distribution is independent of the planetary radius (period). As discussed above, such an
assumption is not valid for the inner planetary system. It is likely not valid for planet distributions
in other regions of the parameter space either. The implications of this failure on the derived
frequencies from the parametric method and on the theoretical interpretations of the underly-
ing population have not been fully explored. In what follows, we provide brief discussions about
selected regions in the period–radius plane.

2.1.1. Hot Jupiters. As the first type of exoplanets found around solar-type stars (Mayor &
Queloz 1995), hot Jupiters (8R� < Rp < 20R� and P < 10 days) remain interesting and exciting
targets for both observational and theoretical purposes. Here, we only review the frequency and
multiplicity of hot Jupiters in the current context and refer interested readers to the recent review
by Dawson & Johnson (2018) for more in-depth discussion about the hot Jupiter population.

There is a long-standing discrepancy between the hot Jupiter frequencies inferred from RV
and transit surveys (e.g., Gould et al. 2006a, Wright et al. 2012; see Santerne et al. 2016, their
table B9 for an incomplete list of references). For example, our statistical sample yields a rate of
(0.62 ± 0.09%), which is in good agreement with previous studies of the hot Jupiter frequency in
the Kepler field (e.g., Howard et al. 2012, Fressin et al. 2013, Santerne et al. 2016), whereas the RV
surveys of stars in the Solar Neighborhood report rates that are typically a factor of ∼2 higher
(0.9–1.2%; Mayor et al. 2011,Wright et al. 2012). It was suggested that the discrepancy could be
caused by the different stellar properties, such as age, metallicity, and binary fraction, between the
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RV and transit samples. This has been tested by several follow-up studies of the Kepler sample.
The Kepler stars are only slightly subsolar on average (〈[Fe/H]〉Kepler ≈ −0.04; Dong et al. 2014b),
and their metallicity differences with the RV targets (〈[Fe/H]〉RV ≈ 0.0) seem to be too small to
fully account for the discrepancy even given the steep dependence of hot Jupiter frequency on
metallicity (Guo et al. 2017). The unresolved binaries are also unlikely to substantially change
the hot Jupiter frequency in the Kepler sample (Bouma et al. 2018). However, because RV surveys
preferentially exclude close (∼1–50AU) stellar binaries from their samples, this discrepancy in hot
Jupiter frequencies between transit and RV surveys can potentially be resolved if the formation
of hot Jupiters is suppressed in such close binary systems (Moe & Kratter 2019). Searching for
stellar companions of transiting hot Jupiters (e.g., Ngo et al. 2016) and making comparisons with
field stars constitute a promising way to further test this possibility.

As shown in Figure 2, 1 out of the 49 hot Jupiters in our statistical sample, Kepler-730b, has a
nearby small planet companion (Zhu et al. 2018a, Cañas et al. 2019). As of this writing, only two
other hot Jupiters,WASP-47b (Becker et al. 2015) and TOI-1130c (Huang et al. 2020), are known
to share the same property.Our statistical sample suggests that ∼2% (<9.7%, 95% upper limit) of
hot Jupiters have nearby (�20 days), small (∼1–4R�), and nearly coplanar companions (see also
Steffen et al. 2012 for the constraint on noncoplanar companions).This lowmultiplicity rate of hot
Jupiters supports the general idea that most of them have undergone some large-scale migrations
to arrive at the current locations (e.g., Lin et al. 1996, Rasio & Ford 1996, Weidenschilling &
Marzari 1996).We refer to Dawson & Johnson (2018) for more in-depth discussion on this topic.

2.1.2. Hot Neptune desert. The region located at P � 4 days and 2R� � Rp � 8R� lands in
the so-called hot Neptune (or sub-Jovian) desert (e.g., Szabó & Kiss 2011, Beaugé & Nesvorný
2013, Mazeh et al. 2016, and references therein), which is considered underpopulated, especially
when inspecting mixed planet samples found in surveys with different detection sensitivities (e.g.,
ground-based transits and Kepler). This desert is however not that barren: The total planet fre-
quency enclosed in the above region is 0.61 ± 0.07% from our statistical analysis (see Figure 3),
making this hot Neptune desert similarly populated as the hot Jupiter region (see also Dong et al.
2018).Although the above frequency is derived for a rectangular region in the period–radius plane,
it is worth noting that the boundaries of this desert region are better described as a triangle and
extend out to 5–10 days in mp versus a and Rp versus P planes (see Mazeh et al. 2016, their fig-
ures 1 and 4). Dong et al. (2018) found that the frequency of planets inside this region depends
on the host star metallicity in a way similar to the frequency of hot Jupiters, and they dubbed this
population as Hoptunes (rather than hot Neptunes) to reflect that not all of them were known
to be Neptune-like physically. Out of our baseline sample of 61 planets in this region, 14 are ob-
served to have planetary companions, and the periods for the majority of these companions are
within 10 days. The observed multiplicity rate is thus 23%, which is lower than the Kepler average
while higher than that of hot Jupiters (see also Dong et al. 2018).We refer to Dawson & Johnson
(2018) for more discussion on the connection of this population with close-in Jupiters and related
theoretical implications.

A number of theories have been proposed to explain the formation of planets in this region
(e.g., Kurokawa & Nakamoto 2014, Lundkvist et al. 2016, Matsakos & Königl 2016, Bailey
& Batygin 2018, Owen & Lai 2018). The leading explanations of its triangular boundaries
invoke photoevaporation (see more discussion in Section 2.1.4) and tidal effects following the
high-eccentricity migration. The upper boundary is best explained as the tidal disruption barrier
for gas giants following their high-eccentricity migrations (Matsakos & Königl 2016, Owen
& Lai 2018). More massive planets can be tidally circularized closer to the star without tidal
disruption, resulting in the negative slope of the upper boundary. It has been proposed that the

www.annualreviews.org • Exoplanet Statistics 301



same mechanism also produces the lower boundary, with the positive slope resulting from a
mass–radius relation of small planets that is different from the relation of giant planets (Matsakos
& Königl 2016). However, this mechanism may not be able to explain the planets that are
in or near the desert region and reside in multiplanet systems. An alternative theory, proposed by
Owen & Lai (2018), suggests that the lower boundary is better explained by the photoevaporation
of highly irradiated planets and that the positive slope results from the fact that the photoevap-
oration mechanism is more effective if the planet is closer to the host star. There has been a
growing interest for planets in this region with the TESS (Transiting Exoplanet Survey Satellite;
e.g., Armstrong et al. 2020, Burt et al. 2020) mission, and follow-up studies of such planets will
soon allow for a better understanding of their physical properties and formation mechanisms.

2.1.3. Ultra-short-period planets. Planets with radii of 0.5–2R� and periods of P �1 day
known as ultrashort-period planets (USPs) represent a rather extreme planet population. The
period threshold for USPs at one day corresponds to an equilibrium temperature of ∼2,000 K for
a Sun-like host, which is hot enough to sublimate dust grains. Below, we briefly summarize several
key properties of USPs and refer interested readers to the recent comprehensive review by Winn
et al. (2018) for more discussion about this extreme planet population.

Our statistical analysis yields n̄p = (0.39 ± 0.04)% for USPs.This is in general agreement with
the result of Sanchis-Ojeda et al. (2014), whose specialized pipeline yields n̄p = (0.51 ± 0.07)%
for planets with radii in the range of 0.8–2R� and P < 1 day. Out of the 81 USPs in our sample,
16 are found with outer planetary companions, indicating an observed multiplicity rate of 20%.
The true multiplicity rate is probably much higher, because USPs can be largely misaligned rel-
ative to the outer planetary companions (Dai et al. 2018, Petrovich et al. 2019). In 13 of the
16 multiplanet systems involving USPs, the closest outer companion has Pc � 10 days, and the
USP is usually farther apart in terms of the period ratio from the rest of the planets in the same
system (see also Steffen & Farr 2013).

The highly irradiative environment at subday orbit implies that USPs are unlikely to have
formed in situ. Partially because of the comparable rates between hot Jupiters and USPs, it had
been suggested that USPs could be the surviving cores of tidally disrupted hot Jupiters ( Jackson
et al. 2013), but this was not supported by several pieces of evidence including the lack of strong
host metallicity dependence (Winn et al. 2017) and the relatively high multiplicity rate compared
to hot Jupiters. A more plausible scenario is that the USPs have arrived at their current locations
without losing much of their initial mass. One way of achieving this is the gradual decay of the
orbit due to the tidal dissipation within the host star (Lee&Chiang 2017).Alternatively, the proto-
USP planet may have been sent to an eccentric (and misaligned) orbit following the dynamical
interactions with other planets in the system, and then the orbit may have decayed and circularized
due to the tidal dissipation within the planet (Schlaufman et al. 2010, Petrovich et al. 2019, Pu &
Lai 2019). This latter model sees its support in the relatively large mutual inclinations of USPs
(Dai et al. 2018). Additionally, in order for the tidal inspiral model to produce USPs, the tidal
dissipation in USP hosts needs to be efficient, but the population analysis on stellar kinematic
ages seems to suggest otherwise (Hamer & Schlaufman 2020).

2.1.4. Radius valley. An important discovery in the field of exoplanets in recent years is
the radius valley, which refers to a region in the period–radius plane at radii Rp ∼ 2R� and
periods of ∼3–30 days (Fulton et al. 2017, Van Eylen et al. 2018, Fulton & Petigura 2018). This
radius valley is visible in our statistical sample (see Figure 2). The position of the valley in radius
is reported to decrease with the orbital period (Van Eylen et al. 2018) and increase with the stellar
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(a) The zoom-in view of the Kepler planets in our sample centered at the radius valley. The y axis shows the rescaled radius
R̃p ≡ Rp(P/10 days)−g(M�/M
 )−h (see Equation 12), and we adopt the best-fit g = −0.09 (Van Eylen et al. 2018) and h = 0.26 (Berger
et al. 2020a). The black box marks the boundary within which planets are used to derive the intrinsic radius distribution. (b) The
intrinsic distribution of the rescaled radius R̃p. The radius gap, highlighted in the gray band, is most prominent when both period and
stellar mass dependences are taken into account.

mass (Wu 2019, Berger et al. 2020a). The two dependences can be parameterized as

Rp

Rvalley
p

=
(

P
10 days

)g ( M�

M


)h

. 12.

The valley position at orbital period P = 10 days and host mass M� = M� is found to be
Rvalley
p = 1.9 ± 0.2R⊕ and the slope quantifying the period dependence is g = −0.09+0.02

−0.04 (Van
Eylen et al. 2018). The slope quantifying the stellar mass dependence is h = 0.26+0.21

−0.16 (Berger et al.
2020a).With the above relation one can then highlight the radius valley by rescaling the radius to
R̃p ≡ Rp(P/10 days)−g(M�/M
 )−h. Figure 4a illustrates our sample in this rescaled radius (with
g = −0.09 and h = 0.26) versus orbital period plane. We also show the intrinsic distribution of
the rescaled radius in Figure 4b for planets with R̃p in the range 1–4R� and P in the range of 3–
30 days. Our choice of the period upper boundary is motivated by Figure 2: Beyond ∼30 days the
number of detections in the relevant region and thus the statistical power drop significantly. The
peak-to-dip contrast in our radius distribution is not as significant as that shown by Fulton et al.
(2017) and Fulton & Petigura (2018). In particular, our rescaled radius distribution does not show
an obvious single peak at R̃p < Rvalley

p . We have done computations with the same period range as
used in those studies and confirm that our specific choice of the period range is not the cause of
this difference.One possible reason is the different statistical methods used to infer the occurrence
rate: As discussed in Section 1.2, the IDEM approach used by Fulton et al. (2017) and Fulton &
Petigura (2018) tends to underestimate the frequency at low-sensitivity regions (Rp ∼ R�). The
fact that the radius distribution does not seem to decrease at sub-Earth sizes suggests the presence
of many undiscovered sub-Earths. The broader radius distribution may also imply that the plane-
tary mass distribution is not as narrowly peaked as some previous studies inferred (e.g.,Wu 2019).
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The leading theory for the radius valley is the atmospheric evaporation driven by high-energy
photons from the host star (photoevaporation) (Lopez & Fortney 2013; Owen &Wu 2013, 2017;
Jin et al. 2014). In fact, the existence of the radius valley at approximately the discovered position
had been predicted years before its discovery (Lopez & Fortney 2013, Owen & Wu 2013; see a
historic overview in Owen 2019), which is exceptional in exoplanetary science. The photoevapo-
ration of the atmosphere is thought to mostly take place during the early ages of the system when
the star emits a higher fraction of its total luminosity at high energy (�100 Myr; e.g., Jackson
et al. 2012, Tu et al. 2015, but also see King &Wheatley 2021). For close-in (∼3–30 days) planets
with core masses of a few Earth masses, the high-energy radiation is sufficient to unbind the entire
hydrogen/helium atmosphere if its initial mass fraction is below some critical value (a few percent;
Owen &Wu 2017). The radius valley thus emerges, separating planets with and without extended
atmospheres (Lopez & Fortney 2013; Owen & Wu 2013, 2017). The observed period and stellar
mass dependences can also be well explained by photoevaporation. As the orbital period increases
and/or the host mass decreases, the amount of high-energy radiation the planet receives decreases,
and thus the valley moves to smaller radii (Owen & Wu 2017, Wu 2019).5 We refer interested
readers to Owen (2019) for a comprehensive review on the photoevaporation mechanism.

According to the photoevaporation theory, the properties (e.g., location and shape) of the radius
valley depend on the underlying planetary properties, especially distributions of the core mass,
core composition, and atmospheric mass fraction (Lopez & Fortney 2013, Owen & Wu 2013).
Therefore, the observed radius valley opens up a venue to statistically infer the properties of close-
in low-mass planets at birth (Owen &Wu 2017, Jin &Mordasini 2018,Wu 2019, Rogers &Owen
2021). Assuming that photoevaporation is the underlying mechanism, these studies collectively
point to a typical core mass of a few Earth masses, a core composition similar to that of the Earth
(i.e., rich in silicate/iron and poor in water/ice), and a typical atmosphere mass fraction at birth
of a few percent. These inferred properties have important implications for the formation and
migration history of these close-in planets (see Section 4).

Although photoevaporation has seen its success in predicting and explaining the radius val-
ley, alternative theories exist that can also explain the observed valley (e.g., Ginzburg et al. 2018,
Lee & Connors 2021), of which the core-powered mass-loss mechanism is considered the main
competing theory.Unlike photoevaporation, the energy source for atmosphere stripping in a core-
powered mass-loss mechanism is the internal luminosity of the cooling core, and this process is
expected to operate on much longer timescales (∼1 Gyr) (Ginzburg et al. 2018). The observed pe-
riod and stellar mass dependences of the radius valley (Equation 12) are also consistent with this
mechanism (Gupta & Schlichting 2019, 2020). Similar to photoevaporation, the core-powered
mass-loss mechanism also supports that the close-in low-mass planets have predominantly rocky
cores with low water-ice fractions (Gupta & Schlichting 2019).

Attempts have been made to identify which of the two mechanisms discussed above is more
responsible for the observed features.These studies made use of either the different stellar mass or
age dependences of the two mechanisms (e.g., Hirano et al. 2018, Berger et al. 2020a). However,
the currently available data provide no conclusive result to distinguish between the two. Larger
samples and/or more precise measurements of stellar properties will be needed.

5Although later-type stars have higher fractions of the total luminosity emitted in higher energy (∝M−3
� ;

Lopez & Rice 2018) and remain active for a longer period of time, these lower-mass stars have much lower
total luminosities (∝M4

� for solar and later-type stars). The lifetime-integrated high-energy radiation at a
certain orbital separation is shown to decrease with decreasing stellar mass (see McDonald et al. 2019, their
figure 4).
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2.2. Mutual Inclinations and the Intrinsic Multiplicity

The mutual inclination distribution of planets in multiplanet systems conveys important informa-
tion on the formation and dynamical evolution of planetary systems.However, currently employed
detection techniques are usually incapable of directly measuring mutual inclinations. This is par-
ticularly true for RV and microlensing. The transit technique is strongly biased toward (nearly)
coplanar systems. Nevertheless, advancements have made it possible to statistically infer the mu-
tual inclination distribution from the Kepler data.

The key issue in constraining the mutual inclination distribution with transit is the strong
degeneracy with the intrinsic multiplicity (e.g., Lissauer et al. 2011, Tremaine & Dong 2012).
Specifically, with the observed multiplicity function of transit alone one cannot distinguish be-
tween high-multiplicity systems with large mutual inclinations and low-multiplicity systems with
small mutual inclinations.We therefore combine mutual inclinations and intrinsic multiplicity in
the same discussion.

Before discussing the statistically inferred mutual inclinations, we briefly overview a handful
of systems with measured large mutual inclinations. By combining HST astrometry and ground-
based RV measurements, McArthur et al. (2010) measured the mutual inclination between two
of the three planetary companions in the Upsilon Andromeda system to be about 30 deg. Mills
& Fabrycky (2017) performed photodynamical modeling of the transit timing variation (TTV)
and transit duration variation (TDV) signals of the Kepler-108 system and found the mutual
inclination to be �I = 24+11

−8 deg between the two transiting planets. The pi Mensae system,
which hosts a long-period giant planet and a TESS transiting super Earth (Gandolfi et al. 2018,
Huang et al. 2018), is reported to have significant mutual inclinations (∼30–150 deg) from joint
analyses of the Hipparcos and Gaia DR2 astrometry (Damasso et al. 2020, De Rosa et al. 2020,
Xuan & Wyatt 2020). Additionally, some USP systems have also been determined to have large
mutual inclinations (e.g., Dai et al. 2018). More planetary systems with large mutual inclinations
are expected to be found in the upcoming years, especially with Gaia’s capability to determine
the 3D orbital configurations (Perryman et al. 2014).

2.2.1. The weighted transit duration method. A popular method to statistically infer the
mutual inclination of Kepler multiplanet systems makes use of the ratio of transit chord lengths
(Steffen et al. 2010),

ξ ≡ TinP
−1/3
in

ToutP
−1/3
out

=
√

(1 + rin )2 − b2in
(1 + rout )2 − b2out

. 13.

The subscripts in and out denote values of the inner and the outer transiting planets, respectively.
Here, T measures the time from the first to the last contact points of transit, r is the planet-
to-star radius ratio, and b is the transit impact parameter. As both T and period P are precisely
measured from transit data (Seager & Mallén-Ornelas 2003), the parameter ξ is well determined
from observations. The last expression in Equation 13 is used to construct the ξ distribution from
models with assumed mutual inclination distributions. When two transiting planets are exactly
coplanar, the ratio bin/bout = ain/aout = (Pin/Pout)2/3 is precisely measured, and thus the parameter
ξ only concerns one poorly constrained fiducial parameter (either bin or bout, since both rin and
rout are reasonably well measured). The distribution of ξ for coplanar systems is thus expected
to narrowly peak at unity. In practice, the observed distribution is not so narrow, because of the
introduction of the mutual inclination (see Figure 5a).6 Applying this weighted transit duration

6The orbital eccentricity e in principle also affects the ξ distribution, but its contribution is relatively minor
and thus e cannot be well constrained with this method (Fabrycky et al. 2014).
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(a) The cumulative distribution functions (CDFs) of the weighted transit duration ratio, ξ (Equation 13), for
different transit multiplicities. Larger transit multiplicities tend to have narrower ξ distributions, suggesting
smaller mutual inclination dispersions σi. (b) The CDFs of the normalized transit duration, T/T0
(Equation 15), for different transit multiplicities. Here, T0 is the transit duration for a circular and coplanar
orbit. Larger transit multiplicities have narrower T/T0 distributions, indicating smaller eccentricity
dispersions σe.

method to large samples of Kepler planet pairs, Fang & Margot (2012) and Fabrycky et al. (2014)
found that the mutual inclinations between transiting planets in the Kepler multiplanet systems
could be well described by a Rayleigh distribution with dispersion of a few degrees (�3–5 deg).
This has been frequently interpreted as multiplanet systems being nearly coplanar. However, with
the use of only transiting planet pairs, which preferentially have small mutual inclinations, the
weighted transit duration method cannot well determine the higher end of the mutual inclination
distribution. As an extreme case, even the isotropic distribution of orbital inclinations cannot be
reliably ruled out with the use of transit data alone (Tremaine & Dong 2012).

2.2.2. Kepler dichotomy. To recover the true mutual inclination distribution, one needs to
break its strong degeneracy with intrinsic multiplicity. The first attempt was carried out by
Lissauer et al. (2011). The authors tried different functional forms for the intrinsic multiplicity
distribution (uniform, Poisson, and exponential) as well as for the mutual inclination distribution
(uniform and Rayleigh; see also Sandford et al. 2019). By modeling the intrinsic multiplicity as a
uniform (or Poisson) distribution and the mutual inclination as a Rayleigh distribution, Lissauer
et al. (2011) were able to find matches to all observed transit multiplicities except the transit sin-
gles. Specifically, their models would underpredict the number of systems with only one transiting
planet by nearly 50%. This signals the failure of their simplified model. Nevertheless, this feature
was picked up bymany others and phrased as the evidence for two distinct populations of planetary
systems (the so-called “Kepler dichotomy”): In one population, planetary systems have small mu-
tual inclinations and relatively compact configurations, whereas in the other population planetary
systems have either only one planet or at least two largely mutually inclined planets (e.g., Johansen
et al. 2012, Ballard & Johnson 2016,Mulders et al. 2018,He et al. 2019). Taking the Kepler sample
as a whole, in terms of distributions of many properties of stars (e.g., stellar mass, metallicity) and
planets (e.g., period), transit singles and transit multis are statistically consistent with being drawn
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from the same parent population (e.g., Xie et al. 2016, Munoz Romero & Kempton 2018, Weiss
et al. 2018a, Zhu et al. 2018b), suggesting that they probably have the same origin.

Althoughmodeling the mutual inclination as a Rayleigh distribution (or more generally, Fisher
distribution; Tremaine & Dong 2012, Zhu et al. 2018b) seems a reasonable choice (see also
Tremaine 2015), the proper functional form for the intrinsic multiplicity distribution remains an
open question.Nevertheless, it is certainly oversimplified to assume that all planetary systems have
the same number of planets (e.g., Ballard & Johnson 2016, Mulders et al. 2018). Having a Pois-
son distribution for the intrinsic multiplicity (e.g., Lissauer et al. 2011, He et al. 2019, Sandford
et al. 2019, Zink et al. 2019) is likely not justified either. The underlying assumption behind the
Poisson distribution is that occurrences and properties of individual planets around the same host
are independent from each other. Although it has not been proved invalid for Kepler planets, there
is emerging evidence that the presence and properties of planets inside the same system may be
correlated because of the shared formation environment and/or host properties (see Sections 1.1,
2.4, and 2.5). Furthermore, the exponential or power-law (i.e., Zipfian distribution; Sandford et al.
2019) forms can be securely ruled out.These distributions predict overly abundant intrinsic single-
planet systems, which is not supported by TTV observations (e.g., Ford et al. 2011).

Given the strong degeneracies, disentangling the intrinsic multiplicity function and the mutual
inclination distribution therefore requires external information. To this end, Tremaine & Dong
(2012) developed a general statistical framework to account for observational biases of different
techniques. Applying their method to planetary systems from Kepler and RV, Tremaine & Dong
(2012) found that the mean mutual inclination dispersion, which was assumed to be the same
for all multiplicities, should be �5 deg and that the intrinsic multiplicity function could not be
constrained. See Figueira et al. (2012) for a different attempt in combining Kepler and RV data.

Tremaine & Dong (2012) also pointed out an observational feature that was difficult for their
models to explain. As originally noticed by Ford et al. (2011), the fraction of systems showing
TTV signals does not seem to vary significantly with the transit multiplicity, except perhaps for
very high (≥4) multiplicities (see also Xie et al. 2014). A similar feature also shows up in later large
and uniformTTV searches, which consistently found that nearly half of the TTV detections were
from systems with only one transiting planet (Holczer et al. 2016, Ofir et al. 2018). This indicates
that planets in transit singles have almost the same probability to show TTV signals as planets in
transit multis.

2.2.3. Multiplicity-dependent mutual inclinations. The assumption that the mutual inclina-
tion distribution is independent of the intrinsic multiplicity may not be valid. With all else being
equal, the critical mutual inclination for long-term instability is probably dependent on the num-
ber of planets in the system (e.g., Pu & Wu 2015; see also Section 2.4.2). Observationally, one
also finds that the distribution of the ξ parameter appears statistically different for different tran-
sit multiplicities. As shown in Figure 5a, lower transit multiplicities have broader ξ distributions
that are suggesting larger mutual inclinations (see also He et al. 2020).

Zhu et al. (2018b) introduced the following relation between the mutual inclination dispersion,
σ i, and the intrinsic multiplicity (within the Kepler window), k:

σi(k) = 0.8°
(
k
5

)ζ

. 14.

They applied the statistical framework of Tremaine & Dong (2012) and combined the transit and
TTV statistics to infer the intrinsic multiplicity and mutual inclination distributions. TTV, as a
detection technique (Agol et al. 2005, Holman & Murray 2005), applies to the same population
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(a) Distributions of eccentricity and mutual inclination dispersions as functions of the intrinsic multiplicity.
Here, the Kepler window is roughly the region above the gray solid curve in Figure 2. The relation σ e = σ i
is assumed (see Section 2.3.2). The ζ parameter quantifies the strength of the correlation with the intrinsic
multiplicity (Equation 14). The orange band denotes the inferred average multiplicity m̄p for Kepler systems.
The eccentricity dispersion inferred from transit singles (i.e., k ≥ 1) and the mutual inclination dispersion
constraint from systems with five Kepler transiting planets are shown as black squares. (b) The inferred
intrinsic multiplicity vector and the associated probability distribution functions. The fraction of Sun-like
stars with more than seven planets in the Kepler window is limited to <2.2% (95% upper limit). The medians
and the 16–84% ranges of individual components are denoted with squares and error bars, respectively.
Poisson distributions with different values of the mean parameter λ are shown for reference. Both plots are
adapted from Zhu et al. (2018b) with permission of the AAS.

of planetary systems as transit, and thus the combination of TTV and transit is free from many
assumptions and selection biases (compared to the use of RV; e.g., Tremaine & Dong 2012). Zhu
et al. (2018b) found that the intrinsic multiplicity and the mutual inclination dispersion should
be strongly correlated, with −4 < ζ < −2 at the 2 σ confidence level (see Figure 6a for an il-
lustration). In other words, systems with fewer planets are dynamically hotter. This result also
points to large mutual inclinations (�10 deg) for 2-planet and 3-planet systems. A recent work by
He et al. (2020) found a qualitatively similar (although statistically different) result with a best-fit
ζ = −1.7 frommodeling a collection of Kepler statistics (including transit multiplicities, the period
distribution, period ratio distribution, etc.) and imposing the angular momentum deficit stability
criterion (Laskar 1997,Laskar & Petit 2017) in simulated planetary systems. It is also worth noting
that such a relation is steeper than the similar relation inferred from RV eccentricities (Limbach
& Turner 2015), ergodic models (Tremaine 2015), or the extrapolations of the empirical stability
boundary (e.g., Pu & Wu 2015).

Zhu et al. (2018b) also reported constraints on the intrinsic multiplicity vector, which is re-
produced in Figure 6b. Although the individual components of the multiplicity vector are not
well constrained, the summed fraction is well measured to be 30 ± 3% and does not rely on
many assumptions like the other measurements do (see Zhu et al. 2018b, their section 5.1; see also
Section 1.1). The resulting average multiplicity in the Kepler parameter space is m̄p = 3.0 ± 0.3.
This serves as a lower bound on the average multiplicity in the inner (�1 AU) region, as smaller
planets below the detection threshold of Kepler are unconstrained.
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2.3. Eccentricity Distribution

Similar to mutual inclinations, orbital eccentricities also provide important information on the
formation and dynamical evolution of planetary systems.Here,we focus on the eccentricity results
from the Kepler sample. Readers can find discussions about eccentricities from RV by Winn &
Fabrycky (2015, their section 3.1).

The majority of the eccentricity measurements of individual Kepler planets were made through
modeling the TTV and TDV signals (e.g., Lithwick et al. 2012; Wu & Lithwick 2013; Hadden &
Lithwick 2014, 2017). These studies have found that the eccentricities of Kepler planets in near-
resonance pairs are typically small, with a Rayleigh dispersion of up to a few percent.However, the
planets selected for such dynamical modelings are probably a biased sample, and thus the derived
eccentricity distribution may not be representative of the more general population.

2.3.1. The transit duration method. The transit duration (between the first and the fourth
contact points) is given by7

T
T0

=
√
(1 + r)2 − b2

√
1 − e2

1 + e sinω
. 15.

Parameters r, b, and T are the same as those in Equation 13, and ω is the argument of periapsis.
The quantity T0 measures the transit duration between the first (second) and the third (fourth)
contact points of a planet with the same period but circular (e = 0) and edge-on (b = 0) orbit and
is related to the mean density of the host star, ρ�, via

T0 ≡ R�P
πa

= 13 h
(

P
year

)1/3 (
ρ�

ρ


)−1/3

. 16.

With known parameters from transit modeling (b, r, P, and T) and the nuisance parameter ω

assumed to follow a uniform distribution, the quantity T/T0 can be used to constrain the sta-
tistical distribution of e, provided that the stellar mean density is precisely measured (Ford et al.
2008).With other parameters being the same, larger eccentricities lead to broader distributions of
the T/T0 ratio (see Figure 5b). The successful application of this method heavily depends on the
accurate characterizations of the host stars. As a result, early attempts to study the Kepler sample
were all limited by the systematic uncertainties in the stellar properties (e.g.,Moorhead et al. 2011,
Kane et al. 2012, Plavchan et al. 2014).

2.3.2. Multiplicity-dependent eccentricity distribution. Van Eylen & Albrecht (2015) ap-
plied a variant of the transit duration method to a carefully selected sample of Kepler multiplanet
systems whose host stars were precisely characterized via asteroseismology. These authors found
that the eccentricities of planets in their sample could be well described by a Rayleigh distribu-
tion with σ e ≈ 0.05. Using accurate spectroscopic stellar parameters from LAMOST, Xie et al.
(2016) found similar nearly circular orbits for planets in the Kepler multis, and they reported a
much larger eccentricity dispersion (σ e ≈ 0.3) for Kepler planets in systems with single transiting
planets. Both results have been confirmed by later works (Mills et al. 2019, Van Eylen et al. 2019).

The multiplicity-dependent eccentricity distribution goes beyond the single versus multiple
bifurcation. This is demonstrated in Figure 5b, where we show the cumulative distributions of
the T/T0 ratios derived from our planet sample for different transit multiplicities. Here, we have

7Note that our definition of the transit duration follows that of Seager &Mallén-Ornelas (2003) and is differ-
ent from that of Winn & Fabrycky (2015). The latter measures the duration between two points, where the
planetary center sits on the edge of the projected stellar surface (see Winn 2010, his figure 2).
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used the stellar mean densities from isochrone fits by Berger et al. (2020b) and the values ofT from
theKeplerDR25Markov chainMonte Carlo chains (Hoffman&Rowe 2017). AsFigure 5b shows,
the distribution of the T/T0 ratio becomes narrower with increasing transit multiplicities. As the
transit multiplicity can be viewed as a rough proxy for the intrinsic planet multiplicity, it suggests
that planetary systems with more planets have smaller eccentricity dispersions. This is also quali-
tatively consistent with studies of the RV planets (Limbach &Turner 2015, Zinzi &Turrini 2017).
Based on observations of the Solar System and the general expectation that the dispersions of or-
bital eccentricity and mutual inclination are proportional to each other (Ida et al. 1993, Tremaine
& Dong 2012, Xie et al. 2016), we may use the same relation between intrinsic multiplicity and
mutual inclination dispersion (Equation 14) for the relation between intrinsic multiplicity and or-
bital eccentricity dispersion. The multiplicity-dependent eccentricity dispersion is also shown in
Figure 6a (see also He et al. 2020).

The large eccentricities and mutual inclinations of Kepler low-multiples have important the-
oretical implications. The largest eccentricity that can be achieved via scatterings among small
Kepler planets themselves can be roughly estimated as

emax ∼ vesc

vorb
≈

√
2mpa
M�Rp

= 0.15
(
mp/M�

10−5

)1/2 ( a
0.1AU

)1/2
(

Rp

2R⊕

)−1/2

. 17.

Here, vesc and vorb are the surface escape velocity and orbital velocity of the planet, respectively.
The evaluation takes the typical values of aKepler planet. Although the above scaling relation bears
some significant uncertainties, the large eccentricities (σ e ≈ 0.3) andmutual inclinations (σ i � 10°)
observed in the low-multiplicity planetary systems are probably on the high end of the distribution.
This suggests that these planetary systems may have undergone significant dynamical interactions
among the inner planets themselves. Alternatively, other mechanisms may have been invoked to
excite eccentricities and mutual inclinations to values larger than what the self-scatterings can
achieve. One promising mechanism is the interaction between the inner system and the outer
massive planets (e.g., Johansen et al. 2012, Huang et al. 2017, Pu & Lai 2020, and references
therein). We return to this point in Section 3.2.

2.4. Intrasystem Variation

The intrasystem variation,which is about the relative properties of planets around the same host, is
useful in constraining the formation and evolution processes of planetary systems. It also concerns
the statistical inference of exoplanets in general: In some statistical studies, planet detections from
the same star are treated as independent events (see Sections 1.2 and 2.2); in some others, specific
assumptions about the relative properties of planets in multiplanet systems must be made when
synthetic systems are generated (e.g., Mulders et al. 2018, He et al. 2019). The derived statistics
to some extent are subject to the validity of such assumptions.

2.4.1. Peas in a pod? Transiting planets in the same Kepler multiplanet systems preferentially
have similar sizes.This feature has been noticed since the early days of theKeplermission (Lissauer
et al. 2011, Ciardi et al. 2013). Follow-up observations that provided improved characterizations
of the host stars enabled further studies that tried to understand the nature of this feature (Weiss
et al. 2018b, He et al. 2019, Murchikova & Tremaine 2020, Weiss & Petigura 2020, Zhu 2020).
In particular, Weiss et al. (2018b) quantified the correlation between sizes of neighboring planets
around the same host in their sample. To check the statistical significance of this correlation, they
generated synthetic systems by randomly drawing planetary radii from the observed size distribu-
tion and then performed the same correlation test. The size correlations in their synthetic systems
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were much weaker than what they saw in real systems, and thus they concluded the pattern was
astrophysical. Based on this and on a similar result on the spacings between planets, Weiss et al.
(2018b) concluded that planets in Kepler multiplanet systems have similar sizes and regular spac-
ings, a pattern they termed “peas in a pod” (see alsoMillholland et al. 2017 for a similar claim about
Kepler planet masses). A later study by He et al. (2019) reached a similar conclusion. According to
these authors, planetary systems that contain clusters of planets whose sizes and orbital periods are
correlated produce a better match to the observed Kepler systems in terms of the joint statistics of
transit depth distribution, period distribution, period ratio distribution, etc.8 Different opinions
exist about the nature of the observed correlations. Zhu (2020) pointed out a detection bias that
was underestimated in the statistical method of Weiss et al. (2018b). Because small planets can be
detected around bright and quiet stars, whereas large planets are only detectable around faint or
noisy stars, the same transit detection threshold (i.e., a fixed S/N) naturally leads to varying plane-
tary size thresholds in different systems.This, combined with the fact that smaller planets aremore
abundant, naturally leads to a size correlation in the observed transit pairs (see also Murchikova &
Tremaine 2020). However, it appears that the apparent correlation in planetary sizes is too strong
to be explained entirely by this detection bias alone (Zhu 2020).

Another factor that has not been fully explored is the contribution of the planets that are miss-
ing, due to large impact parameters or subthreshold values of transit S/N, in known Kepler mul-
tiplanet systems. Our Solar System is an excellent example to demonstrate this point. The four
outer giant planets would not likely be detected by a transit mission similar to Kepler because of
their long orbital periods. Of the four terrestrial planets,Mercury andMars are almost impossible
to detect in transit due to their small sizes. Therefore, a Kepler-like mission would, if possible at
all, most likely detect the Venus–Earth planet pair, which shows very similar sizes (0.95R� versus
1R�) and masses (0.82M� versus 1M�). However, this level of similarity is not representative
among the Solar System planet pairs.

The physical interpretation of the size correlation (if any) is also unclear. One interpretation
is that planets “know” about their siblings, namely the formations of two neighboring planets
are directly correlated (e.g., Kipping 2018, Mulders et al. 2018, He et al. 2019, Sandford et al.
2019, Gilbert & Fabrycky 2020). Another interpretation is that planets “know” about the system
and the environment in which they formed, namely the formations of planets in the same system
are all related to some global properties (Murchikova & Tremaine 2020). In this latter case,
the apparent correlation between planetary sizes is only a projection of the correlation between
the individual planets and the host star (or the birth disk). This latter interpretation has some
observational evidence. For example, the planet distribution is shown to depend on the orbital
period (see Section 2.1) and stellar properties (see Section 2.5). Murchikova & Tremaine (2020)
demonstrated with a toy model that the observed size correlation can be well reproduced if the
planets “know” about the host star but do not “know” about their neighbor planets.

2.4.2. Orbital spacings. The relative positions of planets in Kepler multiplanet systems have
also drawn lots of interest. The majority of the early studies focused on the period ratio distri-
bution. As shown in Figure 7, Kepler systems contain very few planet pairs near/in low-order
mean-motion resonances (see also Lissauer et al. 2011, Fabrycky et al. 2014). This is in contrast
with earlier RV results showing that a substantial fraction of well-characterized multiplanet

8The clustered model of He et al. (2019) has more free parameters than their nonclustered model. However,
the authors did not performmodel comparisons to justify the introduction of more flexibilities. See Zhu (2020)
for more discussion.
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Figure 7

Spacings between the apparently adjacent planets in Kepler multiplanet systems, with different colors
indicating planet pairs from different transit multiplicities. The x axis of panel a shows the spacing in terms
of the orbital period ratio, and panel b shows the corresponding CDFs. A few example period
commensurabilities are indicated in both panels. The y axis of panel a shows the spacing in terms of the
mutual Hill radii (Equation 18), and panel c shows the corresponding cumulative distributions. The stability
thresholds for 3-tranet, 4-tranet, and 5-tranet systems, derived according to Equation 20, are indicated with
solid horizontal lines. Values corresponding to twice the thresholds are also shown as dashed horizontal lines.
The code Forecaster from Chen & Kipping (2017) is used to predict the planet mass based on the
planetary radius, and we have revised the upper mass limit to 103 M� (∼3 MJ) to avoid masses beyond the
planetary regime. Solar System planet pairs are also indicated for reference. Abbreviations: CDF, cumulative
distribution function; E, Earth; J, Jupiter; Ma, Mars; Me, Mercury; N, Neptune; S, Saturn; tranet, transiting
planet; U, Uranus; V, Venus.

systems contain pairs of giant planets close to mean-motion resonances (e.g., Wright et al.
2011). We refer to Section 4.1 for the theoretical implications of this feature. Additionally, the
asymmetry around exact period commensurabilities has also attracted lots of attention (Fabrycky
et al. 2014), and we refer interested readers to the fairly comprehensive overview by Terquem
& Papaloizou (2019) for this particular issue (see also the recent development described by
Millholland & Laughlin 2019). This review focuses on the dynamical compactness of the Kepler
multiplanet systems, which concerns the long-term stability and thus the dynamical evolution.

When the stability of the planetary system is concerned, the orbital spacing between planets is
usually expressed in the dimensionless parameter K:

K ≡ aout − ain
RH

; RH ≡ ain + aout
2

(
min +mout

3M�

)1/3

. 18.
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Here, RH is called the mutual Hill radius,M� is the mass of the host star, and ain (aout) and min

(mout) are the semimajor axis and the mass of the inner (outer) planet, respectively. For two-planet
systems, the condition for the long-term stability (and thus instability) has been well understood
theoretically, and the instability arises when there are mean-motion resonance overlaps (Wisdom
1980, Deck et al. 2013, Hadden & Lithwick 2018). For systems with more than two planets, we
lack a good theoretical understanding of the origin of the dynamical instability (see attempts by
Chambers et al. 1996, Zhou et al. 2007, Quillen 2011, Yalinewich & Petrovich 2020). Neverthe-
less, numerical studies have shown that the timescale before which close encounter occurs between
planets, t, scales exponentially with the initial spacingK (Chambers et al. 1996).Details of this scal-
ing relation depend on factors such as the number of planets, planet masses, orbital eccentricities
and inclinations, as well as the inhomogeneity among planets (e.g., Chambers et al. 1996, Zhou
et al. 2007, Funk et al. 2010; see Pu & Wu 2015 for a recent summary).

In the context of Kepler planetary systems, Pu & Wu (2015) found through numerical simula-
tions that the median spacing for stability could be approximated as

〈K〉 = 2.87 + 0.7 log10 τ + 2.4
[(

σe

eH

)
+

(
σi

4eH

)]
, 19.

where τ is the physical timescale t scaled by the orbital period of the innermost planet, eH is the
mutual Hill radius scaled by the semimajor axis of the innermost planet, and σ e and σ i are the
dispersions of orbital eccentricities and mutual inclinations among the planets, respectively.With
the multiplicity-dependent σ e and σ i (Equation 14) and the typical values for Kepler systems (t �
1 Gyr and the innermost planet of planet-to-star mass ratio q ≈ 10−5 at 0.1 AU), Equation 19
yields

〈K〉 ≈ 10.2 + 2.2
(
k
5

)ζ

. 20.

With ζ = −2 (Zhu et al. 2018b, He et al. 2020), planetary systems with {3, 4, 5} Kepler planets
should have critical spacings 〈K〉 = {16, 14, 12}, respectively.

We apply the above stability thresholds to the multiplanet systems from Section 2.1 and dis-
cuss the limitations. After the use of Kepler’s third law, the only unknown to determine the spacing
parameter K is the planet-to-star mass ratio.We estimate the planetary masses from the measured
radii with the Forecaster code from Chen & Kipping (2017) and adopt the Gaia stellar masses
from Berger et al. (2020b). Systems without reported stellar mass measurements are excluded.
Figure 7 illustrates the spacings between neighboring Kepler planets of all systems, with the sys-
tems being divided into different transit multiplicities. For transit multiplicities of 3, 4, and 5+,
the majority (∼70%) of planet pairs have spacings above the corresponding stability thresholds,
confirming that they are indeed (most likely) long-term stable. The remaining ∼30% of planet
pairs, considered long-term unstable by the above empirical thresholds, are probably stable as
well. Although part of this misclassification is due to the choice of fixed Kepler system parame-
ters and the empirical (but sometimes unphysical) mass–radius relation (Chen & Kipping 2017),
it nevertheless is a sign of the failure of the empirically determined stability criteria. In particular,
these stability criteria do not consider the impact of mean-motion resonances, which can be either
protective or destructive to the involved planets.

Nevertheless, by applying the empirical stability thresholds to the data one finds that the ma-
jority ofKepler planet pairs are not far from the empirical stability limits: Themedian spacing of all
planet pairs is K≈ 20, and about 80–90% of planet pairs from systems with at least three transiting
planets have spacings within twice the empirical stability thresholds (see Figure 7). These results
are consistent with previous findings (e.g., Fang & Margot 2013, Pu & Wu 2015, Weiss et al.
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2018b) and also suggest that for the majority of Kepler planet pairs there is no room for inserting
another (undetected) planet in between (Fang & Margot 2013). In other words, the observed Ke-
pler planets are dynamically packed. However, this does not necessarily mean that Kepler systems
do not contain additional planets. The spaces inside the innermost and particularly beyond the
outermost Kepler planet allow the existence of additional planets without risking instability. For
example, seven planets with q = 10−5 are allowed per factor of 10 in semimajor axis if mutually
separated by K = 20. The observed dynamically packed structure is also probably due to the se-
lection bias that it is more difficult to detect both planets transiting to the host star for a planet
pair with wider spacing.

As part of the peas-in-a-pod claim (see Section 2.4.1), the spacings between Kepler planets
in the same multiplanet system are found to be statistically similar (Weiss et al. 2018b). However,
the observed correlation in spacings is driven by a small fraction (�5%) of systems containing
the highest multiplicities, and the majority of systems do not show such a regular spacing pattern
( Jiang et al. 2020, Zhu 2020).

2.5. Dependence of Planet Statistics on Stellar Properties

The distributions of the planetary systems may be correlated with the properties of their host
stars. In this section, we discuss the observational constraints on such correlations.

2.5.1. Impact of stellar companions. Stellar companions to the planet hosts affect the Kepler
planet statistics in several ways. In transit surveys like Kepler, many of them appear unresolved
and dilute the transit signals, potentially leading to misclassifications and erroneous planetary pa-
rameters (Ciardi et al. 2015, Bouma et al. 2018).9 Thankfully, follow-up high-resolution imaging
observations have been performed for nearly all Kepler planet candidates (e.g., Furlan et al. 2017,
Ziegler et al. 2018, and references therein). For bright targets that contain Jupiter-like transits,
Santerne et al. (2016) also performed systematic RV follow-up observations and identified a sig-
nificant false positive rate (55%) for Jovian planet candidates. These efforts have led to a much
better understanding of the impact of transit dilution on the Kepler planet statistics. In particular,
Furlan et al. (2017) reported that about 10% (30%) of the candidate host stars have observed com-
panions within 1 arcsec (4 arcsec), the majority of which are fairly faint compared to the target
stars. In the most likely scenario that the transit signals come from the primary stars (see, e.g.,
Bouma et al. 2018), the dilution effect overall only affects the planetary radii up to a few percent
on average (Furlan et al. 2017). This is within the uncertainty of Gaia-derived radii, and thus one
does not expect it to have a significant impact on the general planet statistics. However, Earth-
sized planets with radii Rp � 2R� are much more susceptible to the dilution effect, and thus the
relevant statistics may suffer a more dramatic impact (Furlan et al. 2017, Bouma et al. 2018).

Besides the transit dilution effect, stellar companions can also affect the presence of planets
through many dynamical processes (e.g., Artymowicz & Lubow 1994, Holman &Wiegert 1999).
Very close (a� 0.5AU) stellar binaries can host circumbinary (i.e., planetary-type or P-type) plan-
ets, and over a dozen such systems have been found (seeWinn& Fabrycky 2015, their section 6.2).
We limit our discussions to the observational aspects of circumstellar (i.e., satellite-type or S-type)
planets and the implications on planet statistics.

9Here, an ambient star that is not physically associated with the target is also considered a companion to the
target star.
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Studies based on RV and high-resolution imaging observations suggest that the existence of a
close stellar-mass companion is usually associated with a lower frequency of circumstellar planets
(e.g., Wang et al. 2014, 2015; Kraus et al. 2016; Ngo et al. 2016; Moe & Kratter 2019). This
effect is quantified by a suppression factor Sbin, which is the ratio between the fraction of planet
hosts with stellar companions and the fraction of field stars with the same type of companions
(Kraus et al. 2016, Moe & Kratter 2019). Circumstellar planets are almost completely suppressed
(Sbin � 15%) when the stellar companions are close (with separation abin � 10AU), regardless
of the planetary size or observed multiplicities. Planets are nearly unaffected (Sbin � 85%) if the
stellar companions are distant (abin � 100AU). At intermediate separations (∼10–100AU), the
suppression effect gradually decreases with the increasing separation. See Moe & Kratter (2019,
their figure 3) for a compilation of observational studies and an illustration of the suppression
factor Sbin as a function of the binary separation.

With the above suppression effect and the known binary separation distribution, one can then
infer the planet-formation efficiency from the measured planetary system frequency, Fp. Moe &
Kratter (2019) estimated that Fbin ≈ 43% of Sun-like primaries in a magnitude-limited survey
like Kepler could not host close-in (�1 AU) planets simply because of the influence of binary
companions (see also Kraus et al. 2016). If these targets are excluded from the Kepler statistics,
one finds that the formation efficiency of close-in planets around single stars, a parameter directly
related to formation theories, should be 1/(1 − Fbin) = 1.8 times higher than the fraction of stars
with planets Fp. This additional factor also provides a plausible explanation to the discrepancy in
hot Jupiter frequencies measured from RV and Kepler (see Section 2.1.1).

2.5.2. Metallicity effect. Under the general assumption that the bulkmetallicity of the host star
is correlated to the total mass of building blocks available for planet formation, it is reasonable to
believe that the planet frequency and properties may be correlated with the host star metallicity.
For giant planets (Rp � 8R� or mp � 0.3MJ) found by RV, it has been well established that their
frequency correlates strongly with the host metallicity (e.g., Santos et al. 2001, Fischer & Valenti
2005). This giant planet–metallicity correlation lends support to the core accretion model as the
leading theory for the formation of giant planets (e.g., Pollack et al. 1996, Ida & Lin 2004b).
Some recent studies have also claimed that hosts of eccentric giant planets are more metal-rich
than hosts of nearly circular giant planets (Dawson & Murray-Clay 2013, Buchhave et al. 2018),
but stronger statistical evidence is needed to fully establish this result.

Small planets, in particular those with radii Rp � 4R�, show weaker dependences on host
metallicity (e.g., Sousa et al. 2008, Buchhave et al. 2012). Although many studies have focused
on the dependence of the planet frequency n̄p on host metallicity (e.g., Wang & Fischer 2015,
Petigura et al. 2018) and theoretical implications (e.g., Owen & Murray-Clay 2018, Lee 2019),
one may argue that the planetary system frequency Fp is probably a more suitable parameter to
characterize the efficiency of planet formation under such system-wide parameters like metallicity
(Zhu et al. 2016, Zhu 2019). If the general planet–metallicity relation,

Fp ∝ 10γ [Fe/H], 21.

is applied, the result of Zhu (2019) suggests γ ≈ 0.5 for all Kepler-type planets, which is much
weaker than the giant planet–metallicity correlation (γ ≈ 2; Fischer & Valenti 2005). The de-
pendence is further reduced if the close binaries that show anticorrelation with stellar metallicity
are excluded from the statistics (Moe et al. 2019, Kutra et al. 2020). Unlike the planetary system
frequency Fp, the planet frequency n̄p does not appear to have a monotonic relation with the host
metallicity. In particular, it may start declining when the metallicity is high enough (Zhu 2019). It
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An illustration of the Kepler planetary systems in our baseline sample that have spectroscopic metallicity
measurements. We use different colors to separate different observed multiplicities (out to 400 days) and
different label sizes to separate planets of different sizes (small as 1–4R�, intermediate as 4–8R�, and giant
as 8–20R�). Cold (P > 400 days) planets found by radial velocity (as tabulated in Zhu & Wu 2018) and
long-period transit searches (Kawahara & Masuda 2019) are also indicated with thick circles. As the host
metallicity increases, the system becomes more likely to contain giant planets at all periods and small planets
at relatively close-in (P � 10 days) orbits (e.g., Mulders et al. 2016, Dong et al. 2018, Petigura et al. 2018). At
very high metallicities ([Fe/H] � 0.2), there seems to be a deficit of compact systems (with ≥4 transiting
planets) and planets at intermediate orbits (∼10–400 days). These may be related to the emerging cold giants
(Zhu & Wu 2018). The median metallicity of Kepler field stars is [Fe/H] ≈ −0.0 (Dong et al. 2014b).

has been suggested that this behavior may be related to the formation of giant planets inside the
same system: As the metallicity is high enough, the system has a significant probability to form
giant planets, and these giants may reduce the multiplicity of the inner system because they either
prohibit the formation of more small planets or dynamically remove some of the small planets
out of the inner system. This scenario may also explain the increased diversity of planets around
metal-rich Kepler hosts (Petigura et al. 2018) and the overabundant compact planetary systems
around metal-poor stars (Brewer et al. 2018, Zhu & Wu 2018). Figure 8 displays along the host
metallicity [Fe/H] the Kepler systems with metallicity measurements in our baseline sample.

Although the stellar bulk metallicity measured in iron abundance [Fe/H] (or a mix of metals
[m/H]) is usually used in studies of the planet metallicity dependence, other elemental abundances,
in particular α elements and refractory elements, have also been explored for possible correlations
with planet properties (e.g., Adibekyan et al. 2012, Liu et al. 2016, Teske et al. 2019). No trend
has been firmly established thus far, probably due to the limited sample size, the measurement
precision, and/or the impact of Galactic chemical evolution.

2.5.3. Dependence on stellar mass. A number of studies have also investigated the depen-
dence of planet frequency on host mass. A theoretical possibility is that the stellar mass correlates
with the total mass in the protoplanetary disk and, thus, the amount of solid materials available
for planet formation. It is largely consistent with direct observations of protoplanetary disks in
(sub-)millimeter wavelengths (Andrews et al. 2013, Ansdell et al. 2016), although at a fixed stellar
mass the scatters of inferred disk masses remain substantial (up to an order of magnitude; Ansdell
et al. 2016).
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We would like to start by pointing out several potential issues. Similar to the metallicity de-
pendence (see Section 2.5.2), the two frequencies, Fp and n̄p, can behave differently, especially for
the small planets with high multiplicity rates. Second, as more massive stars also tend to be more
metal-rich, one may need to carefully disentangle possible correlations between stellar mass and
metallicity in the sample (e.g., Johnson et al. 2010, Kutra et al. 2020). Furthermore, the choice
of the parameter used to study the correlation may matter. Although planetary radius (or mass)
and orbital period (or semimajor axis) are commonly used in statistical studies, nature may prefer
other physical units such as the planet-to-star mass ratio or the position of the water snow line
(Hayashi 1981, Kennedy & Kenyon 2008). Last but not least, as far as the planet-formation ef-
ficiency is concerned, one must correct for the suppression effect due to close stellar binaries
(see Section 2.5.1). It is established that the close binary fraction correlates with the primary
mass (e.g., Duchêne & Kraus 2013), so the suppression effect is expected to affect the statistics of
planets around different stellar masses differently (Moe & Kratter 2019).

The dependence of giant planets on stellar mass has been investigated in many studies with
different detectionmethods (e.g., Johnson et al. 2007, 2010;Howard et al. 2012; Fressin et al. 2013;
Nielsen et al. 2019). To avoid many of the issues listed above, here we focus on the results from
long-term RV surveys, as they cover a broad range of parameter space and are nearly free of close
stellar binaries. In particular, Johnson et al. (2010) analyzed a sample of 1,266 stars with at least 3-
year RV observations andmasses spanning from 0.2M� up to their estimated 1.9M� and reported
a linear relation between the planet frequency10 and stellar mass. This result has been widely
considered as a benchmark in both theoretical and observational studies of giant planets. The
higher-mass part of the sample comes from the so-called retired A-stars, and their spectroscopic
mass estimates are controversial (Lloyd 2011, Schlaufman & Winn 2013, Malla et al. 2020, and
references therein). Recently, the asteroseismic study by Malla et al. (2020) shows that the retired
A-stars with spectroscopic masses >1.6M� are overestimated, confirming the earlier reports by
Lloyd (2011) and Schlaufman &Winn (2013). Because such stars consist of the heavier half of the
Johnson et al. (2010) sample and contribute most of the statistical evidence to the reported stellar
mass dependence (see Johnson et al. 2010, their figure 4), a revisit of the mass correlation will be
needed. Additionally, the result of Johnson et al. (2010) is limited to the region with separation
a< 2.5AU. As shown by Clanton &Gaudi (2014, 2016), after those at (slightly) larger separations
are taken into account, giant planets are almost as common around M dwarfs as they are around
Sun-like stars (see Section 3.3).

For small planets, the Kepler survey provides the best sample to study their stellar mass depen-
dence. Studies have shown that the planet frequency, n̄p, in the Kepler parameter space is anticor-
related with stellar mass (e.g., Howard et al. 2012; Mulders et al. 2015a,b). Using the Berger et al.
(2018, 2020b) sample with stellar effective temperature in the range of 4,000–5,000K, we find
a frequency of n̄p = 3.3 ± 0.4 for planets in the radius range of 1–20R� and period <400 days,
which is a factor of ∼2.7 higher than the rate for our baseline Sun-like sample (Section 2.1). Later
M-type stars have even more planets (Dressing & Charbonneau 2013, 2015). The planetary sys-
tem frequency Fp is also anticorrelated with stellar mass but likely at a weaker level, due to the
increased average planet multiplicity around later-type stars (e.g., Yang et al. 2020). There is some
sign of increased observed multiplicity rate in our 4,000–5,000-K sample (48.2%) compared to
that (42.5%) of our baseline Sun-like star sample (Section 2.1). After the correction for the sup-
pression effect due to close stellar companions, the difference in formation efficiencies of small

10Their derived planet frequency is technically n̄p, but because of the low multiplicity rate of giant planets it
closely approximates the rate Fp.
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planets between single Sun-like and later-type hosts is likely further reduced, although an anti-
correlation probably remains (Moe & Kratter 2019).

3. THE OUTER PLANET POPULATION

In the earliest stage of planet formation, the region beyond ∼1 AU is expected to contain most
of the mass and the angular momentum of the protoplanetary disk. Therefore, the frequency
and properties of planets in this outer region (∼1–10 AU) have important implications to the
formation and evolution of the whole system, including the planets in the inner ∼1-AU region.
In this section, we review our current understanding of this outer planet population and discuss
its connection with the inner planetary system.

We set the inner and outer boundaries at ∼1 AU partly because this is approximately the de-
tection limit of the Kepler mission but also because it coincides with the position at which giant
planets show a rapid rise in frequency. RV surveys have found that giant planets (mp � MSat ≈
0.3MJ) appear about five times more often at ∼1–3AU than they do within ∼1 AU (Cumming
et al. 2008).

3.1. Planet Frequency

RV surveys have found that cold giant planets (0.3–13MJ at∼1–5 AU) appear around on the order
of ∼10% of Sun-like stars. If the giant planet distribution is modeled as a parametric function that
joins single power-law distributions of mass and orbital period (Tabachnik & Tremaine 2002), the
integrated rate out to P≈ 5.5 years is found to be n̄p = 0.105 (Cumming et al. 2008). Such a single
power-law period distribution tends to overpredict the number of giant planets at wider (�10 AU)
separations. To better match the observed distribution, Fernandes et al. (2019) replaced it with a
broken power law and found a potential peak at ∼2–3AU (see also Bryan et al. 2016). Extend-
ing their distribution function out to 100AU, Fernandes et al. (2019) found n̄p = 0.27+0.08

−0.05 and
0.062+0.015

−0.012 for planets in the mass range of 0.1–20MJ and 1–20MJ, respectively. If the frequency
of the so-called Jupiter analogs, namely Jupiter-mass (∼0.3–3MJ) planets in Jupiter-like (a few
astronomical units) orbits around Sun-like hosts, are concerned, several independent studies have
collectively pointed to a rate of about a few percent (e.g., Wittenmyer et al. 2016, and references
therein), suggesting that planetary systems similar to our own may be relatively uncommon (see
also Section 3.2). Unlike our Jupiter, a significant fraction of cold giant exoplanets are on substan-
tially eccentric orbits with typical eccentricities e ∼ 0.3 (e.g., Wright et al. 2009). We refer to the
review by Winn & Fabrycky (2015) for more discussion on these topics.

Although the region beyond ∼1 AU is nominally out of the reach of Kepler, studies have nev-
ertheless systematically searched for and statistically studied the long-period transiting planets in
theKepler data (e.g., Foreman-Mackey et al. 2016,Herman et al. 2019,Kawahara &Masuda 2019).
In particular, Herman et al. (2019) reported a frequency of n̄p = 0.7+0.4

−0.2 for planets with sizes of
0.3–1RJ and orbital periods of 2–10 years. The inferred radius distribution also suggests that cold
Neptune-sized (3–5 M�) planets are about four times more common than cold Jupiter-sized (7.5–
11M�) ones.This is broadly consistent with the result frommicrolensing surveys (see Section 3.3),
pointing to the potential existence of a large and unexplored low-mass planet population in the
outer region.

3.2. The Inner–Outer Correlation

The planetary systems inside and outside of ∼1 AU appear strongly correlated. Such a strong
inner–outer correlation has important implications to the formation and evolution of the system
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Correlations between inner planets and outer cold Jupiters. Although only two types of inner planets are
highlighted here, they are representative of the known inner planet population: The majority of hot Jupiters
do not have close neighbors (see Section 2.1.1), whereas super Earths usually reside in systems that include
other types of inner planets (see Section 2.2). The unconditional probability shown here is the fraction of
Sun-like stars with a specific type of planets, and the conditional probability is the fraction of Sun-like stars
with a specific type of planets given that another type of planets is present in the system.

as a whole. Below, we review the observational evidence and discuss briefly the implications of
this correlation. More on the latter is presented in Section 4.2. We highlight two classes of inner
planets, hot Jupiters and super Earths, and discuss them separately below.

3.2.1. Friends with close-in Jupiters. Hot Jupiters, though usually having no detectable plan-
etary companions in the inner region, are frequently found to have distant massive companions
(Knutson et al. 2014, Bryan et al. 2016; but see also Schlaufman &Winn 2016). Both of these fea-
tures are important clues to the formation and evolution of hot Jupiters, and we refer interested
readers to the review by Dawson & Johnson (2018) for in-depth discussion.

For the completeness of the discussion about the inner–outer correlation,we briefly summarize
here the key result of the friends of hot Jupiters search. Knutson et al. (2014) conducted a system-
atic RV study of the distant companions to a sample of 51 hot Jupiters and reported that each
hot Jupiter should have on average 0.51 ± 0.10 companions with masses of 1–13MJ and semima-
jor axes of 1–20AU. This sample was reanalyzed by Bryan et al. (2016) with improved sensitivity
calculations, and the companion rate was revised to 0.70 ± 0.08. Given the small fraction of sys-
tems with more than one cold companion, we take this average number to be approximately the
fraction of hot Jupiter hosts with cold Jupiter companions. This fraction barely changes after we
adjust to the parameter range used in this work (0.3–13MJ and 1–10AU) according to the planet
distribution function of Bryan et al. (2016). We denote this fraction as P(CJ|HJ). Additionally,
given the known fractions of Sun-like stars with hot Jupiters and cold Jupiters, P(HJ) ≈ 1% and
P(CJ) ≈ 10%, respectively; the inversed conditional probability is P(HJ|CJ) ≈ 7%. This is the
fraction of cold Jupiter hosts with hot Jupiters. All four fractions are shown in Figure 9.

Jupiter-sized planets in the inner region with known outer giant companions tend to have
higher eccentricities, suggesting possible dynamical interactions in sculpting the architectures of
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these systems (e.g., Bryan et al. 2016). In particular, warm (∼10–100 days) Jupiters on significantly
eccentric orbits (e � 0.4) have much higher chances to possess relatively close (�3 AU) Jovian
companions compared to those on nearly circular (e � 0.1) orbits (Dong et al. 2014a), and the
existence of such companions is consistent with the high-eccentricity migration scenarios to form
eccentric warm Jupiters (Dong et al. 2014a,Dawson&Chiang 2014, Petrovich&Tremaine 2016).
By contrast, warm Jupiters on nearly circular orbits show a weaker correlation with outer giant
companions, and many of these warm Jupiters are found to have nearby small planetary com-
panions (Huang et al. 2016). These features cannot be easily reconciled in the high-eccentricity
migration scenarios, suggesting that the nearly circular warm Jupiters may have been formed in
situ or have undergone the disk-driven migration (e.g., Raymond et al. 2008,Hallatt & Lee 2020).
We refer to Dawson & Johnson (2018) for a more comprehensive discussion on the observations
and theories related to warm Jupiters.

3.2.2. Super Earth–cold Jupiter relation. The term super Earth has different meanings in
different studies.Here, we call a planet super Earth if its mass (or radius) is between the masses (or
radii) of Earth and Neptune, and the correlation under discussion applies specifically to the super
Earths from the inner region. These super Earths dominate the known inner planet population,
and they can coexist with almost all types of inner planets except hot Jupiters (see Section 2.1).
For this reason, this super Earth population is representative of the inner planet population.

About one-third of the inner super Earths have outer cold Jupiter companions, as studies have
shown (Zhu & Wu 2018, Bryan et al. 2019). The RV signal on the star induced by a super Earth
is systematically smaller than the RV signal induced by a cold Jupiter. Making use of this point,
Zhu & Wu (2018) constructed a sample of 54 super Earth systems around Sun-like hosts that
received long-term RV observations, and they found that the fraction of super Earth hosts with
cold Jupiter companions is 32 ± 8%. This is about three times higher than the frequency of cold
Jupiters around field Sun-like stars. The fraction further rises to ∼60% for metal-rich systems
(with [Fe/H] > 0.1). These results were later confirmed by the independent study by Bryan et al.
(2019). In that work, the authors refit RV data sets of 65 super Earth hosts, some of which are M
dwarfs, and reported an occurrence rate of 39 ± 7% for companions with masses in the range of
0.5–20MJ and semimajor axes in the range of 1–20AU. In this review,we take a rather conservative
value of P(CJ|SE) ≈ 30%, which is also shown in Figure 9.

The inversion of the above conditional probability reveals an even more interesting result.
With ∼30% of Sun-like stars hosting inner super Earths and ∼10% of Sun-like stars hosting cold
Jupiters, one finds from the Bayes theorem that P(SE|CJ) ≈ 90%, suggesting that nearly all of the
cold Jupiters should have inner small planets (Zhu & Wu 2018, Bryan et al. 2019). Together with
the fraction of cold Jupiter hosts with hot Jupiters, P(HJ|CJ) ≈ 7%, outer giant planets almost
all have inner companions.11 We illustrate in Figure 9 the connections between the outer giant
planets and the two representative types of inner planets.

The above strong correlations are also confirmed by studies that utilized the rare but valuable
long-period Kepler transiting planets (Uehara et al. 2016,Herman et al. 2019,Masuda et al. 2020).
These studies find that the fraction of long-period (P � 2 years) transiting planets with inner
transiting companions is so high that it can only be explained by a strong inner–outer correlation.
They also reported evidence that the dynamical hotness of inner and outer planets may also be

11It is possible that hot Jupiters were born cold and that their later evolution cleared out the small planets
originally present in the inner region. This would mean that essentially all cold Jupiters were born with inner
small planets.
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correlated. Specifically, a dynamically hot outer Jupiter is likely associated with a dynamically hot
inner planetary system. This provides a plausible explanation for the surprisingly large eccentric-
ities and mutual inclinations of the inner systems with low multiplicities (Masuda et al. 2020; see
Section 2.3). It may also help explain the reduced super Earth multiplicities around metal-rich
stars (Zhu & Wu 2018; see Section 2.5.2).

The strong inner–outer correlation has implications on the frequency of planetary systems
similar to our own. On the one hand, this correlation suggests that the general Solar System–
like architecture—with the inner region containing small planets and the outer region containing
giant planets—is probably common among other planetary systems.On the other hand, planetary
systems with properties very similar to ours, namely a system with both outer Jupiter-like (∼1MJ

at a few astronomical units) and inner Earth-like (�1M� within 1AU) planets,may be rare (�1%;
Zhu & Wu 2018). A possible explanation could be that our Jupiter formed very early and, hence,
prevented the growth of inner embryos into super Earths (Izidoro et al. 2015, Morbidelli et al.
2015). This early Jupiter formation scenario also explains the isotope measurements on Solar
System iron meteorites (Kruijer et al. 2017), although the question remains why the majority
of cold Jupiters in other systems do have inner super Earths. We defer further discussions of
theoretical implications to Section 4.2.

Observationally, the strong inner–outer correlation implies interesting synergies between
space-based transit missions and astrometric missions or ground-based long-term RV surveys.
Indeed, at least two of the TESS transiting planets have been found around stars with known
RV cold Jupiters (Huang et al. 2018, Teske et al. 2020). Future combined TESS and Gaia planet
catalogs should yield hundreds of similar systems that can enable detailed studies of the system
architecture, as has been demonstrated in the pi Mensae system (Damasso et al. 2020, De Rosa
et al. 2020, Xuan & Wyatt 2020).

3.3. Mass Ratio Function from Microlensing

Gravitational microlensing probes a largely uncharted planet discovery space of cold planets (Mao
& Paczynski 1991, Gould & Loeb 1992), where >99% of the planetary mass of the Solar System
resides. Ground-based microlensing surveys are sensitive to planets down to Earth masses (e.g.,
Bennett & Rhie 1996, Dong et al. 2006), and a space-based survey will be capable of discover-
ing all Solar System planet analogs except Mercury (Penny et al. 2019; see also Figure 1). With
the increasing number of discoveries, microlensing searches have been continuing to unveil the
distribution of planets in this underexplored parameter space and offer insights into the planet for-
mation outside the water snow line. We refer interested readers to Gaudi (2012) for an overview
of the microlensing technique and its application in exoplanet discoveries (see also Mao 2012).
Below, we focus on the important progress made since the review by Gaudi (2012).

Microlensing samples directly yield planet-to-star mass ratio distributions (e.g., Shvartzvald
et al. 2016, Suzuki et al. 2016), and several recent studies reported a possible turnover in the mass
ratio function for planets beyond the water snow line (see Figure 10). In the early era, a key
microlensing finding was that cold Neptunes (with planet-to-star mass ratio q∼ 10−4) are a factor
of a fewmore common than cold Jupiters (with q∼ 10−3; Gould et al. 2006b), and Sumi et al. (2010)
found that the distribution of the mass ratio q could be described by a power law dN/dlog10q ∝
qν , where ν = −0.7 ± 0.2. Using the planet sample from the second phase of the Microlensing
Observations in Astrophysics survey, Suzuki et al. (2016) found that a single power law of the mass
ratio function does not extend to very low mass ratios. Specifically, these authors reported a break
in the mass ratio function at q ∼ 10−4, corresponding to the mass of Neptune for a typical host
star mass of 0.5M�. Based on a total sample of 30 planets that combines theMOA-II and previous
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Similar to Figure 1, but here we show the planet-to-star mass ratio versus the semimajor axis in units of the
water snow line. The snow line is at 2.7 AU for a 1-M� star and scales linearly with the host mass (Kennedy
& Kenyon 2008). The location of the snow line is indicated with a black dashed line (note that this is only for
illustrative purposes as the snow line should be determined in the protoplanetary disk), and the possible
turnover in the mass-ratio distribution found from microlensing (0.55–1.7 × 10−4; Suzuki et al. 2016, Jung
et al. 2019) is marked with the gray region. Six Solar System planets are shown, with Mercury and Mars
being too low in mass ratio to appear on this plot.

statistical samples (Gould et al. 2010, Cassan et al. 2012), Suzuki et al. (2016) reported a broken
power-law mass ratio function with a break at qbrk = 1.7 × 10−4. The power-law indexes above
and below the break are ν = −0.93 ± 0.13 and 0.6+0.5

−0.4, respectively. The normalization is such that
n̄p = 0.79 for planets with mass ratio q > 5 × 10−5 and projected separation s in units of Einstein
radius in the range of 0.3–5. For typical microlenses with 0.5M�, these numbers correspond to the
planetary massMp > 8M� and the orbital separation of 1–15 AU. The reported planet frequency
is compatible with those from other detection techniques (i.e., RV and direct imaging) following
a simple joint planet distribution function (Clanton & Gaudi 2014, 2016).

Further studies by Udalski et al. (2018), who studied an ensemble of 7 (as compared to 4 in
Suzuki et al. 2016) planets with q < 10−4, and Jung et al. (2019), who analyzed a sample of 15
planets with q< 3 × 10−4, investigated the possible turnover in the mass ratio function. Adopting
a power-law form of the detection efficiency, Jung et al. (2019) modeled the intrinsic mass-ratio
distribution with a broken power law and revised the break to qbrk ≈ 5.5× 10−5, which is a factor of
three below the value found by Suzuki et al. (2016), but their low-mass planet sample was too small
to distinguish a pile-up at that mass ratio from broken power law. Nevertheless, a break or pile-
up in the planet-to-star mass ratio function could have important theoretical implications (e.g.,
Pascucci et al. 2018,Wu 2019), and further probing the distribution of sub-Neptune microlensing
planets will be a research focus in the near future. Observations from high-cadence and nearly
continuous microlensing surveys such as KMTNet (Kim et al. 2016) are pushing toward detecting
more planets at low mass ratios (e.g., q= 1.8 × 10−5 fromGould et al. 2020a, q≈ 1.4 × 10−5 from
Yee et al. 2021, and q ≈ 1.1 × 10−5 from Zang et al. 2021), so a large enough sample is expected
to be available soon to improve the determination of the mass ratio function at the low end (see
Zang et al. 2021 and discussions therein).
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Another interesting feature of the mass ratio function of Suzuki et al. (2016) is its apparent
smoothness between Neptune and Jupiter masses. Intriguingly, the derived radius distribution of
cold planets from the single transit events in Kepler also appears similarly continuous between
Neptune and Saturn (Herman et al. 2019). These results are surprising in view of the standard
core accretion theory (Pollack et al. 1996), which builds on the Solar System and predicts a deficit
of planets at such intermediate masses and/or radii (Ida & Lin 2004a, Mordasini et al. 2009).
This tension may suggest that the giant planet formation involves physical processes that have
been overlooked in the standard models (Suzuki et al. 2018). Alternatively, it could be due to the
limited sample sizes of cold intermediate-mass planets (the Suzuki et al. 2016 sample contains
nine detections in the range of 10−4 < q < 5 × 10−4, and the Herman et al. 2019 sample has
four in the intermediate radius bin of 0.67–1.00RJ). Therefore, increasing the sample size of cold
intermediate-mass planets will clarify the degree of tension between observation and theory. Fur-
thermore, physical mass (rather than mass ratio) determinations of a large sample of microlensing
planets through measurements of the lens flux or the microlensing parallax (e.g., Dong et al. 2009,
Udalski et al. 2015b, Yee et al. 2015) are needed to enable a more direct comparison with theo-
ries. This will be possible for essentially all microlensing planets detected to date at first light of
adaptive optics on 30-m-class telescopes (e.g., Skidmore et al. 2015) or for a significant fraction
of planet hosts in a space-based microlensing survey such as the microlensing survey planned for
the Nancy Grace Roman Space Telescope (Penny et al. 2019).

3.4. Free-Floating Planets

The prevalence of eccentric and/or inclined planetary orbits suggests likely histories of violent
dynamical interactions in the planetary systems, such as planet–planet scatterings, which naturally
eject a significant fraction of the planets from the system and form unbound planets with no hosts
(e.g., Rasio & Ford 1996, Chatterjee et al. 2008, Jurić & Tremaine 2008). The distributions of
FFPs bear important signatures of not only the initial configurations of the planetary systems at
birth but also their subsequent dynamical evolution.

Although it is possible to directly image young substellar objects down to a few Jupiter masses
(see, e.g., Zapatero Osorio et al. 2000), gravitational microlensing is the only known method in
probing the lower-mass objects, which are believed to dominate the dynamically ejected FFP pop-
ulation. Low-mass objects produce relatively short-timescale microlensing light curves as the Ein-
stein radius crossing time tE ∝ √

M. For typical stellar-massmicrolenses, the timescale is∼20 days,
whereas for planetary-mass objects it is �1 day. The detection of such short and rare events thus
demands wide-field high-cadence surveys that have only been available since the past decade.

Mróz et al. (2017b) analyzed a sample of 2,617microlensing events from theOGLE-IV (fourth
phase of theOpticalGravitational LensingExperiment;Udalski et al. 2015a) survey and concluded
that the frequency of Jupiter-mass free-floating (or wide-orbit) planets should be no more than
0.25 planets per main-sequence star at the 95% confidence level. This result is broadly compatible
with the inferred frequency of bound giant planets from RV surveys (e.g., Cumming et al. 2008),
microlensing searches (e.g., Gould et al. 2010), or direct imaging (e.g., Bowler 2016), and contra-
dicts a previous claim that free-floating Jupiter-mass planets are more abundant than stars (Sumi
et al. 2011). The sample of Mróz et al. (2017b) also includes six short events with timescales in the
range of 0.1 days < tE < 0.4 days. Assuming the microlensing nature of these events and given the
low detection efficiency at such ultrashort timescales, their sample suggests that there may be up
to a few FFPs in the Earth-mass to super-Earth-mass range per main-sequence star. The results
of Mróz et al. (2017b) about the absence of free-floating Jupiter-mass planets and the potential
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Table 1 Published microlensing free-floating planet candidates (θE < 10µas), sorted by the
inferred lens mass (see Equations 22 and 23 for typical estimates in the bulge and disk,
respectively)

Event name θE/µas tE/d M(disk) M(bulge) Reference
OGLE-2016-BLG-1928 0.84 0.029 0.2M� 1.8M� Mróz et al. 2020a
OGLE-2012-BLG-1323 2.4 0.16 1.8M� 14M� Mróz et al. 2019
OGLE-2019-BLG-0551 4.4 0.38 6.1M� 48M� Mróz et al. 2020b
KMT-2019-BLG-2073 4.8 0.27 7.6M� 59M� Kim et al. 2020
KMT-2017-BLG-2820 5.9 0.29 11M� 87M� Ryu et al. 2021
OGLE-2016-BLG-1540 9.2 0.32 28M� 217M� Mróz et al. 2018

existence of free-floating Earth-mass and super-Earth-mass planets are generally consistent with
theoretical expectations (e.g., Ida et al. 2013, Ma et al. 2016).

The existence of such ultrashort-timescale events was soon confirmed thanks to the coordi-
nated observations of multiple microlensing survey telescopes around the globe.Mróz et al. (2018)
reported the first convincing example of a microlensing event with timescale tE = 0.32 days, and
subsequent dedicated searches led to the discovery of a few more similar events (Kim et al. 2020;
Mróz et al. 2019, 2020a,b; Ryu et al. 2021). These events all show strong finite-source effects that
arise from the lenses transiting distant giant sources, yielding the immediate measurement of the
angular Einstein radius θE. The lens mass scales as

M(bulge) = θ2
E

κπrel
= 250M⊕

(
θE

10µas

)2 (
πrel

16µas

)−1

, 22.

with the normalization of the lens-source relative parallax π rel chosen such that the lens and source
are both in the Galactic bulge and separated by about 1 kpc in front. Here, the constant κ ≈
8.14 mas M−1. For lens in the Galactic disk (πrel ≈ 125µas), the mass scales as

M(disk) = θ2
E

κπrel
= 32M⊕

(
θE

10µas

)2 (
πrel

125µas

)−1

. 23.

Kim et al. (2020) and Ryu et al. (2021) argue that θE is a better discriminator than tE for selecting
FFPs. In fact, from a small number of events with finite-source effects, there is a possible gap
between ∼10µas and ∼30µas in the θE distribution, and this Einstein desert may separate brown
dwarfs from free-floating super Earths (and terrestrial planets) in the disk (Ryu et al. 2021). We
list in Table 1 the relevant parameters and inferred masses of the FFP candidate events with
θE < 10µas. The preliminary analyses by Mróz et al. (2019) and Ryu et al. (2021) suggest that
low-mass unbound (or wide-orbit) planets are possibly more common than stars in the Galaxy.
Future space-based microlensing surveys can assemble a large sample for quantitative assessments
of the FFP population (e.g., Johnson et al. 2020), and a satellite augmented with microlensing
parallax measurements can directly measure the masses and distances of such FFP events (e.g.,
Gould et al. 2020b, and references therein).

Although the events listed inTable 1 are promising candidates for FFPs, it is also plausible that
these objects are actually in such wide orbits that no microlensing signatures from their hosts were
detected. Light curve analyses can exclude the existence of any massive companions (i.e., hosts)
out to a few Einstein radii, corresponding to ∼15–20 AU away (e.g., Mróz et al. 2018, Kim et al.
2020). In other words, these FFP candidates could well be planets at Uranus-like or Neptune-
like orbits (e.g., Poleski et al. 2014). Future high-resolution imaging observations that can
resolve the hosts for wide-separation planets will be able to tell whether these objects are truly
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free-floating or loosely bound to some unidentified stellar hosts (Han et al. 2005, Gould 2016,
Ryu et al. 2021).

4. THEORETICAL IMPLICATIONS

The observed distribution of planets and the architecture of planetary systems, as reviewed in
Sections 2 and 3, are the consequences of ∼10–100-Myr formation and later ∼1-Gyr evolution.
In this section, we discuss the constraints from these observations on theoretical models. A com-
prehensive overview on the formation and evolution theories is beyond the scope of the current
review. Instead, we focus on the key physical processes that lead to observational signatures. To
reduce the complexity, we restrict our discussion to planetary systems around Sun-like hosts.

4.1. A Brief Overview of Theories

The generally accepted picture of planet formation can be traced back to the nebular model orig-
inally proposed by Immanuel Kant and Pierre Laplace in the 1700s. Modern theorists generally
believe that planets were formed out of the gas and the dust in the protoplanetary disk. Small solid
particles first accumulate to form asteroid-sized (∼1–100 km) planetesimals, and the collisions be-
tween planetesimals eventually lead to the formation of planet-sized objects (Chamberlin 1916,
Safronov 1972). See Woolfson (1993) for a historical overview on the planet-formation theories.

In the core accretion theory that explains our Solar System’s formation (e.g., Lissauer 1993,
Pollack et al. 1996), the primary building blocks for planet formation are planetesimals. The
growth of planetesimals is first divergent (i.e., the runaway phase) and then convergent (i.e., the
oligarchic phase), until nearly all planetesimals in their feeding zones are cleared (∼5RH). These
so-called protoplanets (or embryos) are now�1,000 km in size and aroundMars-mass (e.g., Ida &
Makino 1993, Kokubo & Ida 1998). The further growth of the protoplanets involves planetesimal
accretion as well as dynamical interactions between protoplanets. At a few astronomical units sep-
aration, the growth of protoplanets is sufficient and allows the formation of giant planets (Mizuno
1980, Pollack et al. 1996). In the classical picture, the giant planet formation has three phases: core
formation, hydrostatic gas accretion, and runaway gas accretion (Pollack et al. 1996). The hydro-
static gas accretion phase starts when the embryo reaches a critical core mass (∼10M�; Mizuno
1980, Stevenson 1982). This phase can take up to ∼10 Myr and is the most time-consuming step
in this classical core accretion model. The runaway gas accretion is triggered once the envelope
and the core have comparable masses, and it sufficiently pushes the total mass to the giant planet
regime (�100M�). In the inner region, embryos grow slowly and never reach the critical coremass
before the gaseous disk is depleted. The later evolution involves collisions between these embryos
in the gas-free environment. This so-called giant impact phase lasts ∼100 Myr and eventually
forms the terrestrial planets (e.g., Chambers 2001).

A new paradigm that has attracted much attention in recent years is pebble accretion. In the as-
trophysical context, pebbles are dust particles that are weakly coupled to the gas and, thus, drift in
the disk. The inclusion of pebbles in the formation diagram provides a plausible scenario for the
formation of planetesimals via streaming instability (Youdin & Goodman 2005, Johansen et al.
2007, Chiang & Youdin 2010). Unlike planetesimals that are decoupled from the gas, pebbles
“feel” the aerodynamic drag from the gas and drift inward toward the star (Nakagawa et al. 1986).
This means that the food supply to a protoplanet is not limited to the local material. Addition-
ally, the cross-section for protoplanets (or planetesimals) to accrete pebbles is larger than the
cross-section for the same objects to accrete planetesimals (Ormel & Klahr 2010, Lambrechts &
Johansen 2012). These two factors together make pebble accretion more efficient in building up
cores of protoplanets. When the protoplanet becomes massive enough, it starts to carve a gap in
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the pebble disk, and the subsequent pressure bump outside of the orbit stops the inward drifting
pebbles. The corresponding mass of the protoplanet is called the pebble isolation mass,

Miso ≈ 10
(
h/r
0.04

)3

M⊕, 24.

where h/r is the disk aspect ratio at location r and the prefactor is determined numerically and
depends on disk properties (Lambrechts et al. 2014). The above relation assumes a solar-mass
host star. For other stellar masses, the pebble isolation mass scales linearly with the mass of the
host star (Liu et al. 2019). Once a protoplanet reaches the pebble isolation mass, it effectively cuts
off the pebble flux and starves the protoplanetary core and all embryos interior to its orbit. With
the halted pebble accretion, the critical core mass required to trigger the rapid gas accretion is
reduced and thus giant planets can form more efficiently (Lambrechts et al. 2014). Furthermore,
pebbles can easily vaporize in the hot envelopes before they can reach the cores (Brouwers et al.
2018). The enriched envelopes also speed up the formation of giant planets (Venturini et al. 2016;
see also Stevenson 1982 and Hori & Ikoma 2011 for a similar mechanism in the planetesimal
accretion scenario).We refer interested readers to the reviews by Johansen & Lambrechts (2017)
and Ormel (2017) for more details about the pebble accretion model.

Planets may undergo disk-driven migration while accreting pebbles, planetesimals, and/or gas
(e.g., Kley & Nelson 2012, and references therein). Migration can substantially change the archi-
tecture of the planetary system, such as locking planets into mean motion resonances (Goldreich
& Tremaine 1980, Lee & Peale 2002). However, such features are not prominent in Kepler sys-
tems (see Section 2.4.2). This may suggest that most Kepler planets have not undergone significant
disk-driven migrations (see also Section 4.2). Alternatively, the Kepler planets may have never en-
tered into resonances during the migration (e.g.,Goldreich & Schlichting 2014), or the long-term
dynamical evolution after the disk dispersal has effectively removed most of these features (e.g.,
Izidoro et al. 2017, 2019).

4.2. Constraints from Observations

Given the substantial uncertainties in theories and in some parts of observations, we think that it
is premature to provide detailed and quantitative comparisons between theories and observations
(but see attempts by, e.g., Hansen & Murray 2013, Izidoro et al. 2017, Mulders et al. 2019,
Emsenhuber et al. 2020). We therefore choose to focus on the following selected constraints
that are considered relatively robust and discuss their implications to the formation of Kepler-like
planets:

� Prevalence and multiplicity. Inner super Earth–like planets are known to exist around
∼30% of Sun-like stars, and they typically reside in multiplanet systems (Section 2.2). Addi-
tionally, they preferentially have outer cold Jupiter companions (Section 3.2), suggesting that
the two types of planets do not inhibit, but perhaps promote, the formation of each other.
Unlike giant planets, super Earths show a much weaker dependence on the host metallicity
(Section 2.5.2).

� Composition. As inferred from population-level studies of the radius valley (Section 2.1.4)
as well as mass and radius measurements of individual Kepler planets (e.g., Wu & Lithwick
2013; Hadden & Lithwick 2014, 2017), some inner small planets likely have Earth-like (i.e.,
rocky and ice-poor) cores, and these cores have acquired gaseous envelopes that weigh up
to a few percent of the total mass while the disk is still present.
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The prevalence and the early formation of super Earth–like planets suggest that the planet-
formation process is more efficient than what had been expected from Solar System formation
models. This alone may not be an issue to the pebble accretion scenario (see Section 4.1).12 In fact,
pebble accretion can be so efficient that preventing super Earth–mass planets from undergoing
runaway gas accretion poses another challenge, a possible solution to which could be a delayed
formation near the end of the disk phase (e.g., Lee et al. 2014). For the planetesimal accretion
scenario, a very massive disk is typically required to form super Earths efficiently and early (e.g.,
Emsenhuber et al. 2020).The rocky composition suggests that the cores are formed in the ice-poor
environment, likely inside the water ice line. In order for embryos or protoplanets from outside
of the ice line to not largely contaminate the inner region, the disk-driven migration is probably
suppressed.

The strong correlation between inner super Earths and outer cold Jupiters is a bit challenging
to both accretion scenarios under the typical protoplanetary disk conditions. The planetesimal ac-
cretion scenario usually requires relatively efficient disk-driven migrations to explain the presence
of abundant super Earths around metal-poor hosts, but the same migration efficiency turns out
to be an overkill in reproducing the inner–outer strong correlation (Schlecker et al. 2020; see also
Ida & Lin 2010). For the pebble accretion scenario, because the solid supply to protoplanets is not
limited locally, there is potentially direct competition between different embryos. Furthermore,
once the core of the outer giant planet first reaches the pebble isolation mass, the further growth
of the inner planets is significantly limited, and the giant planet also acts as a barrier to the inward
migrating embryos from outside of its orbit. Therefore, the pebble accretion scenario typically
expects an anticorrelation between inner and outer planets (Izidoro et al. 2015, Morbidelli et al.
2015, Lambrechts et al. 2019). Alternatively, the cores of both inner super Earths and outer cold
Jupiters could be formed at such large separations (tens of astronomical units) that enough ma-
terial is available to the inner cores (Bitsch et al. 2015, 2019), although it is unclear whether such
an approach can reproduce quantitatively the observed correlation and form rocky core planets.
The difficulty in reproducing the inner–outer correlation may suggest that many protoplanetary
disks start heavier than what has been typically assumed. Indeed, if Kepler planets are formed in
situ based on the local material (i.e., not the inward-drifting pebbles), the required surface density
is much higher than in the minimum-mass solar nebula model (Weidenschilling 1977, Hayashi
1981) and almost reaches the gravitational instability limit (Chiang & Laughlin 2013).

5. SUMMARY AND DISCUSSION

The discovery of thousands of exoplanets from the combination of multiple detection techniques
has substantially advanced our understanding of the distribution of planets and the architecture
of planetary systems. This review aims to update our knowledge of exoplanet statistics since the
Winn & Fabrycky (2015) review. In Section 2, we described the distribution and properties of
planets in the inner region, based mostly on discoveries from the Kepler mission. In Section 3, we
reviewed the recent progress on the cold planet population, with an emphasis on their connec-
tions to the close-in companions. Section 4 briefly described the theoretical models and the key
constraints from observations.With the ongoing and upcoming missions that have better capabil-
ities and/or open up new observational channels, our understanding of exoplanets and planetary

12Pebble accretion is efficient in growing planet embryos into larger bodies. However, pebble accretion is also
lossy, as �90% of the planet-forming material falls onto the host star rather than being accreted onto the
growing planets (Liu & Ormel 2018, Lin et al. 2018).
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systems will continue to be improved. Below we summarize the key results and outline several
promising directions that may see substantial advancement in the near future.

SUMMARY POINTS

1. In the inner region (�1 AU), about 30%of Sun-like stars host planets withmasses and/or
radii down to Earth mass and/or radius, and each planetary system on average has about
three such planets. These suggest that the planet-formation process is more efficient
than what had been expected from Solar System formation models.

2. Planetary systems with more planets appear colder dynamically, with smaller orbital ec-
centricities, mutual inclinations, and orbital spacings. For systems with few planets in
the inner region, planets can have ∼0.3 orbital eccentricities and �10-deg mutual in-
clinations. These support the idea that dynamical evolution has played a significant role
reshaping the system architecture.

3. There exists a radius valley at Rp ∼ 2R� and P � 30 days. The valley was predicted by
the photoevaporation theory, although alternative explanations have also been proposed.
Population-level analyses of the radius valley suggest that these planets were probably
born with rocky cores and gaseous atmospheres up to a few percent of the core masses.

4. Cold Neptune–like planets are a few times more abundant than cold Jupiter–like ones
in the outer region. The inner (�1 AU) and the outer (∼1–10 AU) planetary systems
appear strongly correlated such that inner small planets preferentially have cold Jupiter–
like companions and outer Jupiters almost always have inner planetary companions.

FUTURE ISSUES

1. Exoplanet atmosphere and mass–radius relation: Space-based all-sky transit surveys like
the TESS (Transiting Exoplanet Survey Satellite) mission (Ricker et al. 2015) have been
finding many bright targets, enabling detailed characterizations of more close-in planets
(e.g., Huang et al. 2018, Armstrong et al. 2020). An improved mass–radius relation and
better atmospheric characterizations will help to understand the composition and po-
tentially the past evolution of the planet (see the recent review by Madhusudhan 2019).

2. Planetary system architecture: The joint coverage of different surveys will potentially
open up a larger parameter space (see Figure 1) and reveal more interesting features
about the planetary system architecture. The Gaia mission alone is expected to detect
at least thousands of giant planets around nearby stars (Perryman et al. 2014), and its
synergy with other surveys and missions will also open up new channels into architec-
ture study (e.g., Xuan & Wyatt 2020, Damasso et al. 2020, De Rosa et al. 2020). Radial
velocity (RV) follow-ups of systems detected by other methods could also play increas-
ingly indispensable roles in this aspect, particularly with the extreme RV instruments
with capability down to ∼0.3m s−1 now coming online (e.g., Fischer et al. 2016).

3. Planets across the Hertzsprung–Russell diagram and their Galactic distributions: Rapid
advances of large-scale spectroscopic surveys and the Gaia satellite are continuing to
revolutionize stellar astrophysics and Galactic astronomy. Further synergies of large
samples of exoplanets with detailed stellar chemical compositions, kinematics, and/or
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ages measurements are expected to place planet formation in the rich context of stellar
populations and evolutions.

4. Planets around young stars: Although the present review focuses on the planetary sys-
tems around �1-Gyr-old stars, the demographics of planets around young (�100 Myr)
stars is a crucial link toward a more direct comparison with both planet formation
theories and ALMA (Atacama Large Millimeter/submillimeter Array) observations
of protoplanetary disks (see the recent review by Andrews 2020). The detection and
characterization of more planets around young stars [e.g., PDS 70b, c (Haffert et al.
2019) and AU Microscopii b (Plavchan et al. 2020)] will be valuable.
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