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Abstract

Glycoscience research has been significantly impeded by the complex com-
positions of the glycans present in biological molecules and the lack of con-
venient tools suitable for studying the glycosylation process and its function.
Polysaccharides and glycoconjugates are not encoded directly by genes; in-
stead, their biosynthesis relies on the differential expression of carbohy-
drate enzymes, resulting in heterogeneous mixtures of glycoforms, each
with a distinct physiological activity. Access to well-defined structures is
required for functional study, and this has been provided by chemical and
enzymatic synthesis and by the engineering of glycosylation pathways. This
review covers general methods for preparing glycans commonly found in
mammalian systems and applying them to the synthesis of therapeutically
significant glycoconjugates (glycosaminoglycans, glycoproteins, glycolipids,
glycosylphosphatidylinositol-anchored proteins) and the development of
carbohydrate-based vaccines.
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Heparin: a highly
sulfated derivative of
heparan sulfate; a
commonly used
anticoagulant

Antigen: recognized
by the immune system
as a foreign structure,
thus activating the
cascade of events that
leads to antigen-
specific antibody
production

Glycosaminoglycans
(GAGs): linear
polysaccharides
consisting of repeating
units containing
UA-HexN and
Gal-GlcNAc
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INTRODUCTION

Carbohydrates, together with nucleic acids, proteins, and lipids, are the primary constituents of
cells. Among these four major classes of biomolecules, carbohydrates are the least understood
with regard to their biological function, mainly due to the lack of effective tools and methods
for their study. Nevertheless, during the past 25 years, impressive progress has been achieved in
our understanding of the biology of glycosylation (1). In addition to participating in metabolic
events and other intracellular processes, oligosaccharides are often conjugated to lipids and pro-
teins displayed on the cell surface and are involved in various intercellular communications and
carbohydrate-mediated recognition processes. Because the biosynthesis of glycans depends on the
expression of genome-encoded enzymes, the composition of cell-surface carbohydrates is specific
to the cell type and alters as the cell undergoes developmental, physiological, and pathological
changes. Not surprisingly, determining the biological functions of glycans is a complex task, and
it requires the development of effective methods of glycan analysis and synthesis. Thus, glycobi-
ology, initially formed at the interface of chemistry and biochemistry, has expanded to encompass
areas of molecular and cellular biology, as well as physiology, and is expected to continue its
integration into a variety of biomedical disciplines (2).

In addition to making fundamental contributions, research in glycoscience also has implica-
tions for biotechnology and medicine. Various carbohydrate scaffolds are found in a number of
prescription drugs, which include nucleosides and macrolides, enzyme inhibitors (e.g., zanamivir),
oligo- and polysaccharides (e.g., acarbose, heparan sulfate, heparin, and fondaparinux), vaccines,
and therapeutic glycoproteins (e.g., bevacizumab, erythropoietin, and darbepoetin alfa) (3, 4).
Although carbohydrate antigens and glycosaminoglycans (GAGs) isolated from natural sources
have been used in the clinic, their heterogeneity could be a liability, as illustrated by the case
of heparin sulfate contaminated with oversulfated chondroitin sulfates, which led to nearly 100
deaths (5). Fortunately, current chemical and enzymatic methods allow the generation of struc-
turally defined oligosaccharides, glycoproteins, and other glycoconjugates. The approved synthetic
carbohydrate-based vaccine against Haemophilus influenzae type b infection is the first successful
example of this trend (6).

600 Krasnova ·Wong



BI85CH23-Wong ARI 21 May 2016 11:59

Despite impressive progress in developing methods of oligosaccharide synthesis, which has
been reviewed recently (7–11), the field is still expanding, responding to the ever-growing de-
mands of glycoscience. A major bottleneck in glycoscience research is the lack of homoge-
neous forms of glycans and the shortage of reliable and scalable methods of glycan synthesis.
This review covers general aspects of the chemoenzymatic synthesis of glycans commonly found
in mammalian systems and their application to the synthesis of GAGs, glycoproteins, glycol-
ipids, glycosylphosphatidylinositol (GPI)-anchored proteins, and carbohydrate-based vaccines.
The biosynthesis of different classes of oligosaccharides is briefly discussed to provide background
information on the structural diversity of glycans and the enzymatic pathways required for tar-
get synthesis. Along the way, readers will be referred to more specialized reviews, and the most
prominent contributions to the field will be discussed.

METHODS OF GLYCAN SYNTHESIS

Chemical Synthesis

Carbohydrate chemistry is an old discipline, which traces its origin to the pioneering work of Emil
Fisher (11a) on the interconversion of monosaccharides and the determination of glucose (Glc)
structure and its isomers. For some time, the field was mainly driven by the challenge of synthesis,
rather than by practicality. Difficulties associated with stereoselective glycosidic bond formation
and protecting group (PG) manipulations have hindered access to these biomolecules and limited
our knowledge of glycosylation in biology. Nonetheless, when the need for carbohydrate probes
emerged, synthetic chemists were equipped with the basic set of PGs, leaving groups (LGs), and
promoters, which has been substantially expanded over the past 25 years. In this review, we outline
the basic principles behind oligosaccharide synthesis. More detailed discussion can be found in
a number of reviews covering methods of glycosidic bond formation (12, 13) and strategies for
glycan assembly (8, 14, 15).

One of the pivotal challenges of oligosaccharide synthesis is selective glycosidic bond forma-
tion, which can proceed with either trans or cis regioselectivity between the substituents at C-1 and
C-2 (Figure 1). The stereoselectivity of O-glycosylation depends on multiple factors; however, the
structural features of the glycosyl donor and PGs have the most prominent roles in the reaction’s
outcome. Apart from discriminating the faces of the anomeric center by steric constraints (e.g.,
R2 = OCHPh2, Figure 1) (16), PGs can electronically participate in the stabilization of the glyco-
syl cation intermediates. In addition, cyclic PGs at remote positions can control stereoselectivity by
imposing conformational constraints. Although there is no universal method for synthesizing di-
versely substituted saccharides, certain procedures designed for specific carbohydrate scaffolds can
deliver a high degree of stereocontrol. The most effective strategies are summarized in Figure 1.

The classic concept of neighboring group participation usually refers to the 2-O-acyl group
and analogs that can participate in stabilizing the oxocarbenium ion via an acetoxonium-type
intermediate, leading to trans selectivity (Figure 1a). Synthesis of the cis glycosides can be ac-
complished in the presence of nonassisting groups and usually results in a mixture of isomers;
however, the concept of neighboring group participation has been now expanded to the construc-
tion of 1,2-cis glucoses and 1,2-cis galactoses (Figure 1a) (17). The chiral auxiliary at C-2, the
(1S)-(phenylthiomethyl)benzyl PG, stabilizes the oxocarbenium ion via the trans-decalin sulfo-
nium intermediate and effectively prevents the trans face attack by the glycosyl acceptor.

The new and highly efficient solution to β-mannosidic linkages relies on the remote stere-
ocontrol provided by the 4,6-O-benzylidene acetal PG (Figure 1b) (18). In a similar manner,
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Figure 1
Chemical synthesis of oligosaccharides depends on reliable glycosylation methods, which can selectively
provide 1,2-cis or 1,2-trans linkages. Structural features and protecting groups of the glycosyl donor are used
to control the stereoselectivity of chemical glycosylation. Abbreviations: Gal, galactose; GalNAc,
N-acetylgalactosamine; GlcNAc, N-acetylglucosamine; Man, mannose.

the 4,6-O-silyl acetal group offers excellent cis selectivity in the α-Gal (galactose) and α-GalNAc
(N-acetylgalactosamine) series (19).

Locking the C-2 and C-3 substituents in the oxazolidinone ring gives good cis selectivity for
the aminoglycosyl derivatives as the result of acid-catalyzed anomerization (Figure 1c) (20–22).
Among all glycosylations, α-sialylation is regarded as the most difficult transformation, due to the
poor control of stereoselectivity at the tertiary anomeric center and the absence of neighboring
participating groups. A solution to this challenge has come in the form of cyclic carbonate and
carbamate protection (18) used together with the α-phosphate LG (Figure 1d ) (23), which ensures
high α-selectivity. This method has been successfully used to prepare sialoside arrays and to
synthesize α-(2,9)oligosialic acids and Neisseria meningitidis capsular oligosaccharides for vaccine
development (24, 25).

Another factor that controls stereoselectivity in glycosylation is the nature of the glycosyl
acceptor, which in most cases cannot be easily changed, therefore further optimization can be
accomplished by tuning the reactivity of the LG, the choice of the promoter, the order of addition,
and the reaction temperature, pressure, and concentration. The effects of exogenous nucleophilic
additives and media on glycosylation reactions have been extensively studied and recently reviewed
(26).
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Strategies used for oligosaccharide assembly: (a) chemoselective glycosylation with different LGs and promoters for stepwise and
orthogonal one-pot procedures, (b) reactivity-based, programmable one-pot synthesis, and (c) solid-phase automated synthesis of Globo
H. Abbreviations: Fuc, fucose; Gal, galactose; GalNAc, N-acetylgalactosamine; Glc, glucose; LG, leaving group; RRV, relative
reactivity values.

One-pot: refers to
the multistep reaction
performed in a single
setup, thus eliminating
the need to isolate
intermediates and
shortening the
experimental time
frame

In addition to addressing the problem of stereoselective O-glycosylation, notable effort has
been directed toward developing a simple, yet efficient, method of glycan assembly. One of the
major advances in this area has been the introduction of a one-pot procedure (Figure 2a,b). The
original one-pot procedure reported by Raghavan & Kahne (27) took advantage of the different
reactivities of LGs; later variations of one-pot procedures are based on the PG-controlled reac-
tivity of glycosyl donors. Building on the observation that glycosyl donors with electron-donating
PGs undergo faster hydrolysis than glycosyl donors equipped with electron-withdrawing groups,
Fraser-Reid and colleagues (28) formulated the concept of the armed–disarmed glycosyl donors for
carbohydrate synthesis, which was further expanded to address the stereoelectronic and torsional
effects of PGs (29, 30). The first quantitative assessment of the PG-based reactivity of glycosyl
donors was performed by the Ley group (31).

The concept of one-pot glycosylation has further led to the development of the iterative one-
pot reaction (32) and the orthogonal one-pot procedure (15, 33). Other notable examples include
one-pot protocols for synthesizing suitably protected monosaccharides (34, 35).
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Programmable and Automated Synthesis of Oligosaccharides

The complexity of the chemical synthesis of glycans, especially in PG and LG manipulations,
represents a major impediment in the field. Although the one-pot strategy has proven to be quite
efficient for synthesizing complex oligosaccharides, its utility is restricted to those with expertise
in carbohydrate chemistry. Anticipating the transformation of highly specialized oligosaccharide
synthesis into a routine and automated process, a programmable strategy has been introduced
by the Wong group (Figure 2b) (36). A software program called OptiMer has been designed
to aid chemists in selecting building blocks for the one-pot assembly of oligosaccharides. The
selection and assessment of the PGs that affect the anomeric center reactivity of thioglycosides
were determined and expressed as relative reactivity values. The database contains more than 400
building blocks and has been used to prepare various oligosaccharides (from tri- to hexa-), including
colon cancer antigen Lewis Y (Ley), sialyl Lewis X (sLex), fucosyl GM1, heparan pentasaccharide,
and the embryonic stem cell surface carbohydrates Lc4 and IV2Fuc-Lc4 (8). As an example, the
Globo H antigen was assembled in an efficient manner using the one-pot procedure (Figure 2b)
(37), a considerable improvement over the original multistep synthesis.

Automated oligosaccharide synthesis on solid supports also holds great promise; the most
advanced prototype machine, developed by the Seeberger group (14, 38), utilizes the concept
of a peptide synthesizer. The logic behind automated solid-phase synthesis can be illustrated
with the preparation of Globo H (Figure 2c) (39). After the initial attachment of the acceptor
to the solid support through an orthogonally cleavable linker, the repetition of deprotection–
coupling–capping cycles is performed until the desired oligosaccharide is assembled. Some of the
notable targets synthesized by this technology include Ley and Lex antigens; N-linked glycan cores;
short glycopeptides; heparan sulfate (HS), chondroitin sulfate (CS), and dermatan sulfate (DS)
oligosaccharides; α-mannosides; and GPI glycolipids (14). The main drawbacks of the method are
the need for selective deprotection after each coupling step and the high cost of the monomeric
building blocks, which are used in excess to achieve high-yield conversions. These restrictions
could be partially lifted with solution-phase methods using flow reactors (40), fluorous-tag-assisted
techniques (41, 42), or reagent-free donor activation, as in the case of the electrochemical synthesis
of oligoglucosamines (43). Moving forward, for the programmable and solid-phase methods to be
routinely used for the synthesis of oligosaccharides, all required building blocks and equipment
would have to become readily available to the community.

Yamada & Nishimura (44) applied solid-phase methods to biocatalytic transformations and
developed a prototype of an automated glycosynthesizer, coined the artificial Golgi, with enzymes
immobilized on solid supports (4, 8). Others have followed this direction with the development
of digital microfluidic devices (45, 46).

Chemoenzymatic Synthesis

Although chemical methods are still commonly practiced in academic laboratories because they can
quickly provide new structures for exploratory research, they cannot compete with the efficiency
of the enzymatic methods used for industrial-scale synthesis in which there is no PG manipu-
lation and the reaction proceeds in aqueous solution at ambient temperature. The repertoire of
enzymes available for glycan synthesis and oligosaccharide modifications includes glycosyltrans-
ferases (GTs), glycosidases, phosphorylases, sulfotransferases, and others. This section outlines
the general methods of enzymatic synthesis; in-depth discussion can be found in a number of
reviews (8, 47, 48).

In contrast to the chemical synthesis of oligosaccharides, which relies heavily on PGs, nature’s
solution to stereospecific glycosyl bond formation is rooted in the choice of the LG and the
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Leloir
glycosyltransferases:
these use nucleotide-
phosphate-activated
monosaccharides as
glycosyl donors;
non-Leloir
glycosyltransferases
recognize phosphate
or polyprenyl
phosphate donors, or
starch-derived
oligosaccharides

SSEA: stage-specific
embryonic antigen

GHs: glycosidases,
glycoside hydrolases or
glycosyl hydrolases

Exo-glycosidases
(GHs): these break
the glycosidic bond of
terminal sugar residue
(or disaccharide),
whereas endo-
glycosidases hydrolyze
the internal bond, thus
cleaving more than
one sugar

GS: glycosyl synthase

GT. The majority of mammalian GTs are of the Leloir type; GTs of this type utilize nine basic
nucleotide-activated building blocks (donors) for the stepwise synthesis of complex oligosaccha-
rides. Despite the high fidelity and efficiency of glycosylations with mammalian GTs, microbial
GTs may be more suitable for in vitro synthesis because (a) the substrate flexibility of bacterial en-
zymes allows analog synthesis, (b) they have better solubility profiles, and (c) the ease of expression
in Escherichia coli or other species enables preparative synthesis.

Early attempts to use GTs for the synthesis of oligosaccharides required expensive nucleotide
donors and suffered from feedback inhibition caused by nucleoside–phosphate by-products.
These challenges were resolved with the simple concept of nucleotide–phosphate recycling, re-
ported by Whitesides and colleagues (49), as demonstrated by the large-scale preparation of
N-acetyllactosamine (LacNAc) with a multienzyme system containing the in situ generation of
uridine 5′-diphosphogalactose via uridine 5′-diphosphoglucose, from uridine 5′-triphosphate and
glucose 6-phosphate. Since then, multienzymatic protocols for the regeneration of other nu-
cleotide donors have been developed (50) and applied to the synthesis of sLex (51), sialyl-T anti-
gen (52), disialyllacto-N-tetraose (53), heparin oligosaccharides (54), and hyaluronic acid (55).
The power of the efficient recycling systems is best illustrated by the preparation of Globo H and
SSEA4 antigens for use in cancer vaccine development (Figure 3a) (56). Multigram synthesis was
enabled by the sugar kinase-mediated generation of sugar-1-phosphate, which was subsequently
converted to a sugar nucleotide. The fidelity of GTs ensures high yields, albeit with complexity
in the reaction mixture.

In addition to its high efficiency, GT-mediated synthesis proceeds with excellent regio- and
stereoselectivities, thus making GTs irreplaceable for the glycosylation of complex scaffolds, par-
ticularly the terminal sialylation of glycans (57, 58). Despite its potential, the availability of GTs
poses the main obstacle to the widespread application of GT-mediated synthesis. Expanding the
list of synthetically relevant GTs to cover all biologically significant glycosylic linkages and in-
creasing the number of commercially available enzymes would undoubtedly benefit the field (47).

Another class of enzymes applied to glycan synthesis is glycosyl hydrolases (GHs), which are
commonly used in the industrial processing of polysaccharides. Due to the reversibility of hydroly-
sis, certain conditions can be used to skew the equilibrium toward the glycosylation product. More
than 2,500 GHs, targeting nearly every glycosidic bond, are known. Many GHs are commercially
available or can easily be expressed in E. coli, making these catalysts synthetically attractive. Com-
prising more than 130 different families with diverse structures, the GHs feature a fairly conserved
active site. Hydrolysis with GHs occur with high specificity and produce products with retention
(Figure 4a,c) or inversion at the anomeric carbon. Structural variations within the binding site
control the position of glycosidic bond cleavage; endo-acting enzymes have a continuous binding
groove, which is blocked in the exo-glycosidases (GHs). GHs possess a well-defined site for donor
recognition, but show a high degree of acceptor promiscuity. The challenges of synthesis with
GHs include poor regioselectivity, the problem of self-condensation, and low yields due to com-
peting hydrolysis. Thus, synthesis with native GHs under thermodynamic conditions generally
gives low yields, but it could be synthetically viable under kinetic conditions, for example, with
the use of activated glycosyl donors (fluorides, oxazolines), organic cosolvents, or excess of the
glycosyl donor.

A major breakthrough in the area of enzymatic glycan synthesis was the introduction of exo-
glycosyl synthase (GS) by Withers and colleagues (60). The mutation of the nucleophilic residue
at the active site of GH abolishes its hydrolytic function and generates GS, which is suitable
exclusively for synthesis (Figure 4b). In the past, many GHs used for synthetic purposes were of
the exo-type; however, in the last decade endo-GH and endo-GS have become invaluable in the
synthesis of homogeneous glycoproteins (Figure 4d ).
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(a) Enzymatic multigram synthesis of Globo H and SSEA4 antigens with one-pot regeneration of sugar nucleotides. Examples of sugar
nucleotide regeneration systems starting from a free sugar or sugar-1-phosphate to the sugar nucleotide for GT reaction: regeneration
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Transglycosylation with transglycosidases or phosphorylases is another practical method for
glycosidic bond formation. Phosphorylases are highly specific toward donor substrates, yet they
demonstrate relaxed acceptor specificity. As they are cheap and robust, phosphorylases have been
adopted to the industrial synthesis of certain simple di- and trisaccharides (61, 62).

SYNTHESIS OF GLYCAN TARGETS

Having reviewed the basic principles of chemical and enzymatic methods of oligosaccharide syn-
thesis, in this section we discuss the scope and limitations of the methods available for synthesizing
naturally occurring glycoconjugates that are immediately related to human physiology.

Glycosaminoglycans

The GAGs are essential polysaccharides that mediate numerous processes in multicellular organ-
isms and certain microbes that have adopted GAGs as a part of their host mimicry. GAGs are
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[GlcAβ1,4-
GlcNAcα1,4]n is the
unmodified backbone
of heparin

widely distributed in the extracellular matrix and on the cell surface; they bind to a variety of pro-
teins and participate in regulating blood coagulation, cell proliferation, differentiation, adhesion
processes, and cell–pathogen interactions. Composed of repeating disaccharide units (GlcA-HexN
or Gal-GlcNAc), GAG chains are subject to further modifications that increase their structural di-
versity and substantially complicate the synthesis of these macromolecules (Figure 5a). Compared
with other polysaccharides, heparin and heparan sulfate (HS) are regarded as the most challeng-
ing synthetic targets, as they display all possible modifications: O-sulfation, N-deacetylation and
N-sulfation, and C5-epimerization of D-glucuronic acid (GlcA) to L-iduronic acid (IdoA) (63,
64). During the biosynthesis of HS, installation of N-sulfated glucosamine (GlcNS) residues in
heparosan is crucial for starting a cascade of the sequential modifications catalyzed by C5-epimerase
(65), 2-O-sulfotransferase (2-OST), 6-OST, and 3-OST (66). Incomplete conversions of the sul-
fation reaction and reversibility of the epimerization step result in structural heterogeneity in
GAGs. At the end, modifications are dispersed throughout the polysaccharide chain, creating
highly sulfated domains (so-called NS domains) separated from unmodified domains (or NAc
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domains) by transitional mixed NAc and NS sections. The biological activity of HS resides in the
densely functionalized NS domains and can be attributed to charge-based, nonspecific interac-
tions, and modification-specific and domain-specific interactions (67). Remarkably, the sulfation
pattern of HS is an important factor in the regulation of embryonic stem cell (ESC) fate. Al-
though nonsulfated HS is characteristic of pluripotent stem cells and their self-renewal ability,
highly sulfated HS is associated with ESC differentiation. Several studies have shown the possibil-
ity of neural cell generation from mice ESCs in the presence of GAG probes (68–70). However,
the precise sulfated epitopes, the mechanisms involved in ESC differentiation, and the production
of specific cell lineages are still largely unknown and call for systematic study involving struc-
turally defined GAGs and human ESCs, as the required oligosaccharide epitopes may vary among
species.

Methods of GAGs synthesis can be divided into two categories: (a) cost-efficient methods of
GAG production for the therapeutic applications and (b) modular methods, which can provide
access to all possible structural variations of GAGs for the structure–activity relationship (SAR)
study (71). Because biological functions are predominantly defined by the sulfation pattern of a
side chain and not by the protein core, the task of synthesis is usually reduced to the production of
polysaccharide chains with desired modifications. The majority of commercial methods are based
on extraction of GAGs from animal tissues; however, this approach gives heterogeneous samples
with broad molecular mass distributions, and the samples may be contaminated with harmful
entities (such as prions or pathogens). These liabilities could be alleviated by preparing GAGs in
bacteria, as is the case for the microbial production of HA (72).

The established methods for the synthesis of structurally defined GAGs include GT-mediated
polymerization with uridine 5′-diphosphate sugar donors with a nucleotide regeneration system
(Figure 5b) (55), hyaluronidase-mediated polymerization of the oxazoline donors (Figure 5c)
(73), and stepwise synthesis with GTs. The last approach is particularly useful for preparing
densely functionalized oligosaccharides, as illustrated by the synthesis of ultralow molecular weight
heparins (Figure 5d ) (74).

The key features of the process include an optimized order of sulfo-group installations and the
selection of hepta- and larger oligosaccharide substrates that are more susceptible to sulfotrans-
ferases. Another important issue is epimerization of GlcA to IdoA (Figure 5d, residue D, step b),
which is accomplished by meeting the following two criteria: (a) for the C5-epimerase-mediated
transformation of GlcA to IdoA (residue D) to take place, the adjacent sugar at the nonreducing
end has to be GlcNS (residue C); and (b) in order to ensure the irreversibility of the epimeriza-
tion step and lock the IdoA structure, the sugar (residue A) that is three residues upstream of
GlcA has to be GlcNAc (and not GlcNS, GlcN, or absent) (75). Further reaction optimization
using mammalian enzymes and scale-up, with the incorporation of the 3′-phosphoadenosine-
5′-phosphosulfate regeneration cycle into the enzymatic reaction (52, 54), may lead to improved
commercialized processes. Chemical methods can provide hexa- and smaller oligosaccharides (76).

A cost-efficient approach toward developing structurally defined GAGs employs alterations and
modifications of polymers produced in vivo. The trimming of natural GAGs and subsequent trans-
glycosylation with hyaluronidase provide sulfated domains for synthesizing chimeric GAGs (77).
Transglycosylation with endo-β-xylosidase permits transfer of the entire GAG chain (78). Although
transfer onto the serine residue of a selected peptide remains challenging, alkyne-modified GAGs
obtained by this method have been used to synthesize neoproteins and other glycoconjugates.
Multivalent artificial scaffolds (dendrimers, polymers, and glycan arrays) decorated with short
oligosaccharides have been used as probes to study GAG function. Recent reports have shown
that brush-like synthetic polymers carrying the disaccharide epitopes of CS-E, HS, or heparin
could mimic the biological activities of natural proteoglycans (68, 69, 79).
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glycosylation site
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glycosylation sites

Glycoproteins

Glycosylation is one of the most common post- and cotranslational modifications of proteins,
which affects protein structure, function, stability, trafficking, and receptor recognition. Static
modifications of the membrane-bound and secreted proteins by glycosylation create elaborated
oligosaccharide structures (N- and O-glycans), whereas dynamic modification regulates cytosolic
and nuclear proteins by adding and removing O-GlcNAc. More than half of all human proteins
are estimated to be glycosylated by the competitive actions of approximately 200 genome encoded
GTs (not including other carbohydrate-modifying enzymes), resulting in the formation of multi-
ple glycoforms with distinct pharmacological profiles (80). As a result, controlling the glycosylation
state of recombinant proteins becomes extremely important for developing and manufacturing
glycoprotein pharmaceuticals (81, 82). From a different perspective, access to glycoproteins with
a well-defined, tailored glycosylation state is needed to advance our knowledge of the glycosyla-
tion effect on protein folding and pathological conditions associated with aberrant glycosylation.
Although defective glycosylation pathways can be directly linked to congenital disorders (83), the
relation between abnormal protein glycosylation and glycoproteostasis and associated pathologies
is far more complex and requires systematic investigation (84). In this section, we highlight meth-
ods of homogeneous glycoprotein synthesis and major challenges related to the issues of N- and
O-glycosylation. More focused discussions on homogeneous glycoprotein synthesis can be found
in a number of reviews (47, 85, 86). Unlike the situation with GAGs, where the task of synthesis
can be reduced to preparing oligosaccharides with specific sulfation patterns, the synthesis of gly-
coproteins has to address not only the issue of glycan microheterogeneity but also the efficiency of
glycan coupling to the carrier molecule and the installation of oligosaccharides at a specific amino
acid residue within the polypeptide backbone, that is, macroheterogeneity. Therefore, defining
the correct target molecule becomes a significant challenge, and this has inspired the evolution of
glycoproteomic techniques and instrumentation.

The diversity of glycan structures is easy to understand by following their biosynthetic
transformations (80, 87). The synthesis of N-glycans commences in the endoplasmic reticulum
(ER), where a lipid-linked oligosaccharide, Glc3Man9GlcNAc2, is transferred en bloc to the ac-
ceptor Asn-X-(Ser/Thr) (X �= Pro) peptide sequons by oligosaccharyltransferase (OST). After
removal of the two terminal glucose residues, the GlcMan9GlcNAc2-associated polypeptide un-
dergoes chaperone-guided protein folding, a series of transformations that is part of the protein
quality control system (80, 88). The correctly folded proteins are then transferred to the Golgi
apparatus for further structural modifications. Universal to all cells, the ER machinery produces
the stem region of the N-glycan, which is trimmed down to the conserved Man3GlcNAc2 sequence
in the cis-Golgi, also the location of initiation of O-glycan biosynthesis. The final microhetero-
geneity of N- and O-linked glycans is a result of the biosynthetic pathways that take place in the
rest of the Golgi compartments. The expression and localization of the competing GTs, which
have overlapping acceptor preferences, and the availability of glycoprotein substrates and activated
sugar donors directly affect the final composition and heterogeneity of oligosaccharide sequences.
Although the theoretical number of possible structural variations is high, the LacNAc (hybrid
and complex glycans) and mannose (Man) (oligomannose-type glycans) residues are the most
commonly observed units in the eukaryotic oligosaccharide sequences. Termination of glycan
biosynthesis often occurs by sialylation or fucosylation. In addition to asparagine and serine (or
threonine) glycosylations, other less common protein modifications include C-mannosylation,
among others (89).

As one may expect, the manufacturing of many biopharmaceuticals, including glycoproteins, is
carried out in mammalian systems, mainly Chinese hamster ovary (CHO) cell lines, which employ
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human-like glycosylation pathways (90). The control over the N- and O-glycosylation states of
proteins in mammalian cells is performed by using a combination of standard techniques: gene mu-
tation, knockout, and pathway inhibition (Figure 6b) (47, 81). In a recent study, a comprehensive
knockout screen of glycosyltransferase genes with zinc-finger nucleases was performed to iden-
tify key glycogenes and to design a matrix for genetic manipulation of protein N-glycosylation
in CHO cells, including introducing human-like α2,6-sialylation (91). New precision genome
editing methods, such as the CRISPR/Cas system, are expected to become effective tools for
producing the desired glycoforms of recombinant proteins.

Major progress has been made in producing proteins with controlled sialylation of glycan
structures, predominantly with N-acetylneuraminic acid (Neu5Ac) and not N-glycolylneuraminic
acid (Neu5Gc), which is immunogenic in humans (92), and production of afucosylated recom-
binant glycoproteins via concurrent deletion of fut8 and inhibition of the GDP–fucose substrate
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Erythropoietin
(EPO): a glycoprotein
that stimulates
production of
erythrocytes and is
widely used as a
treatment for anemia

generation pathway (Figure 6b). Inhibition of GTs represents a well-established approach for
preparing glycoproteins with altered glycoforms. Some of the classical examples include the use
of imminocyclitols, deoxymannojirimycin, and kifunensine as α−mannosidase I inhibitors for the
in vivo synthesis of high-mannose-type glycoproteins (Figure 6c) (7). More recent cases include
the use of 3-Fax-Neu5Ac and 2-F-Fucose (Fuc) inhibitors of sialyl- and fucosyltransferases for re-
modeling cell-surface glycans (93). In another study, 2-F-Fuc and 2-alkynyl-Fuc inhibitors were
used to produce fucose-free monoclonal antibodies in CHO cells (94).

Glycoengineering in yeast (95) and bacterial cultures (96) can improve cost-efficiency of bi-
ologics synthesis and prevent potential cross-contamination with mammalian-borne infections
(Figure 6b). The most successful adaptation of humanized pathways was achieved for N-
glycosylation (specifically, for complex biantennary structures) in Pichia pastoris strains (97). Unfor-
tunately, creating the humanized O-glycosylation pathways in yeast is still problematic. Although
the glycoengineering of cell lines may provide a high degree of glycan homogeneity, current pro-
cesses employed in glycoprotein manufacturing are optimized mostly to minimize safety risks and
to eliminate immunogenic sequences.

Optimizing therapeutic effects and identifying the most potent glycoforms can be accomplished
by using chemoenzymatic methods, which can deliver glycoproteins in a pure, homogeneous
form. For instance, the commercial sample of rituximab, produced in CHO cells, contains more
than 50 glycan variations at Asn297 of the fragment crystallizable (Fc) region. Although our
knowledge of how different glycoforms affect immunoglobulin G (IgG) function remains limited,
some SAR studies have been reported (98). Specifically, removal of the core fucose enhances the
anticancer potency of rituximab via improving binding to the FcγIIIa receptor (FcγRIIIa) (99–
101), thus enhancing the antibody-dependent cellular cytotoxicity (ADCC). The Wong group
(102) has recently demonstrated that the α2,6-linked sialic acid of the biantennary glycan can
also improve antibody interaction with FcγRIIIa and FcγRIIa and results in the enhancement of
ADCC and vicinal effects. In addition, the anti-inflammatory activity of IgG, the desired property
of therapeutics targeting autoimmune disorders, is the result of IgG interactions with FcγRIIb
and correlates with α2,6-sialylation (103, 104). These studies have led to the identification and
preparation of homogeneous antibodies with a common glycan at the Fc region to maximize
anticancer, anti-infective, and anti-inflammatory activities (102).

In the case of human erythropoietin (EPO), the link between serum stability and the number
of terminal sialic acids in EPO has led to the development of a novel erythropoiesis-stimulating
protein, darbepoetin alfa. The improvement in the half-life and dosing regimen for darbepoetin
alfa was achieved by increasing the number of sialic acids (from 14 to 22) via the introduction of two
additional N-glycosylation sites (105). Conversely, asialo EPO has been shown to possess potent
neuroprotective activity (106). These examples illustrate the value of a well-defined composition
for biologics and highlight the necessity for efficient and reliable methods for homogeneous
glycoprotein synthesis.

Synthesis of N-Glycans and N-Glycoproteins

The synthesis of homogeneous glycoproteins encompasses the tasks of oligosaccharide synthesis
and ligation of the desired glycan structure to the protein core. Alternatively, oligosaccharides
can be directly linked to polypeptide sequences, which can then be assembled by native chemical
ligation. Methods of peptide ligation are independent of the glycan’s nature and can be applied
equally to the synthesis of both N- and O-linked glycoproteins.

Neither purely chemical nor enzymatic methods can deliver the substantial amounts of ma-
terial required for developing new and improved therapeutic glycoproteins. However, chemical

612 Krasnova ·Wong



BI85CH23-Wong ARI 21 May 2016 11:59

synthesis can be considerably simplified by incorporating enzymatic steps, for example, late-stage
introduction of the challenging linkages, such as α2,3- or α2,6-sialylation of the LacNAc branches
(57, 58), and core fucosylation (107).

Access to diverse sequences of N-glycans (estimated to exceed 20,000 structures), particularly
asymmetrically branched multiantennary structures, is essential not only for glycoprotein synthesis
but also for developing new analytical and diagnostic tools. Making complex N-glycans available,
especially the structures that are isomeric and nondistinguishable by mass spectrometry, is instru-
mental for developing new methods of glycan sequencing. In addition, diverse, well-defined N-
glycan samples are needed to prepare comprehensive glycan arrays. To achieve these goals, Boons
and colleagues (108) reported a general strategy for chemoenzymatic synthesis of asymmetrically
branched, complex N-glycans, taking advantage of the orthogonal protection of the branched
trimannosyl core and selective modifications of PG-differentiated branches with GTs. In a sepa-
rate study, a similar strategy was applied to the preparation of a library of biantennary N-glycans
(109). However, the modular strategy developed by the Wong group (110) could provide gen-
eral access to the diverse multiantennary complex and hybrid-type N-glycans (Figure 7a). It
utilizes a library of branching units with reducing end mannose, which are synthesized using the
chemoenzymatic method, and then chemically transformed into glycosyl fluoride donors for the
reaction with the selectively protected Man3GlcNAc2 core. The high efficiency of the α3- and
α6-Man–Man coupling reactions permitted the preparative synthesis of various N-glycans, which
were further used to prepare a mixed glycan microarray to enable the detection of heteroligand
binding of broadly neutralizing antibodies isolated from HIV-positive patients. This new glycan
array method is expected to facilitate the design and development of carbohydrate-based vaccines
against HIV-1.

Among other examples is a report describing the synthesis of variously substituted high-
mannose N-glycans using the top-down chemoenzymatic approach. The synthetic high-mannose
structures were modified with glucose, galactose, and GlcNAc monosaccharides. These artificial
structures were then used as substrates for orthogonal oligosaccharide trimming with GHs, thus
generating a library of high-mannose type N-glycans (111).

Remodeling of oligosaccharide sequences of recombinant proteins can be readily accomplished
in two steps: first, by trimming heterogeneous glycans of a protein to a homogeneous glycoform
containing a core glycan or single GlcNAc residue with glycosidases, and, second, by subse-
quently modifying the homogeneous glycoform with GTs (112) or endo-glycosidases (ENGases)
(Figure 7b) (113). Synthesis with ENGases and mutated synthases, coupled with the use of acti-
vated oxazoline donors, has become particularly effective for preparing homogeneous glycopro-
teins and glycopeptides. Advanced by the Wang group (85, 86), this approach has been applied to
the synthesis of several notable targets, including the CD52, HIV-I V3 and C34 glycopeptides, and
the IgG1 Fc. The last example illustrates the specificity of Endo S, which permits manipulations
of the complex fucosylated glycans on IgG targets (114). Despite the generality of the approach,
ENGase-mediated synthesis requires the use of 50- to 100-fold excess of the oxazoline donor to
achieve high conversions, which makes it expensive and can lead to nonspecific modification of
other nucleophilic residues of proteins with oxazoline substrate. Therefore, alternative LGs and
enzymatic methods are being investigated, specifically direct protein glycosylation catalyzed by
OST (115, 116). Although the use of mammalian OST for in vitro synthesis is difficult due to
the complexity and instability of the transmembrane complex, some progress has been achieved
using bacterial analogs of OST, a single-subunit PglB from Campylobacter jejuni (96). In a proof-of-
concept study, PglB was applied for in vivo (E. coli ) and in vitro synthesis of several glycoprotein
targets (117). The challenges that need to be resolved for this method to become practical include
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improving the efficiency of synthesis and substrate specificity for human sequences and glycolipid
substrates.

The methods discussed above are restricted to native glycoprotein preparations; however, con-
siderable efforts are also being directed toward preparing neoglycoproteins. One notable example
is direct glucose (Glc) transfer onto the NXS/T consensus sequence by N-glycosyltransferase and
subsequent modification of Glc with complex and oligomannose glycans by ENGases (118). Other
examples can be subsumed under the tag-and-modify approach (119) in which an oligosaccha-
ride is coupled to activated cysteine, lysine, or unnatural amino acid tags. These methods allow
introduction of the desired functionality into the target proteins; although, the problems associ-
ated with the immunogenicity of the non-native linkages are usually overlooked. Using artificial
glycoconjugates as probes to study multivalent carbohydrate interactions at cell surfaces, how-
ever, can provide valuable information (68, 69, 120, 121). Glycocalyx engineering is an emerging
technology that employs carbohydrate epitopes covalently attached to the membrane-anchoring
unit to study and regulate a specific biological response (3).

A solution to the issue of the macroheterogeneity of glycoproteins with multiple glycosylation
sites is de novo synthesis via ligation of peptide sequences (122, 123). The majority of ligation
procedures require generation of an activated thioester intermediate, which can be obtained in
a stabilized precursor form as an intein-fusion protein through coexpression or as a thioester by
solid-phase peptide synthesis (Figure 7c). Glycan installation is carried out at this stage using either
enzymatic or chemical methods. The next step involves activation of the thioester intermediate
and coupling to the cysteine-terminated glycosylated peptide block (Figure 7d ). The native
chemical ligation (NCL) method has advanced through the development of new orthogonal PGs
for thiols, masked thioesters, and unnatural thiolated amino acids, which after the ligation step
can be converted into the native structures. This allows extra flexibility during the design of the
synthetic route, as cysteine residues are rare and may be missing at the desired ligation junctions.
In many cases, a desulfurization reaction is performed allowing the Cys→ Ala transformation;
however, the Cys→ Ser transformation has also been reported (124). Unfortunately, these steps
require the selective protection of any additional cysteine residues that may be present in the
protein. In this regard sugar-assisted ligation provides a convenient way of assembling peptide
fragments, particularly with occupied O-glycosylation sites (Figure 7e) (125, 126). Modification of
the acetamido moiety of GalNAc or GlcNAc with a sulfhydryl group enables transthioesterification
with the peptide thioester, which then triggers the S→N acyl transfer to form a peptide bond.
During the next step, the thiol auxiliary or the entire monosaccharide unit can be selectively
removed. The most attractive advantage of sugar-assisted ligation is its broad sequence tolerance
at ligation sites (127, 128).

Perhaps the most impressive example of chemical glycoprotein synthesis is a total synthesis
of a homogeneous EPO realized by the Danishefsky group (129). Years of research devoted to
this notable target resulted in a number of groundbreaking synthetic methods (130), which may

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 7
(a) Modular synthesis was used to prepare a library of N-glycans and fabrication of mixed glycan arrays on aluminium oxide–coated
glass slides for profiling antibodies targeting the HIV-1 virus (110). (b) In vitro glycan remodeling and synthesis of homogeneous
rituximab (102). (c) Generation of activated thioester for peptide ligation. Ligation strategies used for glycoprotein and glycopeptide
synthesis rely on thiol-ester-mediated coupling and include (d ) native chemical ligation, expressed-protein ligation, Staudinger ligation
(not pictured), and (e) sugar-assisted ligation. Abbreviations: Ala, alanine; Cys, cysteine; Endo, endoglycosidase; Fuc, fucose;
Gal, galactose; GalNAc, N-acetylgalactosamine; GlcNAc, N-acetylglucosamine; Man, mannose; Neu5Ac, N-acetylneuraminic acid;
Ser, serine; SPPS, solid-phase peptide synthesis; Tyr, tyrosine; Val, valine.
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eventually provide a means to study the effect of a specific glycan on the structure and function of
a glycoprotein with multiple glycosylation sites. Other useful techniques include thiol auxiliary-
based cysteine-free ligation and protease-assisted ligation (47, 123).

Glycosylated Proteins for Structural Studies

Because the early steps of N-glycan biosynthesis are directly implicated in protein folding and
quality control during the calnexin–calreticulin cycle in the ER, the N-glycosylation-induced
effect on protein structure has become the subject of several biophysical studies. Early reports
demonstrated the effects of carbohydrate composition on local peptide conformations (131) and
modulation of the disulfide bond formation (132). Although the effect of N-glycosylation varies
from one protein to another, and has to be considered together with the peptide core, some general
rules of glycan effects on protein folding and stability can be formulated for simple glycoprotein
models.

The cell adhesion and signaling molecule CD2, which is expressed on T lymphocytes and
natural killer cells, has a functional 105 amino acid extracellular adhesion domain (hCD2ad),
which bears a single glycosylation site at Asn65 in the human homolog, and has no disulfide bonds
or proline residues to interfere with the effect of glycosylation on its folding, making hCD2ad a
perfect study model. Results of folding experiments have shown that glycosylation of hCD2ad both
increased the folding rate (kinetic contribution) and stabilized the folded state (thermodynamic
contribution). Comparisons of glycoform samples have suggested that the first GlcNAc residue
attached to asparagine is the most important component for structure stabilization. Approximately
3 kcal/mol of thermodynamic stabilization has been attributed to the Man-GlcNAc-GlcNAc
trisaccharide, in which the first GlcNAc (Figure 8, part i ) contributes two-thirds of the energy, the
second and the third sugars (Figure 8, parts ii and iii ) of the core trisaccharide provide one-third,
and the outer sugars have negligible effects on structure stabilization. The results suggest that the
core trisaccharide is sufficient for intrinsic acceleration of folding and stabilization in hCD2ad, and
the presence of this trisaccharide as the common and conserved core in all N-linked glycans may
not be coincidental (133). Further study of the system has revealed that introducing an aromatic
phenylalanine residue at the (i − 2) position to GlcNAc-Asn (i) provided an additional 0.8–1
kcal/mol stabilization (134, 135). A structural study of IgG1 Fc glycoforms has revealed that the
transition from hybrid to complex-type glycans increases the stabilization of the Fc structure (136).
In a report by the Imperiali group (137), analysis of the kinetic and thermodynamic contributions
of N-glycosylation (GlcNAc-GlcNAc) at different sites in the bacterial immunity protein Im7
revealed the effect of glycan on the local conformational preferences of glycosylated sequences.
The most prominent stabilizing effect of N-glycosylation has been observed at the compact turn
motifs between segments of ordered secondary structures, thus providing an explanation of the
preferential expression of N-glycan at the transition zones between different types of secondary
structures.

Protein O-glycosylation has also been found to affect protein structure, function, and stability.
Since the discovery of intracellular protein O-glycosylation with β-GlcNAc by Torres & Hart
(138), a great deal of effort has been directed toward understanding this biological process (139)
and its interplay with the posttranslational phosphorylation of proteins (140). An early study of the
O-GlcNAc modification of RNA polymerase II demonstrated the importance of glycosylation to
protein folding, as observed by nuclear magnetic resonance imaging (141). In a more recent report,
O-GlcNAc modification at Ser75 of EZH2 methyltransferase was shown to have an essential role
in its stability and enzymatic activity. EZH2 methyltransferase facilitates trimethylation of the
K27 site of histone H3, resulting in the inhibition of tumor suppression (142).
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Figure 8
GlcNAc (i ) speeds up folding by 0.8 kcal/mol and provides stabilization of the folded structure by 2 kcal/mol;
an additional 1.1 kcal/mol comes from GlcNAc-Man (ii,iii ). Fucose (iv) has no effect on protein stabilization.
Abbreviations: CNX–CRT, calnexin–calreticulin; ERAD, endoplasmic reticulum–associated protein
degradation; GlcNAc, N-acetylglucosamine; Man, mannose.

Synthesis of O-Glycans and O-Glycoproteins

In general terms, O-glycosylation is defined by the addition of oligosaccharide structures (GalNAc,
galactose, GlcNAc, mannose, fucose, glucose, or xylose) to the hydroxyl group of amino acids
(e.g., serine, threonine, tyrosine, hydroxylysine) (143). More commonly, however, O-glycosylation
refers to the mucin-type O-linked α-GalNAc oligosaccharides. Mucins are densely O-glycosylated
proteins (up to 70% by mass), which are expressed by mucosal epithelial cells and create a pro-
tective mucin barrier in the ocular epithelium and the respiratory, gastrointestinal, urinary, and
reproductive tracts. Glycosylated domains (approximately 600–1,200 amino acids) in mucins are
rich in serine, threonine, and proline. These long glycosylated domains are separated by shorter
nonglycosylated domains (20–70 amino acids). Most mucins are negatively charged due to the pres-
ence of terminal sialic acids and sulfated sugars. These bottlebrush-like, firm structures can either
extend from the glycocalyx or be secreted as oligomers into the extracellular matrix. The 16 hu-
man mucins are divided depending on their biophysical properties: secreted gel-forming, secreted
nongel-forming, and cell surface mucins (144). In the healthy state, mucins fulfill an important
function by acting as a protective barrier for cells against mechanical damage and infections; they
also act as decoys for bacterial adhesins and initiate intracellular signaling pathways in response to
pathogen invasion (145). Additionally, O-glycosylated proteins have been shown to play prominent
parts in embryonic development, organogenesis, and tissue homeostasis (146). Compared with
N-glycosylation, our knowledge of mucin O-glycosylation is surprisingly limited. The lack of de-
fined amino acid consensus sequences combined with the great diversity of O-glycan structures
makes mucin analysis and the study of sequencing and SAR extremely difficult, although these is-
sues provide plenty of opportunities for research. Nevertheless, biochemical studies of the enzymes
involved in mucin biosynthesis can help to elucidate the apparent complexity and heterogeneity
of this class of compounds.

The first step in mucin biosynthesis, the installation of the GalNAc sites, is completed by
the successive action of several polypeptide N-α-acetylgalactosaminyltransferases (ppGalNAcTs).
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(a) Examples of O-glycan structures. Conserved cores 1–8 can be elongated or terminated by fucosylation and sialylation. Termination
of O-glycans with Tn and T (TF) antigens is characteristic of cancerous cells. In the healthy state, O-glycans are typically terminated
with blood group antigens or, less commonly, with Le and sLe antigens. (b) Synthesis of Tn and sialyl Tn glycoforms of the MUC1
peptide. Abbreviations: Fuc, fucose; Gal, galactose; GalNAc, N-acetylgalactosamine; GlcNAc, N-acetylglucosamine; LacNAc,
N-acetyllactosamine; Le, Lewis; Neu5Ac, N-acetylneuraminic acid; sLe, sialyl Lewis; TF, Thomsen–Friedenreich.

Biochemical characterization of ppGalNAcT isoforms and systematic study of their substrate
specificities have revealed a complex balance between redundancy and hierarchy within this family
of enzymes (147). For instance, ppGalNAcT isoforms 1, 2, and 5 prefer non- and monoglycosylated
peptide substrates, and they participate in the initial step of peptide glycosylation. A further increase
in glycosylation sites is realized by the middle stage transferases (e.g., ppGalNAcT-3 and -4) that
prefer peptides with two GalNAc sites. Yet even a higher glycosylation density is achieved by the
action of the late stage ppGalNAcT-10, which prefers substrates with three and four glycosylation
sites (148). A particular feature of ppGalNAcTs, which is responsible for their selectivity, is the
presence of poorly conserved R-type lectin domains that bind to the preexisting GalNAc sugars and
guide the catalytic domain toward distal glycosylation sites. In-depth discussions of the structural
features, activities, and differential expression of ppGalNAcTs in healthy and disease states can be
found in recent reviews (143, 147).

After its installation, the GalNAc sugar (the Tn-antigen) is further modified by downstream
GTs: T-synthase (core 1), C3GnT, C2GnT1, and C2GnT2 (Figure 9a) (149). The generated
O-glycan cores can be further extended with LacNAc repeats (for cores 2 and 4) or terminated with
the blood group antigens and sialic acids. Dysregulation of O-glycosylation pathways is related
to a number of disorders, mainly cancers, which are usually characterized by overexpression of
truncated (Tn, sTn, and T antigens) and overfucosylated structures (Lewis antigens).

Due to the complexity and heterogeneity of the glycan constituents of mucin-type proteins,
no attempts at preparing naturally occurring mucins have been reported. However, synthetic
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nonglycosylated MUC1 peptides and their truncated glycoforms have been extensively studied as
tumor-associated carbohydrate antigens for the development of anticancer vaccines (150). In vitro
enzymatic synthesis based on the direct glycosylation of a synthetic MUC1 peptide has been also
reported (Figure 9b) (151).

In the case of a typical glycoprotein (nonmucin type), O-glycosylation sites occur fairly rarely
and display relatively short oligosaccharides. Synthesis of such O-glycans and glycoproteins can
be accomplished by using the chemoenzymatic methods and ligation techniques discussed in the
previous sections. If O-glycosylation is not essential for the activity of the glycoprotein, it can
be substituted with glycoPEGylation (152) or polysialyl modifications (153), which are used to
improve the pharmacokinetic properties of glycoproteins.

Glycolipids

Glycolipids comprise another class of glycosylated natural products that have been implicated in
the intracellular signaling network and are crucial for the sustainable functioning of multicellular
organisms (154, 155). Although disruptions of glycolipid biosynthetic pathways result in only a
handful of disorders because many lead to in utero lethality, defects in the exo-GHs responsible
for glycolipid catabolism are associated with a large number of lysosomal storage diseases (156).
In addition, many glycolipids are known tumor-associated antigens (e.g., GM2, GD2, Globo H,
SSEA4). Because Globo H, SSEA3, and SSEA4 are expressed in at least 16 different types of
cancers but not on normal cells, these antigens are especially promising targets for cancer vaccine
development (157) (see the sidebar, Carbohydrate-Based Therapeutic Vaccines Against Cancer).

The structural composition of glycolipids, such as conjugation of a highly polar sugar to the
lipid carrier, defines their unique biophysical properties, localization at the membrane surface, and
aggregation into glycosynapses and lipid rafts, together with other signaling molecules (e.g., GPI-
anchored proteins, transmembrane proteins, receptors, and ion channels). Apart from cholesteryl-
glucoside, phosphatidylglucoside, and seminolipid, most mammalian glycolipids use ceramide as
a lipid carrier and, thus, are termed glycosphingolipids (GSLs) (Figure 10a). The heterogeneity
of GSLs arises both from the glycosyl substituent and the ceramide unit, specifically the fatty acyl
group on the sphingosine base, which can be of variable length and saturation and can be modified
with hydroxyl substituents. Glycosylation of the ceramide with galactose or glucose gives the two

CARBOHYDRATE-BASED THERAPEUTIC VACCINES AGAINST CANCER

The ability of the immune system to discriminate foreign antigens from self-expressed epitopes is exploited in the
development of carbohydrate-based vaccines (170, 171). In addition to classical preventive vaccines against human
pathogens, therapeutic vaccines are emerging that target cancer cells with altered glycosylation states (172). The
most advanced vaccine candidate, GH-KLH-QS21, has been further improved by the new generation GH-DT
vaccines with α-galactosylceramide-type (C34) adjuvant (Figure 10c); this has been shown to induce antibody class
switch and gave the highest titers of anti–Globo H IgG compared with the GH-KLH-QS21 combination (173,
174). The induced antibodies showed specificity against Globo H, SSEA3, and SSEA4, which are specific to breast
cancer and its stem cells, as well as 15 other types of cancer cells. Another study has highlighted the appeal of
non-self antigens, that is, a vaccine candidate based on Globo H modified with 6N3-Fuc induced a robust IgG
immune response, much greater than that of the parent unmodified GH-DT conjugate (175). This progress was
made possible by the synthesis of Globo H using programmable one-pot (37) and enzymatic methods (56). An
historical perspective on the development of the Globo H vaccine can be found in a recent review (176).
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(a) Examples of lipid structures and GSL series. (b) Steps in the chemoenzymatic assembly of starfish
ganglioside LLG-3. (c) Composition of GH-DT-C34 vaccine candidate. Abbreviations: ChlGlc,
cholesterylglucoside; DT CRM 197, diphtheria toxin cross-reacting material 197; EGCase, endo-
glycoceramidase; Gal, galactose; GalNAc, N-acetylgalactosamine; Glc, glucose; GSL, glycosphingolipid;
Neu5Ac, N-acetylneuraminic acid; PtdGlc, phosphatidylglucoside.

simplest GSL structures: β-Gal-Cer and β-Glc-Cer. Further modifications of β-Glc-Cer with
GTs give rise to several classes of tissue-specific GSLs. Structurally, the most challenging, highly
sialylated GSLs—gangliosides—are populated in the nerve cells and represent one of the most
intriguing areas for research (158).

Oligosaccharide sequences found in complex GSLs are well established and can be accessed
using the chemoenzymatic methods discussed earlier. The Wong group has reported a preparative
enzymatic synthesis of Globo series oligosaccharides (Figure 3a) (56), which can be adapted for
preparing other classes of complex GSLs. The main difficulty with glycolipid synthesis, however,
is associated with the attachment of a water-soluble glycan to the hydrophobic lipid chain. The
Withers group engineered several endo-glycoceramidase mutants with broad lipid specificity (159).
The utility of the endo-glycoceramidase method was later demonstrated with the synthesis of
starfish ganglioside LLG-3 (Figure 10b) (160). The reported chemoenzymatic synthesis provides
a general approach for assembling GSLs. Another prevalent area of research focuses on bacterial
glycolipids, which are structurally more complex than their human counterparts. In this regard,
the Wong group reported a preparative enzymatic synthesis of bacterial lipid II and analogs in
which structurally complex targets were assembled in only two steps from GlcNAc (161).
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Glycosylphosphatidylinositol-Anchored Proteins

Many functionally diverse proteins, including hydrolytic enzymes, adhesion molecules, and recep-
tors, can be expressed as GPI proteins. Compared with transmembrane proteins, GPI-anchored
proteins maintain greater mobility due to the nature of lipid anchors. The lipid tail that secures a
GPI protein at the membrane’s surface does not completely extend through the cell membrane,
thus permitting a GPI protein to migrate from cell to cell; however, cleavage of the phosphate
linkage with phospholipases can release the protein in a soluble form. Apart from being anchoring
devices, GPIs have been shown to affect the conformation of the attached protein and the orga-
nization of lipid rafts (162). However, the biological significance of GPI anchoring, as well as the
correlation between GPI structural variations and their functions, are not fully understood. Access
to homogeneous forms of GPIs remains difficult, thus impeding research in that direction. Several
chemical strategies for synthesizing the glycolipid have been developed; however, conjugation of
the GPI anchor to a full-size protein remains problematic. As a result, there have been no prac-
tical methods established for the synthesis of native and homogeneous GPI-anchored proteins.
Nevertheless, the synthesis of GPI analogs for the study of their function has been reported and
reviewed (162, 163).

The conserved core of most eukaryotic GPIs consists of a phosphoethanolamine linkage, Man3-
GlcN saccharide, inositol, and phospholipid. In humans, additional modifications to the conserved
core result in approximately 20 distinct isoforms and may include glycosylation and phospho-
ethanolamine attachment to the carbohydrate unit, acylation of inositol, and structural variations
within the lipid tail (Figure 11a). An even higher level of structural complexity is found among
parasitic GPIs, many of which can act as virulence factors or toxins and, therefore, are important
targets for the development of antiparasitic vaccines (164).

So far, only chemical methods have been reported for synthesis of structurally defined glyco-
lipid parts of GPIs. Currently, research aims to develop flexible synthetic strategies that will allow
access to a wide variety of structures for the SAR study. Synthetic GPI anchors can be coupled to
the desired peptide by NCL; however, this requires introducing a cysteine residue at the phos-
phoethanolamine group (Figure 11b) (165, 166). Alternatively, GPI anchors suitable for NCL
can be generated by yeast expression of prion proteins bearing a TEV protease cleavage site (167).
Another useful procedure for synthesizing GPI-anchored protein analogs uses ligation mediated
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by sortase A, which relies on the presence of a nonnative LPXTG sorting signal (Figure 11c)
(168, 169).

CONCLUSIONS

The many methods developed during the past 25 years have substantially enriched the reper-
toire of accessible, physiologically relevant oligosaccharides and led to the introduction of new
technologies, such as cell-surface engineering (3) and glycan microarrays (177), that have proved
useful for addressing the questions posed by fundamental and applied research. Many groups that
entered the field with carbohydrate chemistry expertise now incorporate the subject of disease
biology into their research, thus ensuring the long and prosperous growth of glycoscience.

SUMMARY POINTS

1. The progress of glycoscience directly depends on the availability of structurally defined,
homogeneous samples of oligosaccharides and glycoconjugates.

2. In the area of chemical synthesis, the goal is to develop simplified and automated methods
for preparing designer carbohydrates.

3. Priorities for the enzymatic synthesis of glycans and glycoconjugates include expand-
ing the repertoire of GTs and GSs, as well as engineering high-yielding, cost-efficient
enzymatic systems.

4. The most powerful methods of oligosaccharide synthesis are based on combined
chemoenzymatic approaches, which enable fast generation of libraries of glycans for
the SAR study.

5. Modern methods of glycan synthesis can provide access to many mammalian-type
oligosaccharides and some glycoconjugates, particularly glycolipids and homogeneous
glycoproteins.

FUTURE ISSUES

1. Research in glycoscience revolves mostly around the mammalian glycome; however, de-
ciphering the glycomes of microbes is no less important and should lead to a better
understanding of microbiota and discovery of new antibacterial treatments and vaccina-
tion regimens.

2. With carbohydrate-based vaccines pushing forward the standards of existing cancer
treatments, we expect to see more studies that focus on developing structurally defined
glycotherapeutics.

3. The identification of disease-associated biomarkers, as well as imaging and monitoring of
disease-affected glycosylation pathways, will continue to be dominating research areas.

4. Systematic SAR studies of glycoproteins should provide an enhanced understanding
of the physiology of lysosomal storage diseases and disorders associated with aberrant
glycosylation. Perhaps, progress in glycobiology will eventually deliver a solution to
human aging, which, among other symptoms, is characterized by an altered glycosylation
state.
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