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Abstract

Super-resolution optical imaging based on the switching and localization
of individual fluorescent molecules [photoactivated localization microscopy
(PALM), stochastic optical reconstruction microscopy (STORM), etc.] has
evolved remarkably over the last decade. Originally driven by pushing tech-
nological limits, it has become a tool of biological discovery. The initial
demand for impressive pictures showing well-studied biological structures
has been replaced by a need for quantitative, reliable data providing depend-
able evidence for specific unresolved biological hypotheses. In this review, we
highlight applications that showcase this development, identify the features
that led to their success, and discuss remaining challenges and difficulties.
In this context, we consider the complex topic of defining resolution for this
imaging modality and address some of the more common analytical methods
used with this data.
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Optical nanoscopy:
diffraction-unlimited
super-resolution
microscopy including
SMLM as well as
STED and RESOLFT
approaches

Resolution:
capability of a
microscope to
distinguish two
neighboring objects

Localization: short
for “localization
event”; an individual
single-molecule
detection and position
determination carried
out by computational
postprocessing of
acquired images
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1. INTRODUCTION

With the 2014 Nobel Prize in Chemistry, if not before, (optical) super-resolution microscopy
became a central tool in the biomedical research community (1). Super-resolution microscopy, or
optical nanoscopy, encompasses a variety of techniques that improve the resolution of lens-based
(far-field) fluorescence microscopes beyond the diffraction limit (approximately 250 nm in the
focal plane and 500–700 nm in the depth direction). Super-resolution microscopy techniques can
be sorted into two groups: The first group, which includes structured illumination microscopy
and derivatives (2–4), exploits wave optics and image processing to push diffraction to its ultimate
limit; the second group, which includes STED (STimulated Emission Depletion) microscopy (5,
6), other members of the RESOLFT (REversible Saturable or switchable OpticaL Fluorescence
Transitions) family (7), and SOFI (Stochastic Optical Fluctuation Imaging) (8) as well as the single-
molecule switching and localization techniques discussed in this review, breaks the diffraction
limit by taking advantage of turning fluorescent markers on and off (often in combination with
techniques of the first group) (9).

Many of these techniques have matured from a proof-of-concept stage to commercial instru-
ments over the last two decades, and the number of super-resolution microscopes worldwide
is approaching the thousands. Many excellent review articles have been written about super-
resolution microscopy, and we refer to these for an introduction and overview on the topic (9–13).
More recently, the field has focused on consolidating many of the pioneering development ef-
forts of the early years. Especially in the single-molecule switching and localization field (PALM,
STORM, FPALM, and related techniques), extracting meaningful information in a reliable and
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Point-spread
function (PSF):
describes the
appearance of a
point-like object when
viewed with a
microscope

Single-molecule
localization
microscopy (SMLM):
commonly used term
for super-resolution
techniques relying on
“on” and “off ”
switching of individual
molecules and their
localization

reproducible way has lately become the subject of many debates and articles. This article re-
views and reflects on some of the limitations and underlying concepts that have triggered these
discussions.

1.1. Working Principle of Single-Molecule Switching
and Localization Nanoscopy

Single-molecule switching and localization nanoscopy generates super-resolved images by de-
termining the spatial position of large numbers of individual fluorescent molecules that label a
structure. In conventional fluorescence microscopes, most illuminated probe molecules emit fluo-
rescence at the same time. Diffraction causes each fluorescent molecule to appear as a spot of at
least ∼250 nm in size, as described by the point-spread function (PSF). Molecules closer than this
spot size overlap and cannot be readily distinguished from each other.

By switching on only a small, random subpopulation of molecules in each recorded camera
frame, the density of emitting molecules can (ideally) be lowered to the point at which the images
of neighboring fluorescent emitters do not overlap and each individual emitter can be isolated
and its location determined with subdiffraction precision (see Section 4.1). By imaging them in
separate camera frames, two molecules, which would be too close together to be distinguishable
using conventional microscopy, can be resolved. To acquire the locations of enough molecules to
form a sufficiently detailed image (see Section 4.2), many frames, typically thousands to hundreds
of thousands, are recorded, each showing a different subpopulation of molecules that “blink” or
“flash.”

These flashes are usually produced by switching molecules between visible and invisible states.
“On” switching is most frequently achieved by actively turning on random subsets of photoswitch-
able molecules with light or by passively watching molecules that have previously been pumped to
the invisible state spontaneously switch back to the visible state. “Off ” switching is usually realized
by either permanently or temporarily bleaching visible molecules with the light that is also used
to read out the fluorescence. These approaches are known under the acronyms PALM (photoacti-
vated localization microscopy), STORM (stochastic optical reconstruction microscopy), FPALM
(fluorescence photoactivation localization microscopy), dSTORM (direct stochastic optical re-
construction microscopy), GSDIM (ground state depletion with individual molecule return), and
many others (14–20). Alternatively, chemical binding kinetics can be exploited. Here, diffusing
fluorescent probe molecules are not visible because their rapid motion blurs the signal and they
do not produce spot-like intensity patterns. As soon as they bind to a target molecule, how-
ever, they become immobile and are thereby visible until they are bleached (or become mobile
again). This approach, known under the acronym PAINT (points accumulation for imaging in
nanoscale topography) (21), can be further refined by using fluorogenic probe molecules that
become fluorescent only upon binding and by optimizing the time that ligands bind reversibly
(22–27).

Regardless of the switching mechanism used, these approaches have the common property that
individual single molecules are detected and their positions accurately measured using computa-
tional postprocessing. Throughout this review, we refer to an individual single-molecule detection
and position determination as a localization event, or in short, localization. In reference to the
importance of these localizations, especially with respect to the quantitative data analysis empha-
sized in this article, we have adopted the commonly used term of single-molecule localization
microscopy (SMLM) throughout this review, even though there are good arguments that stochas-
tic switching is conceptually more fundamental to the understanding of how the diffraction limit
is overcome (28).
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1.2. Applied Quantitative Single-Molecule Localization Microscopy

From a biological perspective, applications to date can be broadly classified into two major cat-
egories: visualizing structures and investigating interactions. Although this division is somewhat
arbitrary and inexact, with some applications clearly spanning both categories, we believe it is
instructive as these two tasks place fundamentally different demands on the imaging modality. In
the next two sections, we build on this categorization to take an application-centric look at what
is necessary to get good quantitative super-resolution data in a variety of scenarios.

2. IMAGING STRUCTURES

Structural super-resolution imaging is directly analogous to electron microscopy, albeit with spe-
cific molecular contrast, by having interest in the shape and/or arrangement of a particular func-
tional structure within the cell. In structural imaging, one typically derives most of the information
from a single label or color channel, although additional channels may provide valuable contex-
tual information. The difficulty of the imaging and data interpretation tasks can vary dramatically.
For illustration, we have broken down structural super-resolution imaging into subcategories of
increasing difficulty (Figure 1).

2.1. Well-Isolated Repetitive and/or Stereotyped Structures

Many of the most biologically meaningful results published to date have been well-isolated, repet-
itive, and/or stereotyped structures. One of the most striking examples is the spectacular discovery
of periodic actin rings in neuronal axons by Xu and colleagues (29) in 2013 and the subsequent
quantification of the spacing and demonstration that this was consistent with a spectrin scaffold
(Figure 2a). The regular spacing between the observed actin rings and their similarity led to a
strikingly clear and compelling result. Sperm flagella lend themselves to a comparable approach.
The uniform shape of the flagellum allows the flagellum to be treated as a cylinder and the local-
izations to be projected in the direction of the cylinder axis, thereby obtaining images depicting
the radial/azimuthal protein distribution at high quality (30).

Another example is the characterization of the y-complex in nuclear pore complexes (NPCs)
(31), which builds on the demonstration that the stereotyped nature of the NPC allows averaging
of a high number of spatially aligned NPC images to produce a well-sampled composite (32, 33).
Szymborska et al. (31) applied this approach to seven subunits of the y-complex and were able
to resolve their relative radial positions and deduce the overall y-complex orientation within the
NPC (Figure 2b). A similar approach has been used to investigate the ciliary transition zone
architecture (34) and to reconstruct the icosahedral shape of T7 bacteriophages from SMLM data
sets of individual capsids (35).

The idea of stereotyping and population averaging can be expanded to structures such as gene
loci even though, at a first glance, they do not seem to resemble one another. By choosing a
metric that extracts stereotypical features within the population (e.g., the radius of gyration), very
useful properties such as the average level of compaction of a certain type of gene locus can be
determined (36) (Figure 2c). A similar logic, taking the population average of a simplifying metric,
has allowed the size of cytokinesis nodes in yeast (37) to be estimated along with a growing number
of additional applications.

While all these examples take advantage of, and indeed rely on, good localization accuracy,
the similarity of individual structures allows the information from multiple structures to be com-
bined, relaxing the demands on labeling and localization density. However, there is a necessary
prerequisite: If information from multiple structures is to be combined, the structures must also
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Figure 1
For the purposes of this review, we separate biological structures into three classes: (a) structures that are well separated, are highly
similar, and can be averaged (e.g., nuclear pore complexes), (b) structures that are still well separated but do not possess a high degree of
similarity and must be analyzed individually (e.g., proteins in the active zone of synapses), and (c) structures that are highly complex and
not well separated (e.g., condensed chromatin). In each case, molecules of interest (blue dots) are detected with less than 100% efficiency
leading to imperfect localization data (stars). Abbreviation: SMLM, single-molecule localization microscopy.

be easily identifiable and isolated from their surroundings. This implies both a reasonable amount
of separation between individual structures and low levels of background (whether from unspecific
labeling, cytoplasmic pools, or out-of-focus structures).

Biological studies that can exploit these criteria of isolation and the ability to be averaged—
either through the intrinsic nature of the structure studied or by careful choice of experimental
conditions and metrics—lend themselves to the generation of robust quantitative results despite
limitations on labeling efficiencies inherent to the current state of the art. Not surprisingly, the
most impactful publications to date tend to fall into this category. Saying that these are the easiest
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Figure 2
Examples of SMLM applications that have benefited from averaging and data reduction. (a) Spectrin rings in axons (left) are highly
similar and can be shown to be periodic by projecting (averaging) orthogonally to the axis of the axon (right) (adapted from
Reference 29 with permission). (b) Images of different nuclear pore y-complex subunits (left) can be aligned and averaged (center) to
obtain standard radii for each subunit and to infer the orientation of the y-complex within the NPC (right) (adapted from Reference 31
with permission). (c) Despite considerable differences in structure, the reduction of gene–domain shape (left) to a single parameter, the
radius of gyration, permits averaging and data analysis (right) (adapted from Reference 36 with permission). Abbreviations: NPC,
nuclear pore complex; SMLM, single-molecule localization microscopy.

class of structures to image is not a reflection on the care and effort put into these publications
but rather on what the method, in its current form, is best able to investigate.

2.2. More Complex Structures That Are Still Well Isolated

Structures that can still be well isolated, but have complex and variable structural features that do
not allow for averaging, are somewhat harder to image and quantify than stereotyped structures.

970 Baddeley · Bewersdorf



BI87CH37_Bewersdorf ARI 18 May 2018 8:13

z
y

y

x

x

a

b

c
g a

 (r
)

%
 o

f m
ol

ec
ul

es

10

20

30

40

50

0

Radius (nm)

10
Contour length (μm)

9876543210

500 nm 500 nm

Linears
T loops

RIM1/2
PSD-95

1 μm

1 μm 1 μm 1 μm

2 μm 200 nm

1 μm 1 μm

500 nm

2.5

2.0

1.5

1.0

0.5
12080400

RIM1/2

Isolated
localizations

Random

Figure 3
Examples of structures with variable structural features imaged by SMLM. (a) DNA-PAINT
super-resolution images show the 174-kb hoxB locus in mouse embryonic fibroblasts (adapted from
Reference 38 with permission). (b) Subsynaptic nanoclusters of synaptic proteins shown in an overview image
(left) and zoom-in of the boxed synapse (two center panels; shown from different angles). By combining the data
of many synapses, nanocluster sizes could be measured by calculating the autocorrelation functions (right)
(adapted from Reference 40 with permission). (c) Examples of T loops after chromatin spreading (left) and
the quantification of contour lengths for linear telomeric DNAs and telomeric T-loop DNA (right) are
shown (adapted from Reference 43 with permission). Abbreviations: PAINT, points accumulation for
imaging in nanoscale topography; SMLM, single-molecule localization microscopy.

This is the case, for example, when investigating the individual shape (rather than overall com-
pactness) of individual gene loci (38) (Figure 3a) or the local protein distribution in the active
zone of individual synapses (39, 40) (Figure 3b).

The need to extract high-quality information from individual objects, rather than an ensemble,
means that each object must have a high density of localizations. Achieving high localization
densities remains, however, very difficult. Current labeling chemistries, be it antibodies, SNAP,
CLIP, or Halo tags (41, 42), or direct fusion proteins, label only a fraction of the target, and
dye photochemistry further limits the portion of the labels one can actually see. As a result, the
average distance between neighboring localizations is often of the same order of magnitude as
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the feature size of interest. The statistical nature of the spatial distribution of localizations (see
Section 4.4) can lead to the random formation of intriguing spatial arrangements and make it
very tempting to overinterpret the images. Extraordinary scrutiny involving careful controls and
statistical tests is therefore required for a reliable interpretation of the super-resolution images.
Choosing effective quantitative descriptions, ideally informed by a hypothesis to be tested, can
be a strategy to reduce the requirements for data quality and quantity. Unfortunately, these
descriptions can often be quite abstract and the results less striking or intuitive than those for the
first class, in which the repetitive nature of structures often allows a clear visual answer.

Owing to these difficulties, the existing studies that fall into this category are less numerous than
those involving easily stereotyped structures. Clever tricks, however, can sometimes be applied to
overcome some of the problems to get a clearer result. One example is a recent study on telomeric
T loops in which the telomeric structure was simplified by spreading the chromatin to get an
unambiguous readout of looping frequency (43) (Figure 3c).

2.3. Complex and Closely Spaced Structures

The hardest class of structures to image are arguably those that either are not easily distinguishable
from background or neighboring structures, or are extended and complex with features of interest
in the 10- to 50-nm range. Examples include the Golgi complex in typical mammalian cells or
chromatin in the interphase nucleus. These structures test the limits of localization microscopy,
needing both exceptionally high labeling density and localization precision. If the required high
labeling density is achieved, the fact that structures are extensive or not isolated means that every
probe molecule is surrounded by large numbers of other probe molecules. The presence of large
numbers of neighboring molecules adds additional requirements for exceptionally good photo-
physical or chemical control of the blinking characteristics. Otherwise, excessive overlap between
the images of neighboring emitters prohibits localization of the emitters (resulting in black holes
in the super-resolution image in areas of high labeling density) (44) or, in slightly less dense re-
gions, leads to mislocalizations in which events do not appear in their true location (45, 46). An
illustration of density-induced artifacts can be seen in Figure 4.

Hypothetical biological questions that would fall into this category include: counting micro-
tubule valency in neuronal processes in which large bundles of microtubules run in parallel, iden-
tifying individual chromatin fibers in the interphase nucleus, isolating individual synaptic vesicles
in presynaptic nerve terminals, and separating individual Golgi cisternae. To date, very few pub-
lications have tried to apply SMLM approaches to this class of structures. Those that come close
have not achieved the ∼30-nm resolution typical of SMLM and have been limited to reasonably
qualitative results. For example, in our studies of amyloid plaques in primary mouse brain tissue
(47), we were able to show differences in plaque compactness in response to TREM2 knockdown
but were unable to reliably resolve individual filaments (Figure 5b). With considerable care, it has
been possible to resolve microtubules within small bundles in cultured cells (48); however, larger
bundles in the same images remain unresolved, and taking this task into a tissue context remains
an open challenge (Figure 5a).

Super-resolution imaging of these classes of structures will benefit from substantial improve-
ments in two areas. First, on the experimental side, the development of dyes, labeling approaches,
and imaging schemes will result in better photophysical blinking properties and allow better
control of the density of emitters. We consider PAINT and related techniques to have signif-
icant promise here. Second, the utilization of significant amounts of prior knowledge in image
interpretation—for example, building microtubule diameters and persistence lengths into the
analysis of microtubule bundles—may allow the requirements on labeling density to be somewhat
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Figure 4
The ability to separate individual emitters in the raw data (insets) is crucial for accurate SMLM: Artifacts
occur in areas of the image where imaging conditions do not allow for a sufficiently sparse emitter density. In
particular, suitably low instantaneous blinking densities are hard to achieve for complex, extended structures.
The blinking density increases from panels a to c (immunolabeled microtubules in a U2OS cell) and from
panels d to f (WGA-labeled glycans on basal plasma membrane of a U2OS cell). Figure adapted from
Reference 46 with permission. Scale bars = 2 µm. Abbreviations: SMLM, single-molecule localization
microscopy; WGA, wheat germ agglutinin.

relaxed, albeit with an output that will more closely resemble a statistical test of a specific biolog-
ical hypothesis than a conventional microscope image. Other strategies for dealing with highly
complex structures include the extraction of simple, image-independent metrics such as pairwise-
distance distributions between localizations and comparing them with rigorous simulations.

3. IMAGING INTERACTIONS

The second major category of questions addressed by SMLM focuses on interactions. For these
questions, structure is only a secondary concern, potentially defining the environment in which
the interactions take place. Interactions can be observed in a number of different ways, ranging
from detecting clustering of a single species (49–53) (Figure 6a) or coclustering of multiple species
(54) to more conventional colocalization studies (55). While resolving structures is less important
for these questions, SMLM can take advantage of its resolution, which is much closer to the
size scales of molecular interactions than the diffraction-limited resolution of conventional light
microscopy.

The (usually well-justified) hypothesis underlying the investigation of interactions is that
molecular interactions come in discrete states: Either there is an interaction between two molecules
or there is not. In more complex scenarios, a small number of additional, but still discrete, states
is assumed. A typical analysis of interactions beyond the superficial level involves some form of
classification into interacting and noninteracting pools of molecules. This classification may take
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Figure 5
Resolving closely spaced or complex structures such as microtubule bundles (a) or amyloid plaque in tissue
(b) is difficult. While close-to-ideal conditions permit microtubule bundles to be resolved along the profiles
in panel a (i, ii ), this is not possible in areas of the image such as the upper right, where microtubules are
more closely spaced or cross each other in 3D. Similarly, in panel b, where the structure is complex and 3D,
it was not possible to resolve individual amyloid fibrils. Quantification of complex structures is also typically
more qualitative than in the simpler case, and to compare the effect of TREM2 knockdown in panel b we
resorted to classifying image areas as “dense,” “fibrillar,” or “diffuse” and measuring the relative frequency of
occurrence. Figure adapted from References 47 and 48 with permission.

the form of choosing the parameters of a clustering algorithm (see Section 5.2) or thresholding
reconstructed images to perform colocalization analysis (see Section 5.3).

For example, by taking advantage of cluster analysis in two-color SMLM and counting local-
izations per cluster [as well as other techniques including fluorescence (Förster) resonance energy
transfer (FRET) imaging], it could be shown that subunits of asialoglycoprotein receptors can
assemble into homo- and hetero-oligomeric complexes that differ in ligand specificity and that
the mix of the different types of complexes shows remarkable plasticity (56). For the more com-
plex structure of cardiac ryanodine receptor (RyR) patches in rat ventricular myocytes, the level
and spatial distribution of colocalization with junctophilin-2 ( JPH2) could be determined from
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adapted from Reference 51 with permission). (b) Data (examples shown left) of JPH2 (light green) and
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microscopy.

two-color SMLM data by measuring the intensity of the JPH2 signal with respect to the boundary
of RyR clusters, which was identified by thresholding (57) (Figure 6b).

Instead of extracting information about interactions from fixed, static samples, looking for
changes in dynamics of molecules in different states of interaction can often be an easier, more
direct approach. Single-particle tracking is closely related to SMLM with many of its algorithms
having acted as the basis of SMLM data analysis. Particle tracking allows a large range of different
analyses such as the grouping of particle trajectories into trapped and diffusive populations or
segments. Given the extensive history of this field, we refrain here from a detailed discussion and
refer to a number of excellent reviews in this area (58–60). In the context of SMLM, however,
we want to mention single-particle tracking PALM (sptPALM) (61–63), which allows individual
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molecules to be followed even in scenarios of high molecular density by combining particle tracking
with photoactivatable fluorescent markers.

4. THE COMPLEX QUESTION OF RESOLUTION

SMLM differs significantly from more conventional microscopy techniques in that there is no
longer one clear concept or definition of resolution that is analogous to Abbe’s simple function of
wavelength and numerical aperture that applies to diffraction-limited systems (64). The resolving
power is instead a function of a large number of parameters, several of which depend on the
sample itself and vary from experiment to experiment. Two key concepts that underlie resolution
in SMLM are the localization precision and the localization density. Ultimately, however, the
concept of resolution might even depend on what one is trying to determine from the sample.

4.1. Localization Precision

Localization precision describes how well one can localize a single molecule. This depends on the
underlying diffraction-limited resolution of the microscope, the number of photons one can collect
from each molecule, camera properties, and the level of background signal. Localization precision
has been extensively studied in the field of single-particle tracking (65) and can be determined
through the calculation of the Cramer-Rao lower bound (CRLB), a formalism based on analyzing
how fast the likelihood of getting a given image changes as the position of the molecule changes
(66). For the special case of an approximately Gaussian-shaped PSF, localization precision can be
estimated as (67):

�x2 = σ 2 + a2/12
N

⎛
⎝1 − 4τ +

√
2τ

1 + 4τ

⎞
⎠ ,

where τ = 2πb(σ 2+ a2/12)
N a2 , N is the number of signal photons, σ is the standard deviation of the

PSF, a is the pixel size, and b is the number of background photons per pixel. A less complex,
yet also less precise, estimate had been proposed earlier by Thompson and colleagues (65) and
was corrected by Mortensen et al. (68).

It should be noted that CRLB analysis provides a theoretical lower bound on localization pre-
cision. The CRLB is estimated solely from the shape of the PSF and the signal and noise levels and
assumes that the localization algorithm makes optimal use of the available image data. Additional
influences such as drift and vibrations of the microscope, optical aberrations, or polarization effects
that are not accounted for in the PSF are ignored, as are imperfections in the localization algo-
rithm. The actual localization precision achieved will therefore always be worse and, in particular,
depends strongly on the choice of localization algorithm. In practice, both maximum likelihood
(ML) and suitably weighted least squares algorithms will get very close to the CRLB if allowed to
converge. Centroid-based algorithms are significantly worse (65). Some care is needed when us-
ing iteration-limited ML (as in many GPU-based fitting approaches), as convergence is no longer
guaranteed, and when using weighted least squares in cases in which the signals, background, and
read noise are extremely low.

Localization precision is usually expressed as a 1-σ error in the estimated molecule positions. If
we assume a Gaussian spread of errors, this translates into a full width at half-maximum (FWHM)
of the distribution of localization errors of �x ≈ 2.35σ, which, in analogy to the FWHM of the
PSF in conventional microscopy, can be used as a lower bound on the resolution. For example,
a localization precision of 12 nm means that the resolution in a reconstructed image will be no
better than 28 nm. The effect of varying localization precision can be seen in Figure 7a.
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a b

Figure 7
The effect of varying (a) localization precision and (b) localization density in the example of a simulated
mitochondrion image. There is a 3-fold change in precision or density between neighboring images in
panels a and b, respectively.

4.2. Localization Density

Localization density is the second major determinant of image resolution and, arguably, both
the more important and the less well-understood one. It describes how many localizations were
observed within a certain region of the image and is affected by both the density of the labeling
and the switching properties of the sample (which is a function of both the fluorescent probe and
the buffer/environment). At its most basic level, the concept boils down to the fact that one cannot
separate two objects if one of them has not been observed. The relationship between localization
density and resolution is, however, complex.

The Nyquist sampling criterion describes which spatial frequencies can be reconstructed when
taking regularly spaced real values from a signal; however, the criterion is inadequate in SMLM,
as localizations are not samples in the classical sense but rather are events that are neither regularly
spaced nor have a value (other than 1) associated with them. Empirically, it seems that for a given
resolution the distance between neighboring localizations should be significantly less than that
indicated by a naive application of the Nyquist limit, with a factor of five times higher sampling
having been proposed (69, 70). The effect of varying localization density can be seen in Figure 7b.

4.3. Fourier Ring Correlation

Fourier ring correlation (FRC), or Fourier shell correlation in its three-dimensional version, was
initially developed for electron microscopy (71) and is a method of measuring resolution in SMLM
that attempts to quantify resolution by comparing two independent images of the same object (72,
73). The advantage of the technique is that it does not require any explicit knowledge of the imaging
modality. The principle behind FRC is that frequency components within the two images that are
above the noise floor (i.e., which can be resolved) will be correlated, but frequency components
that are dominated by noise will not be correlated. By plotting correlation as a function of spatial
frequency, one can determine at which spatial frequency the image content falls below a certain
level.

The method has the considerable advantages that only two independent images of the same
object are needed (which can be obtained in SMLM by randomly partitioning the acquired lo-
calizations into two sets) and that the method is sensitive to localization precision as well as
density. Disadvantages stem from the fact that FRC curves depend on the shape of the imaged
object since FRC implicitly measures the power spectrum of the object (i.e., how self-similar
it is at different length scales). Images dominated by complex, extended objects can yield much
worse FRC resolution values than images primarily containing small clusters scattered across the
field of view. Especially when comparing experimental conditions for equivalent structures (e.g.,
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a

b

Figure 8
The basis of the Rose criterion is to assess the ability to distinguish a darker circle from bright background as
a function of contrast under photon-starved conditions, as shown in panel a. Panel b shows synthetic photons
(or equivalently localizations) for three circles of the same size but differing contrast. For a detailed
discussion, see Rose (74).

similarly distributed microtubules at the cell periphery), FRC can be a very useful measure. It can
be misleading, however, when used as a general purpose resolution estimate.

4.4. Stochastic Noise and Resolution

The resolution of conventional fluorescence microscopes is usually described by the shape of their
PSF, as determined by objective choice and the diffraction of light (64). Although noise in the form
of intensity variations in the image can conceal subtle features and thereby decrease the effective
resolution in conventional microscope images, this effect is only significant for the dimmest of
images and is usually ignored.

In contrast, SMLM approaches are much noisier and the influence of noise has to be considered.
As discussed in Section 4.1, photon noise in the raw data implies a fundamental limit on the accuracy
with which a single molecule can be localized. Additionally, and arguably more importantly, the
stochastic process with which single molecules are labeled, switched, and detected represents a
significant source of noise. The process of stochastic detection and localization is analogous to that
of conventional imaging in exceptionally photon-starved conditions. The concept of resolution
in photon-starved imaging was investigated in some detail in the somewhat unexpected context
of image recording for television (74), resulting in the signal-to-noise ratio (SNR)–based Rose
criterion for being able to detect a dark spot of low density on a uniform background of higher
density (Figure 8):

d = 5
C

√
n

.

Here, d is the diameter of the smallest resolvable spot, n is the areal density of photons in the
background (localizations if applied to SMLM imaging), and C is the contrast [(n − nspot)/n < 1]
between that spot and the background. While the Rose criterion is derived for the case of a darker
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Figure 9
One can calculate the probability of observing a dip between two point objects as a function of their separation (in units of the
localization precision σ ). Significantly more localizations are required than would be expected from the Nyquist sampling criterion. For
a 95% significance cutoff, the 2.35 σ resolution predicted by localization precision alone is achieved only in the limit of extremely high
(�100) localization numbers.

spot on a brighter background, the concept (if not the scaling factor) that effective resolution is a
function of both SNR (here in the form of the statistical counting SNR n√

n = √
n ) and contrast is

expected to be equally applicable to SMLM. Rose’s analysis and explanation is both well written
and surprisingly relevant to our field. It is well worth a read if you can find a copy.

4.5. Combining Localization Precision and Density

Building on Rose’s analysis, modeling less than infinite localization density as being a source of
noise is one avenue toward a unified treatment of localization precision and localization density.
Drawing on the Sparrow criterion, an empirical resolution metric used extensively in spectroscopy
that defines two points as being resolved if there is a dip in signal between them (75, 76), one can
derive an effective two-point resolution criterion for SMLM that takes localization density into
account. The Sparrow criterion is easily extended to quantifying whether or not we can statistically
detect a dip between two points considering the stochastic nature of localizations. The result is an
expression for the probability of resolving two points as a function of their distance (as a multiple of
the localization precision) and the number of localizations in each point, as illustrated in Figure 9.

Both this analysis and the Rose criterion imply that sampling should be much higher than naive
application of the Nyquist limit, consistent with, or potentially exceeding, the 5-fold oversampling
that has been put forward previously on a more empirical basis (69, 70).

4.6. Hypothesis Testing Instead of Resolution?

Our attempt at quantifying the two-point resolution is based on the probability of being able
to separate two point-like objects. Resolving two points is a specialized example of a task one
might wish to perform with SMLM. Other tasks—for example, detecting the unlabeled lumen
within the membrane-labeled endoplasmic reticulum or a microtubule—can be accomplished with
a significantly lower areal localization density. Conversely, if the phenomenon to be detected is
very rare, higher densities could be required. Given these factors, we suggest that a hypothesis
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testing approach in which one quantifies the ability to answer a specific question might be more
useful and more tractable than a simple resolution figure.

The exact form that such a hypothesis test might take would vary substantially depending on
the question at hand, as would the desirability of rigorously developing and performing such a
test. Many applications may not need a rigorous definition of resolution, with the ultimate test
being whether a difference in some high-level derived measure can be detected between two
different experimental manipulations. A key advantage of this kind of resolution analysis would be
to inform experimental planning by indicating what localization precision and density are required
to answer a given question, which in turn would motivate the choice of dyes, labeling strategies,
and illumination modalities. In the absence of a reasonably easy analytical approach to determine
these values, a similar goal can be accomplished with the aid of simulations.

Regardless of how resolution is quantified, two key features become apparent: Resolution in
SMLM is inherently a function of the structure being imaged as well as of the microscope, and
labeling density is critical—most likely more so than previously appreciated.

5. QUANTIFYING MOLECULAR DISTRIBUTIONS

5.1. Counting Molecules

The fact that SMLM images are assembled from discrete localizations had sparked the idea already
in the early days of SMLM to count the targeted molecules. In combination with the high spatial
resolution provided by the imaging technique, this allows, in principle, measurement of important
quantities such as the number of receptors associated with a vesicle or how many copies of a
nucleoporin are part of an NPC. However, this seemingly straightforward task is in practice
prone to many pitfalls and artifacts and requires careful calibrations and controls to obtain reliable
results. The problem is that the number of observed localizations does not translate one-to-one into
copy numbers of the molecule of interest. When extrinsic labeling techniques such as antibodies,
PAINT labels, or dyes binding to SNAP or Halo tags (41, 42) are used, not every target molecule
is labeled. Similarly, for genetically encoded tags, untagged copies of the molecule of interest (or
molecules where the tag domain has not folded properly) might coexist with properly labeled
molecules, or expression levels might differ from the original version. In contrast to genetically
encoded tags, antibodies are in most cases labeled by more than one fluorophore. An additional
source of error comes from the fact that some fluorescent probes might bleach before they can be
detected, or they blink multiple times and are mistaken for multiple target molecules (77, 78). The
combination of overcounting and undercounting errors related to these factors results in a hard-to-
determine difference between the actual number of molecules and the obtained localization counts.
A careful characterization and quantification of any of these effects can allow the introduced errors
to be corrected (39, 79–86).

Much simpler is the task to obtain relative, rather than absolute, copy numbers and compare the
numbers for different related proteins or for one protein under different physiological conditions.
Many of the error sources in counting cancel out this way, which can reduce the number of required
calibration steps significantly. Additionally, if for one of the samples the absolute number is known
from other studies (e.g., biochemical assays or electron tomography), this number can be used for
an internal calibration that translates the obtained relative copy numbers into absolute numbers
(37, 87).

Given the complexity of the involved protocols and the large number of potential error sources,
caution is advised, however, in following through with any of these approaches. Many of the
mentioned factors are not well understood and can also be influenced by the microenvironment,
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Segmentation:
process of separating
an image (or the
underlying
localizations) into
areas belonging to
objects of interest and
areas representing
background

which can differ significantly between individual molecules. Furthermore, the relationship between
localization counts and molecule counts is not strictly linear. At high molecular densities, for
example, the algorithms are less likely to correctly identify each blinking event than they are for
sparser distributions, and neighboring fluorescent probes can influence each other’s photokinetics,
leading to a different blinking behavior. All these potential problems therefore need to be factored
into the experiments.

5.2. Cluster Analysis and Segmentation

As seen by the examples provided in Sections 2 and 3, many of the molecules imaged by SMLM
are clustered into 5- to 100-nm large functional units. The analysis of clustering and cluster sizes
has therefore seen considerable interest in the field, and a number of statistical methods have been
developed that quantify clustering directly from the molecule position data.

The first major advance related to clustering molecule position data was the use of the Ripley’s
K and related statistics, borrowed from the geosciences (50, 88, 89). These methods are based
on the analysis of pairwise distances between all molecules. The Ripley’s K statistic calculates the
average number of molecules within a ring of given radius r from a molecule. If the distribution
of molecules was random, one would expect the number of molecules in the ring to scale with
its area (i.e., with r2 in the two-dimensional case). Clustering is detected as a departure from this
trend, typically seen as an excess at small radii. Slightly easier to interpret than the Ripley’s K
curve is the detrended and variance-normalized Ripley’s L curve (89), which allows the statistical
significance of the departure from uniformity to be read straight from the graph. Ripley’s curves
and related approaches can also give information about cluster sizes, although the interpretation
is difficult if clusters are not of constant size and shape.

As biological clusters are rarely tightly distributed or uniformly shaped, analyzing the distribu-
tion of cluster sizes typically requires the segmentation and analysis of individual clusters, a process
that can be surprisingly tricky especially in the presence of significant background. Approaches
to cluster segmentation fall into two main classes: approaches adopted from classical statistical
clustering, which operate directly on the point data and distance metrics between the points [e.g.,
k-means, DBSCAN (density-based spatial clustering of applications with noise)] (39, 53, 90, 91),
and less direct approaches based on creating an estimate of local point density and then thresh-
olding this image. Within the latter category, density estimation methods based on tessellation
(92, 93) give a more robust estimate of areal density than the Gaussian rendering method often
used for display purposes.

The most appropriate segmentation method depends strongly on the specific application, and
having made extensive use of both direct and indirect methods, we have not seen compelling evi-
dence to suggest that direct methods perform better. One potential advantage of indirect methods
is that the caveats of threshold selection are well known, whereas the effects of the parameters
used in direct methods are often less well understood—particularly when applied by nonexpert
users. Regardless of the segmentation method chosen, parameter selection is critical to robust
performance. An exciting new approach to parameter estimation for clustering (94) samples the
entire parameter space and uses Bayes’ theorem to select the appropriate parameters a posteriori.
We feel that methods such as these have great potential to improve segmentation robustness.

5.3. Colocalization

One of the most compelling arguments for fluorescence microscopy is the ability to image multiple
different markers in the same sample. In conventional fluorescence microscopy, colocalization,
typically quantified using either Pearson’s or Manders’ coefficients, is an incredibly popular if
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not always easily interpreted tool for looking at the association between two labels (95). One
can in principle apply the same mathematics to SMLM reconstructions, although we strongly
believe that conventional colocalization measures have limited utility on super-resolution images.
It is physically impossible for two targets to occupy the same space, meaning that on a molecular-
length scale colocalization (as defined by Pearson’s or Manders’ coefficients) is zero (or negative) by
definition. As the resolution approaches the molecular scale, one observes very low colocalization,
regardless of the target. The second major issue one confronts when applying colocalization
methods to SMLM images is the large degree of stochasticity observed in many techniques (see
Section 4).

In attempting to make colocalization work for SMLM images, one first needs to identify what it
is that one really wants to measure with colocalization. In conventional microscopy, colocalization
is very often interpreted as being supportive of a functional relationship, or interaction between
the two proteins, whether direct or indirect. If two proteins are involved in the same pathway,
they can be assumed to be concentrated within the same compartment or structure within the
cell. As with any chemistry, interactions are transitory, and an increased concentration within the
immediate neighborhood is likely sufficient for a functional relationship. In diffraction-limited
microscopy, one can safely argue that the distances over which species interact are significantly
shorter than our resolution limit, but this is no longer the case in super-resolved images. Here
one has to explicitly consider the length scale that is important for the biological question and ask,
“How close is colocalized?”

For this reason, we find colocalization metrics that have distance built into them attractive.
One such distance-aware method generalizes the concepts used in Ripley’s K-based cluster analysis
and calculates the distribution of pairwise distances between channels, rather than within a single
channel (54, 96–99). This method has the advantage of working directly from the position data,
although like single-channel Ripley’s K, the interpretation is not completely trivial. An alternative
approach segments one channel to define a mask, calculates a Euclidian distance map from the
mask, and then plots the distribution of the second channel with respect to its distance from the
border of the segmented objects in the first channel (57, 100). This method has the advantage that
it is also applicable to most other microscopy methods (e.g., confocal and STED microscopy) and
provides easily understandable quantitative information about how close two proteins or structures
are. An example of a conclusion reachable using distance transform–based approaches would be
that 90% of one species is within 50 nm of the other.

6. CONCLUSIONS

The development of super-resolution microscopy has opened a world below the 100-nm scale
to light microscopy. Despite relatively simple underlying concepts and commercially available
instruments, obtaining high-quality data is not trivial. Nevertheless, these techniques have led to
spectacular cell biological discoveries as demonstrated above. What these success stories have in
common are (a) a well-posed biological question that is addressable by SMLM—be it by the nature
of the examined structure that lends itself favorably to a super-resolution investigation or by clever
experimental design—and (b) careful data analysis that rules out artifacts and builds confidence in
the data. We see these examples as role models that can serve as inspiration for future studies.

As we discussed in Section 2, not every structure can be imaged equally well by SMLM and not
every morphological question can be answered equally easily. Before embarking on an imaging
project, we therefore recommend a careful assessment of how one’s biological question relates to
the strengths and weaknesses of SMLM, for example with the help of Table 1. This assessment
allows one to develop a better understanding of the expected difficulty and obstacles, identify the
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Table 1 Structural attributes and their consequences to data quality and processing

Structural attribute Example(s) Consequence(s)

Positive attributes

Structures can be easily
distinguished from surroundings

Cilia (34)
Needle complex in bacteria (87)

Structures can be isolated from neighboring
structures and background

Known geometrical constraints Microtubules
Actin rings in axons (29)

Modeling can be applied
Reduces requirements for localization density

Stereotypical features Nuclear pore complex (31, 32)
Bacteriophages (35)

Population averaging can often be applied
Reduces requirements for localization density

Two-dimensional Clusters in plasma membrane (56) Third dimension can be neglected

Structure can be described with a
simple parameter

Diameter of cytokinesis nodes (37)
Radius of gyration of gene loci (36)

Fewer localizations required to extract parameter
than fully characterize object

Parameter of interest can be averaged over
multiple samples

Challenging attributes

Bulky three-dimensional
structure

Golgi complex
Chromatin in interphase nucleus
Actin in muscle cells

Difficult to achieve sparse blinking conditions
that allow reliably localized molecules

High localization densities required to identify
features in complex architecture

Potential issues with epitope accessibility or
labeling efficiency

Highly variable structure Amyloid plaque (47) Difficult to find simplifying measures
Analysis more qualitative

Fast dynamics Transferrin receptor movement on plasma
membrane (110)

Short recording times required
Number of recorded frames per image limited
Compromise between localization density and
motion artifacts

Low target molecule density Some organelle or plasma membrane
proteins

Rare histones or histone modifications

Resulting low localization density limits
resolution

Poor representation of underlying organelle

Densely labeled, subdiffraction-
sized structures

Peroxisomes
P-bodies

Cannot easily recognize artifacts due to multiple
simultaneous emitters

Incorrect size measurements

High background Tissue
Out-of-focus fluorescence (e.g., around
the nucleus)

Large cytoplasmic pool of labeled protein

High localization densities required to achieve
statistical significance in structural interpretation

Difficult to segment structure

required controls, and align expectations of what the quantifiable outcome of the project will be.
In turn, this assessment provides an opportunity to adjust the experimental design early on in the
project to take best advantage of the available super-resolution imaging and analysis tools.

Performing such an assessment is, of course, well established for many biological techniques
for which the complexity of the experiment and the abstractness of the acquired data require
careful planning. When using conventional microscopy, however, an image is taken quickly and
the result is often intuitively interpretable, making rigorous preliminary assessment and design
much less critical. This approach does not transfer well to SMLM, and the first step in successful
super-resolution imaging is the appreciation of the complexity of the method and the numerous
pitfalls that have to be avoided.
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Fortunately, as we indicated in this review, more and better tools that assist with the design
and analysis of localization microscopy experiments become available at a breathtaking speed. In
addition to better analysis algorithms, which we discussed in Sections 4 and 5, our understanding
of fluorescent probes’ photophysical properties is increasingly better. For example, data on the
number of blinking events of mEos2 (79); the photoactivation efficiency of a number of pho-
toswitchable fluorescent proteins (101); or the ON fraction, ON time, and number of detected
photons per Alexa 647 molecule at different laser intensities (102) are now available. Data like
these can be used in simulators (103, 104) that provide a preview of the expected data quality
and provide numerical controls in which the ground-truth structure put into the simulator can be
compared with the super-resolution image obtained from the simulation that mimics the imaging
process.

Additionally, we continue to witness exciting developments of new probes (105), better imaging
buffers (12, 106, 107), and innovative illumination schemes (70, 108) that improve the quality of
the raw data in an increasing range of applications. Developments toward better live-cell SMLM
are particularly promising (109–111). Although most of the examples we have presented in this
review have been on fixed cells, the same considerations can be applied to live-cell SMLM, albeit
with an additional constraint on the recording speed and the problem that available localizations
need to be divided among the reconstructed images of the recorded time lapse sequence.

Projecting from current developments in SMLM into the future, we expect a continuing im-
provement in the community’s understanding of the constraints and dependencies of this mi-
croscopy modality that will lead to increasingly reliable, quantitative data. Automation of the
imaging and analysis processes combined with speed increases in both areas will allow higher
throughput in SMLM and will enable the detection of more subtle and/or rare phenomena than
have been demonstrated to date. With these developments, and analogous developments in other
super-resolution techniques like STED microscopy, super-resolution microscopy as a whole will
continue to expand its application range and has, in our opinion, the potential to replace conven-
tional light microscopy in subcellular imaging questions as the dominant go-to technique.
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