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Abstract

Mitochondrial ribosomes (mitoribosomes) perform protein synthesis in-
side mitochondria, the organelles responsible for energy conversion and
adenosine triphosphate production in eukaryotic cells. Throughout evo-
lution, mitoribosomes have become functionally specialized for synthesiz-
ing mitochondrial membrane proteins, and this has been accompanied by
large changes to their structure and composition. We review recent high-
resolution structural data that have provided unprecedented insight into the
structure and function of mitoribosomes in mammals and fungi.
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INTRODUCTION

Ribosomes are large ribonucleoprotein complexes that are responsible for protein synthesis in all
living cells (1, 2). They are composed of two unequal subunits: The small ribosomal subunit binds
messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl–
transfer RNA (tRNA) molecules (1, 3). The large subunit contains the ribosomal catalytic site
termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds,
thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain (4–7). The
nascent polypeptides leave the ribosome through a tunnel in the large ribosomal subunit and
interact with protein factors that function in enzymatic processing, targeting, and the membrane
insertion of nascent chains at the exit of the ribosomal tunnel (5, 8, 9).

Mitochondria are cellular organelles responsible for energy conversion and adenosine triphos-
phate (ATP) production in eukaryotic cells. In addition to their function in energy metabolism,
they play an important part in diverse cellular processes, such as apoptosis (10) and aging (11).
Because mitochondria originated from an α-proteobacterial ancestor by endosymbiosis (12, 13),
they still contain a strongly reduced mitochondrial genome, as well as mitochondrial ribosomes
(mitoribosomes) and other molecular components needed to express the information encoded on
the mitochondrial DNA. Even though mitoribosomes are evolutionarily derived from bacterial
ribosomes, they have strongly diverged from them in terms of composition (14), function, and
structure (15) (Table 1). Mitoribosomes have acquired numerous mitochondrial-specific pro-
teins and protein extensions (16–22), and, additionally, their ribosomal RNAs (rRNAs) exhibit
considerable plasticity (23–28). These structural changes have been accompanied by a strong
functional specialization of the mitoribosome, which synthesizes predominantly, or even exclu-
sively, membrane proteins, including hydrophobic components of highly important complexes of
the mitochondrial respiratory chain (29). Consequently, the signal recognition particle targeting
system is absent in animal and fungal mitochondria, and mitochondrial ribosomes have become
permanently attached to the mitochondrial inner membrane (30–32).
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Table 1 Overview of the composition of bacterial, eukaryotic cytosolic, and mitochondrial ribosomes

Bacteria (Escherichia
coli ) (154) Eukaryotic cytosol (154)

Mammalian
mitochondria (62, 63)

Yeast mitochondria
(21, 57)

Ribosome

Sedimentation
coefficient

70S 80S 55S 74S

Molecular weight 2.3 MDa 3.3–4.3 MDa 2.7 MDa 3–3.3 MDa

Number of rRNAs 3 4 3 2

Number of proteins 54 79–80 82 ∼82a

Large subunit

Sedimentation
coefficient

50S 60S 39S 54S

rRNAs 23S (2,904 nt) 26S–28S (3,396–5,034 nt) 16S (1,569 nt) 21S (3,296 nt)

5.8S (156–158 nt)

5S (120 nt) 5S (120–121 nt) CP tRNA (73–75 nt)

Number of proteins 33 46–47 52 46
Small subunit

Sedimentation
coefficient

30S 40S 28S 37S

rRNAs 16S (1,534 nt) 18S (1,800–1,870 nt) 12S (962 nt) 15S (1,649 nt)

Number of proteins 21 33 30 ∼36a

Abbreviations: CP, central protuberance; nt, nucleotide; rRNA, ribosomal RNA; tRNA, transfer RNA.
aThe high-resolution structure of the 37S subunit has not been determined. Therefore, the protein count might change.

Another peculiarity of mammalian mitochondrial translation is the absence of 5′-untranslated
regions in the mitochondrial mRNAs (27, 33, 34). Bacterial 5′-untranslated regions harbor the
Shine–Dalgarno sequence, which aids in mRNA binding and in the selection of the start codon
by base-pairing with the anti-Shine–Dalgarno sequence in the bacterial small subunit rRNA (1,
35). In mammalian mitochondria, this interaction cannot occur, and the selection of the start
codon needs to be guided by other features of the mammalian mitoribosomal small subunit or by
mitochondrial translation initiation factors (IFs). Additional differences in translation initiation
between mitochondria and bacteria—such as the important role of translation activator proteins
in yeast mitochondria (36) and the functional replacement of IF1 by an insertion domain in
mammalian mitochondrial IF2 (37)—underscore the highly specialized and divergent nature of
mitochondrial translation initiation.

Mitochondrial ribosomes have been intensively investigated due to their unique structure and
composition and also due to their involvement in human pathologies (38–40), including cardiomy-
opathies and developmental abnormalities (39, 41–45), cancer (46–48), and hearing loss (ototoxic-
ity) (49). The latter is exacerbated in patients who bear sensitizing mutations in the mitochondrial
rRNAs (50), which occur in roughly 0.2–0.3% of the population (51–53).

This review focuses on recent understanding of the structure and function of mitochondrial
ribosomes, in particular that gained from data obtained using cryo-electron microscopy (cryo-
EM) to determine the structures of mammalian mitoribosomes at near-atomic resolution, which
have provided unprecedented insights into the function of mitochondrial ribosomes.
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DETERMINATION OF THE STRUCTURE OF MITORIBOSOMES

The first cryo-EM reconstruction of the mammalian 55S mitoribosome was determined in a
pioneering effort made by the laboratory of Rajendra K. Agrawal (15, 54) at a resolution of
roughly 12–14 Å. This landmark reconstruction revealed a highly divergent overall morphology
of the 55S mitoribosome and its 28S small and 39S large subunits compared with the morphology
of the bacterial ribosome (15). In agreement with previous rRNA sequence analysis and protein
identification made using mass spectrometry (16–20), the rRNA in the 55S mitoribosome was
seen to be reduced to an inner core encompassing the functionally important sites, particularly
the PTC active site and the decoding site, and large, additional protein masses were observed on
its surface (15). As a consequence of the rRNA reduction and the expansion of the mitoribosomal
proteome, the intersubunit bridges that hold together the ribosomal subunits have been extensively
remodeled, with partial replacement of rRNA bridges by protein-containing bridges (15).

After intense efforts to crystallize mitoribosomes failed to yield crystals suitable for high-
resolution structure determination, technical advances in cryo-EM in recent years finally enabled
the structure determination of mitoribosomes at substantially improved resolutions. The devel-
opment of direct electron detectors, which allow for the collection of data that are much improved
over those obtained earlier using charge-coupled device cameras (55), led to the determination
of the architecture of the mammalian 39S subunit at 4.9 Å resolution in our laboratory (56) and
the structure of the yeast 54S large mitoribosomal subunit at 3.2 Å by the laboratories of Venki
Ramakrishnan and Sjors Scheres (57). Our interpretation of the 4.9 Å cryo-EM map of the 39S
subunit (56) was aided by chemical cross-linking–mass spectrometry (CX–MS) (58), enabling the
placement of several mitoribosomal-specific proteins and providing important insights into the
overall architecture and membrane association of the 39S subunit. The importance of independent
cross-linking constraints in interpreting intermediate-resolution cryo-EM maps was highlighted
by a model of the 28S small mitoribosomal subunit at 7 Å resolution that was published by the
Agrawal laboratory (59), which showed a number of discrepancies with later, higher-resolution
structures. Full atomic models of the mammalian 39S large subunit at 3.4 Å resolution (60, 61),
the 28S small subunit at 3.5–3.6 Å resolution (62, 63), and the 55S mitoribosome at 3.5 Å and
3.8 Å resolution (62, 63) were published in late 2014 and early 2015 by both our laboratory (60,
62) and the Ramakrishnan and Scheres groups (61, 63), providing unprecedented insight into the
architecture and function of the mammalian mitoribosome.

THE OVERALL STRUCTURE OF THE 55S MITORIBOSOME

The high-resolution cryo-EM reconstructions of the mammalian 39S and 28S subunits and the
55S mitoribosome (60–63) allowed for the tracing and assignment of all mammalian mitoribo-
somal proteins and the building of near-complete models of the mitoribosomal rRNAs. Because
the work was done in parallel in our laboratory (60, 62) and by the Ramakrishnan and Scheres
groups (61, 63), small differences exist between the nomenclatures used for ribosomal proteins
and intersubunit bridges. We propose using a unified nomenclature for mammalian mitoriboso-
mal proteins that agrees with the recently introduced naming scheme for all ribosomal proteins
(64) and serves to disambiguate the discrepancies found in the current literature (Supplemental
Tables 1 and 2; follow the Supplemental Material link in the online version of this article
or at http://www.annualreviews.org/). We also present a unified nomenclature for the mitori-
bosomal intersubunit bridges (Supplemental Table 3) that takes into account both the human
and porcine 55S structures (62, 63). The names for intersubunit bridges that are homologous
to bacteria in terms of their localization and involved molecular components are based on the
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structures of the bacterial 70S ribosome in the canonical and ratcheted states (65, 66), despite the
details of the interactions differing slightly. When the structures of mitoribosomes from different
species are determined in the future, we propose that for homologous intersubunit bridges, the
nomenclature established for mammalian mitoribosomes should be used and that entirely new,
mitochondrial-specific bridges should receive unique designations and be numbered sequentially
with existing bridge names without overlap.

The high-resolution structures of the mammalian 55S mitoribosome (62, 63) show in detail the
strikingly different overall appearance of the mitoribosome from the ancestral bacterial ribosome
(Figure 1a,b). The rRNA of the mitoribosome is reduced to an innermost core, which is cov-
ered by a tightly interacting coat of mitoribosomal proteins that leaves very little rRNA exposed
(Figure 1c) and projects far away from the ribosomal core (Figure 1a). Overall, 36 of the 82 pro-
teins in the 55S mitoribosome are mitochondrial-specific, 22 in the large subunit (60) and 14 in the
small subunit (63). The interconnectivity of the protein–protein network has increased dramati-
cally from the bacterial to the mammalian mitoribosomes. Whereas bacterial ribosomal proteins
have, on average, only 1.5 neighbors, mitoribosomal proteins form contacts with an average of
4.5 neighbors in the yeast 54S large subunit (57) and 4.9 neighbors in the mammalian 39S large
subunit (61). The central protuberance (CP) of the 39S subunit is enlarged due to the acquisi-
tion of several mitochondrial-specific proteins, and two crescent-shaped pentatricopeptide repeat
(PPR)-fold proteins dominate the overall appearance of the 28S small mitoribosomal subunit. The
intersubunit bridges between the 39S and 28S subunits in the 55S mitoribosome are less exten-
sive than in bacterial ribosomes, mostly due to the reduction of interacting rRNA segments, and
they involve more contacts mediated by proteins (Figure 1d,e and Supplemental Table 3). The
two mitoribosomal subunits also exhibit considerable conformational flexibility relative to each
other. The porcine 55S mitoribosome in complex with mRNA and tRNAs (62) shows a subunit
tilting motion (Figure 1f ) that differs from both the classical ratcheting movement during tRNA
translocation (66, 67) and the more recently discovered subunit rolling that occurs in mammalian
cytosolic ribosomes (68). The physiological role of this mode of motion has not been clarified. Both
ratcheting and rolling have been observed in the structure of the human 55S mitoribosome with-
out bound mRNA or tRNA ligands (Figure 1g) (63). These observations indicate that mammalian
mitoribosomes are able to sample a more extensive conformational space compared with bacterial
ribosomes, likely facilitated by the reorganization of intersubunit contacts in mitoribosomes.

The functional and structural roles of the mitoribosomal-specific proteins have been long-
standing questions in the field. Initially, it had been assumed that the additional proteins in
mammalian mitoribosomes functioned as molecular prostheses, replacing missing rRNA seg-
ments (14, 69). However, the first cryo-EM reconstruction of the 55S mitoribosome showed
that mitoribosomal-specific proteins do not generally fill the volume vacated by rRNA reduction,
suggesting that they serve to mediate an expanded functional role rather than act as structural
replacements (15). The data on high-resolution structures of the 55S mitoribosome have sug-
gested that mitoribosomal-specific proteins can, in fact, serve both roles: providing additional
functionality, such as membrane association (56) and mRNA recruitment (62, 63), and struc-
turally compensating for the interactions mediated by missing rRNA segments, as observed in
the region around uL24m (Figure 1h–j) (56). In bacterial ribosomes, uL24 forms extensive in-
teractions with domain I of the 23S rRNA (Figure 1j) (5, 65). However, these rRNA segments
are mostly missing in the 16S rRNA of the 39S subunit, and the interactions they engage in with
uL24 in bacteria are replaced in the mammalian mitoribosome by protein–protein contacts with
mL45 and uL29m (Figure 1i) (56, 60). This exchange of contacts likely occurred in a stepwise
fashion, in which protein–protein contacts were gradually formed, thus permitting the reduction
of rRNA contacts without impairing uL24 binding and mitoribosomal structure.
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Zinc-binding motifs, in which more than one protein chain contributes to the coordination
of a single zinc ion, are an unusual feature found in several mitoribosomal proteins (Figure 1k,l)
(62, 63). Such motifs occur in mL66 and bS18m, two homologs of the bacterial ribosomal protein
bS18, where uL10m and bS6m contribute one of the zinc-binding residues, as well as between
bS16m and mS25. Even though such interactions have been observed before (70), their increased
frequency of occurrence in the 55S mitoribosome suggests that they may have evolved to stabilize
the structures and quaternary interactions of rapidly evolving mitoribosomal proteins.

The mRNA, as well as A- and P-site tRNAs, are visible in the intersubunit space of the struc-
ture of the porcine 55S mitoribosome (Figure 1a) (62), indicating that this structure represents
a mitoribosome stalled during translation. The conformation of the PTC in this structure cor-
responds to the activated state, with accommodated A- and P-site substrates (60), as has been
observed in bacterial ribosomes with bound mRNA and tRNAs (71). It remains to be elucidated
why these ribosomal particles are trapped with classical A- and P-site tRNAs rather than in a state
after peptidyl transfer and formation of tRNA hybrid states. The density of the nascent polypep-
tide chain can be seen in the polypeptide exit tunnel of both the porcine and the human 39S
subunit structures (60, 61), even though the latter does not contain a P-site tRNA. The nascent
chain density unambiguously assigns the path of the polypeptide exit tunnel in the mammalian
mitoribosome, confirming that it is highly similar to the path of the bacterial tunnel (60, 61) but
different from the proposed nascent polypeptide exit path in the yeast counterpart (Figure 2) (57).
The mitoribosomal tunnel appears to be tailored for the synthesis of hydrophobic membrane pro-
teins because its walls are more hydrophobic compared with those of the bacterial tunnel, thereby
providing contact surfaces for interactions with unfolded, egressing polypeptides (61).

AN ARCHITECTURAL tRNA IN THE 39S SUBUNIT
CENTRAL PROTUBERANCE

The CP in bacterial, archaeal, and eukaryotic cytosolic ribosomes is assembled around the 5S
rRNA, which acts as a structural scaffold to which a number of ribosomal proteins bind (5, 65,
72, 73). The CP is a functional landmark of the large subunit because it mediates intersubunit
contacts to the small subunit, as well as contacts to the tRNAs bound in the intersubunit space
(65). There is no 5S rRNA gene in the yeast or mammalian mitochondrial genome, suggesting
that the 5S rRNA is absent from their mitoribosomes. In agreement with this notion, the first
cryo-EM structure of the mammalian mitoribosome showed no density corresponding to the 5S
rRNA (15). Nevertheless, the presence or absence of the 5S rRNA in mammalian mitoribosomes
has been controversial because biochemical evidence suggests that, indeed, 5S rRNA is imported

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 1
Overview of the mammalian 55S mitoribosome structure. Comparison of the (a) mammalian 55S mitoribosome (PDB identification
number 5AJ4) with the (b) bacterial 70S ribosome (PDB identification number 4V5D). (c) The surface of the 55S mitoribosome is
mostly covered by proteins, but on the surface of the bacterial 70S ribosome much rRNA is exposed. (d ) Intersubunit bridges of the 39S
subunit are colored yellow, and (e) those of the 28S subunit are blue. ( f,g) Intersubunit motions observed in porcine and human 55S
structures. In addition to the canonical intersubunit rotation, the 55S mitoribosome exhibits ( f ) tilting and ( g) rolling movements. The
direction of movement is indicated by arrows. (h–j) Remodeling of rRNA–protein contacts in the mammalian mitoribosome. (h,i ) In
the mammalian mitoribosome, uL24m (orange) is held in place by contacts to uL29m ( purple) and mL45 (blue), which replace extensive
rRNA contacts in ( j) the bacterial 70S ribosome. (k,l ) Zinc-finger proteins in the 55S mitoribosome. In addition to canonical
zinc-finger motifs (red spheres), the 55S contains several zinc-binding motifs ( green spheres) where multiple proteins are involved in
binding a single zinc ion. Abbreviations: PDB, Protein Data Bank; rRNA, ribosomal RNA; tRNA, transfer RNA.
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Figure 2
The mitoribosomal polypeptide exit tunnel. Polypeptide tunnel paths in the subunits are indicated by a
dotted red line for the (a) mammalian 39S (PDB identification numbers 4V19 and 4V1A), (b) bacterial 50S
(PDB identification number 4V5D), and (c) yeast 54S (PDB identification number 3J6B) subunits.
Abbreviations: CP, central protuberance; PDB, Protein Data Bank; PES, polypeptide exit site; PTC,
peptidyl transferase center.

from the cytosol into mammalian mitochondria, where it might assemble into mitoribosomal
particles (74–76).

The first clues toward resolving this apparent discrepancy came from our 4.9 Å resolution cryo-
EM reconstruction of the 39S subunit, which showed an area of density exhibiting the characteristic
shape of an RNA stem-loop at the CP in a location close to the position of domain β of 5S rRNA in
bacteria (Figure 3a) (56). However, the density was inconsistent with the presence of full-length
5S rRNA. Strikingly, this unknown RNA molecule was eventually identified as an architectural
tRNA molecule, termed CP tRNA, in the 3.4 Å resolution structures of the 39S subunit from pigs
and humans (Figure 3b,c) (60, 61). We reported the presence of mitochondrial tRNAPhe based on
the identification of the sequence of purines and pyrimidines in our cryo-EM density maps of the
porcine 39S subunit (60), and the Ramakrishnan and Scheres groups (61) identified mitochondrial
tRNAVal in RNA sequencing experiments using samples from human cell cultures. It remains to
be established whether this discrepancy is due to the species- or tissue-specific incorporation of
different tRNAs into the structure of the 39S subunit. Interestingly, both mitochondrial tRNAPhe

and mitochondrial tRNAVal are encoded in the immediate vicinity of the mitochondrial 12S and
16S rRNA genes in the mitochondrial genome (27), and they are expressed in the same operon as
the rRNAs (77). Therefore, they are likely to be present in sufficient amounts for stoichiometric
incorporation into the mitoribosome.

The CP tRNA forms extensive interactions with several mitoribosomal proteins at the CP
(Figure 3c). Therefore, it likely serves as an architectural replacement for the bacterial 5S rRNA
(Figure 3d,e) and functions as a stable structural scaffold to organize the structure of the CP (60).
Interestingly, protein uL18m in the 39S subunit CP, and its homolog uL18 in the 50S subunit,
binds to the CP tRNA and the 5S rRNA in a similar manner (Figure 3d ) (5, 60). In the yeast 54S
subunit, which contains neither CP tRNA nor uL18m (57), an rRNA expansion segment in this
area may have an architectural role similar to that of the CP tRNA (Figure 3c,f ) (60).

INTERACTIONS OF THE MITORIBOSOME WITH tRNA AND mRNA

Mitochondrial tRNAs exhibit considerable variability in their elbow regions, particularly due
to sequence-length variations of the D- and T-stems (78). The ribosomal elements interacting
with these tRNA regions are largely missing in mammalian mitoribosomes, where in the A-site,
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Figure 3
The CP tRNA in the mammalian 39S subunit. (a) Cryo-EM map of the 39S subunit at 4.9 Å (EMD identification number 2490)
suggesting the presence of an RNA molecule ( yellow) at the CP. (b) Overview of the 39S structure (PDB identification numbers 4V19
and 4V1A) with the CP tRNA highlighted in yellow. (c) The CP tRNA in the 39S subunit organizes the CP architecture by serving as a
binding site for several mitoribosomal proteins. (d ) Superposition of the bacterial 5S rRNA–uL18 complex ( pink and light blue; PDB
identification number 4V5D) and the mitoribosomal CP tRNA–uL18m complex ( yellow and blue; PDB identification numbers 4V19
and 4V1A). The RNA molecule is bound similarly by uL18(m) in both cases, positioning the anticodon stem-loop of the CP tRNA in
the region of domain β of the 5S rRNA. (e,f ) Comparison of the CP architecture of the bacterial 50S and yeast mitochondrial 54S
subunits (PDB identification number 3J6B). An rRNA expansion segment partially assumes the role of CP tRNA/5S rRNA in the 54S
subunit by providing binding surfaces for mitochondrial proteins conserved between yeast and mammals. Abbreviations: CP, central
protuberance; cryo-EM, cryo-electron microscopy; EMD, Electron Microscopy Data Bank; PDB, Protein Data Bank;
rRNA, ribosomal RNA; tRNA, transfer RNA.

uL25m and rRNA helix H38 (also termed the A-site finger) are missing, and in the P-site, uL5m
and H84 have been lost (61). The interactions of the conserved parts of the tRNAs—including
the CCA–3′ acceptor ends and the anticodon stem-loops, which interact with the decoding site
on the small subunit and the PTC of the large subunit—are mostly conserved because of their
critical importance in the most fundamental ribosomal functions (60, 62, 63).

A unique mitoribosomal structural element, termed the P-site finger (15), emanates from the
39S subunit CP and contacts both the A- and P-site tRNAs (Figure 4a) (60, 62). It likely serves to
compensate for the ribosome–tRNA interactions lost due to the absence of the A-site finger in the
mitoribosomal A-site and uL5 in the P-site. The P-site finger appears to consist of two α-helices
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that connect to the CP near mL40 and mL48 (60); however, their exact identity has not yet been
assigned due to the low local resolutions of the cryo-EM reconstructions in this area (62).

Based on sequence analyses and the absence of detectable E-site tRNA occupancy in the
earliest 55S mitoribosome cryo-EM reconstructions, it had been proposed that the E-site in the
mitoribosome was entirely absent or very weak (15, 54, 79). In bacteria, the E-site is important
for the fidelity of decoding and for maintaining the reading frame during translation (80, 81).
However, our structure of the 39S subunit (60) showed that the E-site nucleotides forming the
binding pocket of the CCA–3′-end of the E-site tRNA, including the base pair G1243–C1234
(G2421–C2395 in bacteria), which is crucial for E-site tRNA binding (82), are highly conserved in
both sequence and structure (Figure 4b). Consequently, the 39S subunit and 55S mitoribosome
structures from the Ramakrishnan and Scheres labs (61, 63), as well as recent data from the Agrawal
lab (83), have shown an E-site tRNA in the cryo-EM density map (Figure 4c). Mitoribosomal
protein mL64 (CRIF1) may interact with E-site tRNAs bound in the mammalian mitoribosome,
as connecting density has been visualized in the cryo-EM maps of the human 55S mitoribosome
(Figure 4c) (63).

The decoding site, where the A-site tRNA interacts with the mRNA, is an important functional
center of the small ribosomal subunit. In our structure of the 55S mitoribosome in complex with
mRNA and tRNA, the locations of base pairs between the A- and P-site tRNA anticodons and
the mRNA codons are clearly recognizable. The important bases A918 and A919 (corresponding
to bacterial A1492 and A1493) form A-minor interactions with the codon–anticodon helix in the
mitoribosomal A-site (Figure 4d ) (62), as has been observed after the binding of a cognate tRNA
in the bacterial A-site (3). The interaction of G256 (bacterial G530) with the codon–anticodon
helix (3) is also conserved between the mitochondrial and bacterial decoding centers (Figure 4d )
(62). In summary, these observations suggest that the mechanism of decoding is highly conserved
between mammalian mitochondrial and bacterial ribosomes.

Although the central parts of the mitoribosomal mRNA channel, including the A- and P-sites,
are relatively well conserved (62), the need to recruit the leaderless mitochondrial mRNAs (27,
33, 34) to the 28S subunit during translation initiation resulted in structural adaptations in the
mammalian mitoribosome. The mRNA entry site of the 28S subunit is substantially remodeled
compared with that of bacterial ribosomes. In particular, protein uS4 and a domain of uS3, impli-
cated in mRNA helicase activity in bacteria (84), are missing in the mammalian mitoribosome (63).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 4
Functional centers of the mitoribosome. (a) The P-site finger (orange) contributes to P- and A-site tRNA binding in the 39S subunit
(PDB identification number 5AJ4), and mL64 (CRIF1) may contact the E-site tRNA (see panel c). (b) Binding of the 3′-terminal two
nucleotides of the E-site tRNA (blue; PDB identification number 3J9M) to the 39S E-site (cyan; bacterial structure in gray). The critical
C1234–G1243 base pair is conserved between bacteria and mitochondria. (c) The E-site tRNA (blue) is visible in this low-pass filtered
cryo-EM map of the human mitoribosome (EMD identification number 2876). A density ( green), most likely belonging to mL64
(CRIF1), can be seen to contact the E-site tRNA. (d ) Decoding in the 28S subunit. The highly conserved bases A918, A919, and G256
proofread the minor groove of the codon–anticodon helix formed by mRNA (red ) and the A-site tRNA ( yellow). (e,f ) Proteins mS39
(blue) and uS5m (brown) near the mRNA (red ) channel entrance. Protein mS39 sits above the channel entrance and may be involved in
mRNA recruitment, and uS5m forms a latch across the mRNA channel. ( g) In the structure of the 39S subunit, the peptidyl-tRNA
hydrolase mL62 (ICT1) (red ) is located >80 Å from the usual binding site of peptidyl-tRNA hydrolases in the A-site (bacterial YaeJ
superposed in blue; PDB identification number 4V95). (h) Mitoribosomal-specific protein mL45 (dark blue) is located in the vicinity of
the polypeptide tunnel exit and mediates the association of the mitoribosome (cyan, large subunit; yellow, small subunit) with the
mitochondrial inner membrane (arrows; the membrane plane is schematically indicated). (i ) Cryo-EM tomographic reconstruction of
the yeast mitoribosome (EMD identification number 2826) bound to membranes (cyan, yeast 54S structure; PDB identification number
3J6B; dark blue, superposed mL45 from the 39S structure). Abbreviations: CP, central protuberance; cryo-EM, cryo-electron
microscopy; EMD, Electron Microscopy Data Bank; PDB, Protein Data Bank; PTC, peptidyl transferase center; tRNA, transfer RNA.
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A mitochondrial extension of uS5m connects the 28S subunit body and head domains, thereby
forming a latch across the mRNA channel, and this may partially replace the missing residues of
uS4 in this area (Figure 4e,f ) (62, 63). Whether the 28S subunit retains mRNA helicase activity
remains to be determined. The PPR-fold protein mS39 is located close to the entry of the mRNA
channel and may aid in the recruitment of mRNAs and their threading into the mRNA channel
(Figure 4e,f ) because mS39, like other PPR folds (85, 86), has been shown to bind RNA (87, 88),
and its knock down impairs mitochondrial protein synthesis (87).

STRUCTURAL AND CATALYTIC ROLES OF THE MITOCHONDRIAL
PEPTIDYL-tRNA HYDROLASE ICT1

At the end of protein synthesis, class 1 release factors bind to the A-site of the terminating ribo-
some to hydrolyze the ester bond between the P-site tRNA and the nascent chain. The hydrolysis
reaction is catalyzed by the insertion of a conserved GGQ motif into the ribosomal PTC (89, 90).
Mammalian mitochondria contain four different class 1 release factors: mtRF1, mtRF1a, ICT1
(immature colon carcinoma transcript 1, also termed mL62, see below), and C12orf65. However,
mtRF1a may be able to terminate protein synthesis on all mitochondrial mRNAs by recognizing
the UAA and UAG stop codons. According to this hypothesis, the nonstandard AGA and AGG
codons, for which no cognate tRNAs exist in mitochondria, are converted into UAG stop codons
by a −1 frameshift to enable translation termination (91). The roles of the other mitochondrial
members of the class 1 release-factor family, including ICT1, have not yet been conclusively
established. Interestingly, ICT1 has been found to be a stably incorporated component of the
mitoribosomal 39S subunit, where it is termed mL62, and where it has been suggested to act as
a codon-independent peptidyl-tRNA hydrolase to rescue stalled mitoribosomes after premature
abortion of translation (92). This activity depends on its catalytic GGQ motif, which is essential
for cell viability (92). The incorporation of mL62 (ICT1) into the mitoribosome has been hypoth-
esized to be a means of regulating the otherwise uncontrolled, codon-independent activity of the
protein in peptidyl-tRNA hydrolysis (92).

However, our structural analyses of the porcine 39S subunit (56, 60) revealed that mL62
(ICT1) in the mitoribosome is located >80 Å away from the site of action of typical peptidyl-
tRNA hydrolases, which bind to the A-site (Figure 4g), indicating that mL62 (ICT1) in the 39S
subunit might perform a structural role, and soluble copies of the protein would perform peptidyl-
tRNA hydrolysis (56). In agreement with these structural findings, biochemical experiments have
revealed that ribosome-integrated mL62 (ICT1) is catalytically inactive, and that peptidyl-tRNA
hydrolysis is performed by soluble ICT1, which binds to mammalian 55S mitoribosomes (93).
Furthermore, these experiments have suggested that in addition to its role as a rescue factor, ICT1
may act to terminate mitochondrial translation at the nonstandard AGA and AGG termination
codons, obviating the need for −1 ribosomal frameshifting and establishing a role for ICT1 in
canonical translation termination in mitochondria (93). Further experimentation will be required
to determine whether mitochondrial translation termination at the AGA and AGG codons in vivo
is performed by ICT1 (94) or by mtRF1a after −1 frameshifting (95).

MEMBRANE ASSOCIATION OF MITORIBOSOMES
AND ADAPTATIONS OF THE TUNNEL

Mammalian mitoribosomes synthesize 13 proteins, all of them highly hydrophobic membrane
protein components of the mitochondrial respiratory chain. The yeast mitoribosome is similarly
specialized for membrane protein production, as only one of the proteins it synthesizes is soluble,
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the remainder being membrane proteins (29). Early experiments with mammalian mitoribosomes
indicated that a significant fraction of them is stably associated with membranes independent of
the presence of a nascent chain (30). This suggested that specialized proteins that anchor the
mitoribosome to the membrane exist. Steric constraints would dictate that such a membrane
anchor protein would be localized close to the exit of the polypeptide tunnel to optimally position
the mitoribosome for membrane insertion of newly synthesized proteins.

Genetic and biochemical analyses in yeast have suggested that the protein Mba1 is involved in
the membrane attachment of the mitoribosome because its deletion impairs membrane protein
insertion (31, 96) and because Mba1 shows homology to the C-terminal domain of TIM44 (97,
98), which is known to mediate membrane association. Indeed, our 4.9 Å structure of the mam-
malian 39S subunit revealed that mL45, the mammalian homolog of Mba1, is located next to the
tunnel exit of the mammalian mitoribosome (Figure 4h), suggesting that it is one of the membrane
anchor proteins that help attach the mitoribosome to the membrane (56). Subsequent cryo-EM
tomography experiments from the Friedrich Förster laboratory (32) have been in excellent agree-
ment with this hypothesis (Figure 4i). Therefore, mammalian mL45 and yeast Mba1 likely have
a major conserved role in the membrane attachment of mitoribosomes that is possibly supported
by additional protein– or rRNA–membrane interactions (32), which may involve Mdm38 in yeast
or Letm1 in mammals (99).

In addition to the recruitment of membrane anchor proteins to the mitoribosome near the
polypeptide exit site, the polypeptide tunnel wall itself may also have become adapted to syn-
thesize membrane proteins, as the Ramakrishnan and Scheres groups (61) have visualized several
interactions between the EM density of a polypeptide chain trapped in the tunnel and hydrophobic
residues of the tunnel wall, mainly from uL22m.

BINDING OF ANTIBIOTICS TO MITORIBOSOMES

The ribosome is a target for a variety of clinically important antibiotics (100). Due to structural
differences between various classes of ribosomes, many antibiotics affect bacterial, eukaryotic
cytosolic, and mitochondrial ribosomes differently. Indeed, clinically useful antibiotics should
target bacterial ribosomes with high specificity and without inhibiting cellular translation.

Macrolide antibiotics, such as erythromycin, bind inside the polypeptide tunnel of the
large ribosomal subunit (101, 102). The entrance to the polypeptide tunnel of the yeast 54S
large mitoribosomal subunit shows a strong constriction close to the erythromycin-binding site
(Figure 5a), which likely precludes the antibiotic from binding, thus explaining the resistance of
yeast mitoribosomes to macrolides (57). Mammalian mitoribosomes also show resistance to ery-
thromycin binding (103, 104), even though they do not contain the constriction at the entrance to
the polypeptide tunnel that is observed in yeast mitoribosomes (Figure 5b) (60, 61). Rather, their
tunnel shape resembles the one present in bacterial, archaeal, and eukaryotic cytosolic ribosomes,
in which the binding of erythromycin depends on the nature of the single nucleotide at position
2058 (Escherichia coli sequence numbering) of the large subunit rRNA. Because mammalian mi-
toribosomes carry a G at the corresponding position (Figure 5c), resistance is probably conferred
by the same mechanism as has been established for eukaryotic cytosolic and archaeal ribosomes, in
which the presence of a G interferes with erythromycin binding (72, 105). The single G-to-A base
substitution has been shown to render archaeal ribosomes susceptible to erythromycin binding,
but the presence of an A at this position in bacterial ribosomes is compatible with erythromycin
binding (101), and the A-to-G substitution confers resistance (105).

Aminoglycosides bind to the small ribosomal subunit and are used to treat bacterial infec-
tions due to their bactericidal effect. Additionally, they have also been developed to treat human
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congenital diseases that are caused by premature stop codons, as they can increase stop codon
read-through (106). Aminoglycosides can bind to the ribosome at several binding sites (107), most
importantly in a pocket in rRNA helix h44 near the decoding center (Figure 5d,e) (100, 108,
109). Many aminoglycosides exhibit lower affinity for the mitoribosomal 28S subunit than for
bacterial ribosomes because this binding pocket is structurally altered in the mitochondrial 12S
rRNA, where two base pairs present in bacteria are turned into the mitochondrial A916–C854
and C917–C853 mismatches (Figure 5f–h) (50, 110). However, sensitizing mutations in patients’
mitochondrial 12S rRNA, such as the human mitochondrial A1555G and C1494T mutations
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(38, 49) (A916G and C854U in the porcine 12S rRNA), reestablish one of the lost bacterial-like
base pairs in the 12S rRNA (50, 110). Consequently, these mutations render the 28S subunit
more susceptible to aminoglycoside binding and inhibition of mitochondrial translation, causing
high susceptibility to aminoglycoside-induced ototoxicity in these patients. Even though only
0.2–0.3% of the population harbors these mutations (51–53), up to 20% of patients treated with
aminoglycosides for acute bacterial infections may experience irreversible hearing loss (49).

Mechanistic studies of aminoglycoside binding to mutant bacterial ribosomes engineered to
contain variants of the mitoribosomal decoding site rRNA have shown that the A1555G and
C1494T susceptibility mutations render the ribosome highly susceptible to aminoglycoside bind-
ing, leading to miscoding and translation inhibition (110, 111). In the same model system, it was
found that the aminoglycoside apramycin showed little toxic effect, even in the presence of the
A1555G mutation, possibly because it inserts less deeply into the h44 pocket, which may render
its binding more dependent on the presence of the bacterial G1491–C1409 base pair, which is ab-
sent even in the mutant mitoribosomal decoding site (Figure 5h,i) (112). Apramycin still showed
antibacterial activity, indicating that it is possible to design potent but less toxic aminoglycosides
(112, 113).

The structures of mammalian mitochondrial and cytosolic ribosomes at near-atomic resolution,
in combination with the structures of bacterial ribosomes and cytosolic ribosomes from lower
eukaryotes, will facilitate the rational design of compounds that specifically target one type of
ribosome without affecting the others, resulting in drugs with improved efficiency and fewer side
effects.

mS29, mL41, AND mL65: MITORIBOSOMAL PROTEINS
WITH A POSSIBLE ROLE IN APOPTOSIS

Mitochondria are key players in the induction of apoptosis (programmed cell death). The per-
meabilization of the outer mitochondrial membrane, which is suppressed by the antiapoptotic
proteins of the Bcl-2 family and promoted by their proapoptotic antagonists, releases the proteins
of the intermembrane space to the cytosol, among them cytochrome c (10). Cytochrome c is an ac-
tivator of apoptosome assembly, which triggers downstream apoptotic events by activating effector
caspases (114). Interestingly, several mitoribosomal proteins have a role in controlling apoptosis,
among them mS29 (death-associated protein 3, DAP3), mL41 (Bcl-2-interacting mitochondrial
ribosomal protein, BMRP), and mL65 (programmed cell death 9, PDCD9).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 5
Antibiotic binding to the mitochondrial ribosome. (a) A constriction of the yeast mitoribosomal tunnel (light brown; PDB identification
number 3J6B) sterically interferes with macrolide binding as observed in bacteria ( gold, erythromycin; PDB identification number
3OHJ). (b,c) The overall rRNA structure at the tunnel entrance of mammalian mitoribosomes (light blue) is similar to that of bacterial
rRNA (light yellow). Macrolide resistance is conferred by the presence of G1051 (orange) instead of bacterial A2058 (white).
(d,e) Aminoglycoside antibiotics bind to a pocket (arrowhead) near the ribosomal A-site (anticodon stems of A- and P-site tRNA are
shown in yellow and purple; mRNA shown in red; PDB identification number 5AJ4). ( f ) Secondary structure of the SSU rRNA near this
aminoglycoside-binding pocket in bacteria, mammalian mitochondria, and human mitochondria in the presence and absence of
sensitizing mutations (110). ( g) Structure of the bacterial 30S subunit with bound paromomycin (cyan; PDB identification number
2WDK). (h) Structure of the mammalian mitoribosomal subunit. Sequence differences leading to the disruption of base pairs are
indicated. (i ) Superposition of the bacterial and mitoribosomal structures. The binding of apramycin (red; PDB identification number
4AQY) may depend on the presence of the bacterial C1409–G1491 base pair (light orange), which is disrupted in mitoribosomes (C853
and C917, orange). Abbreviations: mRNA, messenger RNA; PDB, Protein Data Bank; rRNA, ribosomal RNA; SSU, small subunit;
tRNA, transfer RNA.
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The mS29 protein was initially identified as a protein involved in interferon-γ-mediated cell
death (115). However, the mechanism by which mS29 contributes to apoptotic signaling has been
controversial, and it has even been suggested that mS29 does not have an apoptotic function
at all (116). Several studies have suggested that mS29 acts in the extrinsic apoptotic pathway,
downstream of receptors for extracellular signaling (death receptors) but upstream of caspases
(117, 118). However, conflicting evidence has suggested that mS29 functions in the intrinsic
(mitochondrial) apoptotic pathway and retains its mitochondrial localization during the induction
of apoptosis and mitochondrial fragmentation (119–122).

In the context of the mitoribosome, mS29 associates with the 28S subunit head, where it
is involved in extensive contacts with surrounding mitoribosomal proteins, the 12S rRNA,
and with intersubunit bridges (Figure 6a,b) (62, 63). The mS29 protein confers guanine
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Figure 6
Mitoribosomal proteins involved in apoptosis and human pathologies. (a) Overview of the localizations of mS29 ( purple), mL41 (red ),
and the mL37–mL65 dimer ( green and blue) on the 55S mitoribosome. (b) Interactions of mS29 (DAP3) with uS7m ( gold ), uS9m
(brown), and mS35 (orange) of the 28S subunit and the formation of intersubunit bridges to the 39S subunit CP. Phosphorylation sites
are indicated as cyan spheres. (c) mS29 (DAP3) harbors an AAA+ ATPase-like core fold (shown using a color gradient from blue to red ).
(d ) Structure of mL41. The NTE is deeply embedded within the ribosomal core. (e) Structure of the pseudosymmetric mL37–mL65
dimer. ( f ) Mutations in the mitoribosomal proteins mL44 (red ), uL3m ( green), bS16m ( pink), and mS22 (dark blue) have been
implicated in human pathologies. Abbreviations: ATPase, adenosine triphosphatase; CP, central protuberance; GDP, guanosine
diphosphate; NTE, N-terminal extension; tRNA, transfer RNA.
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nucleotide-binding activity to the mitochondrial ribosome (123, 124), which is an unusual feature
not found in bacterial or eukaryotic cytosolic ribosomes, in which only ribosome-associated
initiation and translation factors exhibit GTPase activity. In spite of its specificity for guanine nu-
cleotides, the overall fold of mS29 identifies the protein as a member of the AAA+ ATPase family
(Figure 6c) (62, 125). It contains both Walker A and Walker B motifs, conserved sequence
motifs typical of AAA+ ATPases and other nucleotide hydrolases (125–127), and is likely to be
catalytically active (63). Interestingly, mS29 lacks one of two conserved acidic residues usually
found at the end of the Walker B motif (125, 127). This is typical for the NACHT NTPases
(nucleoside triphosphatases), a subfamily of the STAND class of AAA+ proteins, in which the
preference for guanine nucleotides has been observed before (128). Notably, many STAND
NTPases have been implicated in apoptotic regulation in metazoan cells (128).

Both structures of mammalian 55S mitoribosomes show mS29 in the guanosine diphosphate
(GDP)-bound form. It appears that the accommodation of a GTP molecule is incompatible with
the conformation of mS29 observed in these structures, indicating that GTP binding in the context
of the 55S mitoribosome would require structural rearrangements (62, 63). Because 28S subunits
bind GTP with higher affinity than they do 55S monosomes (123, 129), nucleotide hydrolysis by
mS29 may be coupled to subunit association and the formation of 55S mitoribosomes (63). In
addition to its putative regulation by nucleotide binding, mS29 contains several phosphorylation
sites (130, 131), which are located close to the regions of the protein involved in the formation
of intersubunit bridges (Figure 6b) (62). Therefore, mS29 may function in the regulation of
mitochondrial translation and mitoribosomal subunit association, depending on its nucleotide
state and phosphorylation status. It remains to be determined whether these activities are coupled
to a role of the protein in apoptosis.

The protein mL41 suppresses cell growth by induction of apoptosis and cell cycle arrest
(132). Bcl-2 proteins interact directly with mL41 (133) as a means of attenuating its apoptotic
activity (134). In the structure of the 39S subunit, mL41 assumes a mostly extended conformation
(Figure 6d ) (60). It forms tight interactions with many surrounding mitoribosomal proteins,
as well as with the 16S rRNA, and it is unlikely to be easily dissociated from the ribosomal
particle. The putative Bcl-2 interaction sites near the mL41 N terminus (134) either are buried
in the 16S rRNA and are, therefore, inaccessible in the conformation observed in our structure
or are missing in the mature protein due to cleavage of the mitochondrial targeting sequence.
Therefore, binding to Bcl-2 and any apoptotic activity of mL41 likely take place in the cytosol
(134) rather than after mitochondrial import and incorporation into the mitoribosome.

Initially, mL65 was identified as a 28S subunit protein, but the structures of the 39S subunit
at near-atomic resolution revealed it to be a large subunit protein that forms a pseudosymmetric
heterodimer with the homologous protein mL37 (Figure 6e) (60, 61). The chicken homolog of
mL65, termed p52, can induce apoptosis in mammalian culture cells upon overexpression (135),
and mL65 has been found to be upregulated in estrogen-receptor-positive breast cancer cells
(136). The molecular mechanisms of mL65 activity in these roles remain to be established as does
whether they involve the ribosome-bound form of the protein.

The presence of several apoptosis-controlling proteins on the mammalian mitoribosome has
led to the idea that mitochondrial translation, or the mitoribosome itself, might be involved in ap-
optotic signaling (15, 124). However, for cytosolic ribosomal proteins it has been well established
that many of them also perform extraribosomal functions (137), and this might apply also to mitori-
bosomal proteins. In the light of the most recent structural data demonstrating the tight association
of mS29, mL41, and mL65 with the rest of the 55S mitoribosome, these mitoribosomal proteins
may perform their apoptotic functions away from the ribosome in an extraribosomal pool, with the
possible exception of mS29, which might be a candidate for controlling mitochondrial translation.
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THE MITORIBOSOME IN HUMAN PATHOLOGIES

In addition to the involvement of the mitoribosome in aminoglycoside-induced ototoxicity (see
section on Binding of Antibiotics to Mitoribosomes), mutations in components of the mitochon-
drial ribosome are associated with hereditary diseases. Respiratory-chain disorders represent a
diverse range of diseases and occur with a prevalence of roughly 1 in 5,000–7,500 live births
(39, 138). A subset of these disorders is caused by defects in mitochondrial translation and can
arise from mutations in most components of the mitochondrial translation machinery, including
tRNAs, aminoacyl-tRNA synthetases, translation factors, and ribosomal components (39, 139).
Documented cases with mutations in ribosomal proteins include mutations in uL3m (43), uL12m
(140), mL44 (41), mS22 (42, 44), bS16m (45), and uS7m (141) (Figure 6f ). These mutations com-
monly cause instability of the protein, impaired assembly of the affected mitoribosomal subunit
(41, 142), a deficiency in oxidative phosphorylation, and a variety of severe phenotypes, including
dysmorphism, lactic acidosis, neurological disorders, and cardiomyopathies, which are often fa-
tal early in life. Although these protein mutations hamper the biogenesis of their corresponding
ribosomal subunit, the other subunit usually remains unaffected, indicating that mitoribosomal
subunits are assembled and matured largely independently of each other (41, 142). The occur-
rence of dysmorphism in patients with affected mitoribosomal small-subunit biogenesis hints at a
function of this subunit in fetal development in addition to respiratory-chain function (41, 42, 45).

Because a number of mitoribosomal proteins are involved in apoptotic signaling and the reg-
ulation of cell proliferation, their altered expression has been associated with the development
of cancer (see section on mS29, mL41, and mL65: Mitoribosomal Proteins with a Possible Role
in Apoptosis). Additionally, elevated mitochondrial translation may be needed to provide the
metabolic capacity to meet the energy requirements of cancer cells. Even though ATP production
in cancer cells has long been thought to occur mostly by glycolysis in the cytoplasm (143), recent
evidence has indicated that some types of cancer cells may rely heavily on oxidative phosphoryla-
tion in their mitochondria, utilizing metabolites provided by neighboring glycolytic stromal cells
(144) or by cancer cells in more poorly oxygenated regions of the cancer (145). In agreement with
these ideas, the upregulation of a large number of mitoribosomal proteins has been observed in
human breast cancer cells, but not in adjacent stromal cells, leading to the proposal that mito-
chondria fuel epithelial cancer cell metabolism (46). Therefore, it has been proposed that targeting
mitochondrial translation may be a promising strategy for cancer therapy (146). Interfering with
mitochondrial translation by treatment with tigecycline or the knock down of mitochondrial EF-
Tu selectively inhibits the proliferation of leukemia cells, suggesting that tigecycline may possibly
be an anticancer agent (48, 147).

The inhibition of mitochondrial peptide deformylase, the enzyme that removes the formyl
group from initiator methionines (148), by actinonin antibiotics inhibits the growth of several
human cancer cell lines (149). The antiproliferative effect of peptide deformylase inhibition has
been attributed to a signaling response elicited by the presence of stalled mitoribosomes and the
resultant activation of an RNA decay pathway, explaining why the inhibition of mitochondrial
protein synthesis also affects cancer cells that depend on glycolysis in the cytoplasm for their
metabolism (47, 143).

INSIGHTS INTO MITORIBOSOME EVOLUTION: COMPARISON
OF THE MAMMALIAN 39S AND YEAST 54S MITORIBOSOMAL
LARGE SUBUNITS

As discussed above, several important differences exist between the mammalian 39S and yeast
54S large mitoribosomal subunits: (a) Although both mitoribosomal subunits share a common set
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of mitochondrial-specific proteins, they also contain proteins specific to their respective lineages
(Figure 7a–f ). (b) The 54S subunit contains numerous rRNA expansion segments, but the 39S
subunit rRNA is strongly reduced (Figure 7g–l). (c) The 54S subunit does not contain an equivalent
to the 5S rRNA or CP tRNA (Figure 3) (57). (d ) The path of the mitoribosomal tunnel differs
between the 54S and 39S subunits (Figure 2) (56, 57, 60, 61). The analysis of these differences
and the comparison of the mitoribosomal large subunits to the bacterial 50S subunit can aid our
understanding of the evolution of the mitoribosome (Figure 8a).

Analyses of the interactions of two mitoribosomal proteins with homology to RNA-binding
proteins, the threonyl-tRNA synthetase homolog mL39 (150) and the RNase III homolog mL44
(17), have suggested that their initial recruitment to the mitoribosome occurred via interactions
with rRNA elements (Figure 8b) (57, 60). The formation of clusters of rRNA expansion segments
and the recruitment of specific ribosomal proteins to them have also been observed in the eukary-
otic cytosolic ribosome (72, 73), and these developments may be general features of expansive
ribosome evolution. Due to their stable incorporation into the ribosomal subunit by subsequently
evolved protein–protein contacts, both mL39 and mL44 have been retained in the mammalian
mitoribosome even though their initial interactions with rRNA were lost during rRNA reduction
(Figure 8c) (60). These observations strongly suggest that the presence of expansion segments was
a universal feature during early mitoribosomal evolution rather than a specialty of the yeast mi-
toribosome and that the strong reduction of rRNA is a feature specific to a few taxonomic groups,
such as metazoans and intracellular parasites. These evolutionary trends can be understood in the
context of a recently proposed framework that postulates two major phases of mitoribosome evo-
lution (25): first, a constructive phase, during which new mitoribosomal proteins were recruited
and the rRNAs expanded (Figure 9a,b), and, second, a destructive phase specific to a few lin-
eages, including mammals, during which the rRNAs were dramatically reduced in length and the
recruitment of additional proteins continued (Figure 9c) (25). Both phases were driven by the
accumulation of slightly deleterious mutations in mitochondrial-encoded rRNA components of
the mitoribosome (25).

The polypeptide tunnel paths in mammalian mitoribosomes and bacterial ribosomes are similar
to each other (60, 61) (Figure 2a,b). The yeast mitoribosome, however, exhibits two major differ-
ences to its counterpart in bacterial ribosomes. Close to the PTC, an alteration in the rRNA struc-
ture forming the tunnel wall leads to a constriction not present in bacterial ribosomes (Figure 5a),
which may alter some antibiotic-binding sites in the tunnel (see section on Binding of Antibiotics
to Mitoribosomes) (57). Additionally, the exit in the yeast mitoribosomal tunnel is shifted relative
to the bacterial exit site because of an extension of uL23 that partially blocks the canonical path of
the nascent chain, but an rRNA deletion opens an alternative exit site (Figure 2c) (57). Current
structural data suggest that the bacterial YidC membrane protein insertase—a homolog of the mi-
tochondrial Oxa1 insertase—binds close to the exit of the bacterial polypeptide tunnel (151, 152).
Therefore, the nascent chain may need to be routed to the insertase complex across the ribosomal
subunit surface due to the relocation of the polypeptide tunnel exit in the 54S yeast large subunit
(57). Alternatively, the binding site of the insertase on the 54S subunit would have to be relocated
together with the tunnel exit. However, cryo-EM tomographic data for membrane-bound yeast
mitoribosomes have suggested that this is less likely (Figure 4i) (32). Higher-resolution structural
data of the mammalian and yeast mitoribosome–Oxa1 complexes are required to ensure a detailed
understanding of the mechanism and evolution of membrane protein insertion in mitochondria.

In summary, these observations suggest that after the endosymbiotic event at the origin of
mitochondria, a mitoribosome evolved that (a) had incorporated a number of mitochondrial-
specific proteins into its structure, (b) contained expansion segments in its rRNA, and (c) featured
a bacterial-like polypeptide exit-tunnel path (Figure 8). After the divergence of the eukaryotic
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←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 7
Comparison of the bacterial, yeast mitochondrial, and mammalian mitochondrial ribosomal large subunits. (a–f ) Mammalian 39S (left;
PDB identification number 5AJ4), yeast 54S (middle; PDB identification number 3J6B), and bacterial 50S (right; PDB identification
number 4V5D) subunits shown in (a–c) solvent-side and (d–f ) subunit-interface views. Conserved proteins are shown in light blue, with
extensions of these proteins in green. Mitochondrial-specific proteins occurring in lower and higher eukaryotes are shown in purple.
Proteins and rRNA elements (CP tRNA and expansion segments) specific to mammals are shown in gold, those specific to yeast in red,
and those specific to bacteria in light pink. ( g–l ) Comparison of large subunit rRNA structures (views as in a–f ). CP tRNA is shown in
gold and 5S rRNA in light pink. 16S, 21S, and 23S rRNA are color coded by domain (blue, domain I; brown, domain II; orange, domain
III; red, domain IV; cyan, domain V; green, domain VI). Nucleotide bases are shown in black, except for the expansion segments of the
yeast mitochondrial 21S rRNA, where they are shown in white. Abbreviations: CP, central protuberance; PDB, Protein Data Bank;
rRNA, ribosomal RNA; tRNA, transfer RNA.

lineages, protein recruitment to the mitoribosome continued in both the fungal and metazoan
lines. The yeast mitoribosome retained the rRNA expansion segments and acquired an altered
polypeptide tunnel, with modifications to both the tunnel entry and exit. In contrast, in the
lineage leading to mammals, the rRNA was strongly reduced while the basic tunnel geometry was
maintained. The sequence of events leading to the acquisition of the CP tRNA in the mammalian
lineage is more difficult to reconstruct. Because the yeast 54S subunit lacks both the CP tRNA and
uL18m, it is likely that the common ancestral mitoribosome contained an RNA molecule in the
CP that interacted with uL18m, both of which were lost and partially replaced by an expansion
segment in the yeast lineage (Figure 8a).
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Figure 8
Molecular evolution of the mitoribosome. (a) Schematic of the series of events leading to the acquisition of
mL39, mL44, and mL57, and the reorganization of the mitoribosomal CP. (b,c) Detailed views of the region
around mL44. (b) Yeast mitoribosomes harbor an rRNA ES in the vicinity of where mL44 and mL57 have
been recruited. (c) Mammalian mitoribosomes still contain mL44, but have lost the ES and mL57.
Abbreviations: CP, central protuberance; ES, expansion segment; rRNA, ribosomal RNA.
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Figure 9
Schematic of the two major phases of mitoribosomal evolution. From the bacterial ribosome (a), early
mitoribosomes (b) evolved by adding rRNA ESs and specific mitoribosomal proteins. Mammalian
mitoribosomes (c) lost their rRNA expansion segments, their rRNA was reduced to an innermost core, and
additional mitoribosomal proteins were acquired on their surface. Abbreviations: ES, expansion segment;
rRNA, ribosomal RNA.

SUMMARY POINTS

1. The structures have been determined at near-atomic resolution of empty, as well as trans-
fer RNA (tRNA)- and messenger RNA (mRNA)-containing, mammalian mitoribosomes
and the yeast mitoribosomal large subunit.

2. These structures have allowed for the building of near-complete models of the mi-
toribosomal RNAs and the determination of the locations and folds of all mammalian
mitoribosomal proteins.

3. The structures have provided insight into unique features of the mitoribosome, including
the recruitment of mRNAs, the presence of a unique architectural tRNA in the central
protuberance in some organisms, the altered and variable structure of the polypeptide
exit tunnel, and the mechanism of membrane attachment of mitoribosomes.

4. We introduce here a unified nomenclature for mitoribosomal proteins and intersubunit
bridges based on the naming proposed in structural work published in late 2014 and early
2015.

FUTURE ISSUES

1. Structural studies of the mitoribosomal translation-initiation pathway are required to
gain further insight into mRNA recruitment and start codon selection in mitochondria.

2. Structural analyses of the mitoribosome bound to the associated membrane protein in-
sertase complexes will reveal the specialized mechanics of membrane protein insertion
in mitochondria.

3. Higher-resolution determination of the structures of mammalian mitoribosomes bound
to antibiotics or inhibitors will facilitate the development of more specific inhibitors to
be used as antibiotics or anticancer compounds.
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4. Analyses of the full range of mitoribosomal motions should be undertaken using an in
vitro tRNA translocation reaction.

5. Determining the complete structure of the yeast mitoribosome and structures of mitori-
bosomes from pathogenic organisms will provide insights into the evolution and diversity
of mitochondrial ribosomes and may facilitate the development of compounds interfering
with mitochondrial translation in these organisms.
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ribosomal subunit at 2.4 Å resolution. Science 289:905–20

6. Polikanov YS, Steitz TA, Innis CA. 2014. A proton wire to couple aminoacyl-tRNA accommodation
and peptide-bond formation on the ribosome. Nat. Struct. Mol. Biol. 21:787–93

7. Beringer M, Rodnina MV. 2007. The ribosomal peptidyl transferase. Mol. Cell 26:311–21
8. Jenni S, Ban N. 2003. The chemistry of protein synthesis and voyage through the ribosomal tunnel.

Curr. Opin. Struct. Biol. 13:212–19
9. Kramer G, Boehringer D, Ban N, Bukau B. 2009. The ribosome as a platform for co-translational

processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 16:589–97
10. Tait SWG, Green DR. 2010. Mitochondria and cell death: outer membrane permeabilization and be-

yond. Nat. Rev. Mol. Cell Biol. 11:621–32
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