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Abstract

Multidrug resistance is a global threat as the clinically available potent antibi-
otic drugs are becoming exceedingly scarce. For example, increasing drug
resistance among gram-positive bacteria is responsible for approximately
one-third of nosocomial infections. As ribosomes are a major target for
these drugs, they may serve as suitable objects for novel development of
next-generation antibiotics. Three-dimensional structures of ribosomal par-
ticles from Staphylococcus aureus obtained by X-ray crystallography have shed
light on fine details of drug binding sites and have revealed unique structural
motifs specific for this pathogenic strain, which may be used for the design
of novel degradable pathogen-specific, and hence, environmentally friendly
drugs.
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1. HISTORICAL NOTES

This article addresses a major problem in modern medicine: resistance of pathogens to antibiotics.
It focuses on how antibiotics paralyze ribosomes, the universal multicomponent cellular particles
that translate the genetic code into proteins. It highlights conventional and nonconventional sug-
gestions that may relieve, to some extent, the current problematic medical situation and shows how
we may benefit from the vast amount of available structural information. Notably, understanding
the mechanisms of resistance to antibiotics could not even be dreamt about when a project aimed
at the determination of the atomic structure of ribosomes was started during the last two weeks
of November 1979.

The way to the incredible current situation was far from being trivial or easy. The first obstacle
was crystallization of intact ribosomes, which was considered formidable owing to the repeating
failures of numerous attempts performed worldwide by leading scientists. At that time, a rather
inexperienced young scientist, Ada Yonath, presumed that the main reason for the extreme dif-
ficulties in ribosome crystallization was their fast deterioration, in addition to the trivial reasons
mentioned worldwide, namely the complexity, huge size, mobility, and functional flexibility of
ribosomes. She was inspired by the finding that ribosome preparations were regularly only par-
tially functional in protein biosynthesis, hence indicating nonhomogeneous populations, which
obviously are not suitable for the production of crystals, namely periodic organization of identical
objects.

The finding that ribosomes in the cells of winter-sleeping bears are periodically packed in
monolayers on the inner side of the cell membranes (1) inspired her and triggered the assumption
that ribosomes tend to pack tightly under stressful conditions to maintain pools of active ribosomes
for the post-stressful period, the spring. Consequently, she started her crystallization attempts
using the ribosomes from bacteria that live under extreme conditions, such as the Dead Sea
bacteria, Haloarcula marismortui, which exist at high temperature and high salt concentrations;
Thermus thermophilus and Bacillus stearothermophilus (2), which live at elevated temperatures; as
well as the ultimate survivor, Deinococcus radiodurans, which withstands hot and cold temperatures
and survives hunger, dust, and irradiation.

Despite the growing skepticism of most of the scientific community and the slow progress of her
studies, she kept pushing this project as she observed minimal although continuous progress, which
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was hard to explain as she often developed unconventional scientific methodologies. Consequently,
almost two decades were required for reaching the goal: the determination of the ribosome’s high-
resolution structure. Among the methodological advances introduced by her group is cryo bio-
crystallography (3). This method minimizes the radiation damage of the ribosome crystals, which
are extremely sensitive to X-irradiation, and therefore became routine in biological crystallography
worldwide within a few months. She also visualized the nascent protein exit tunnel (4), a feature
that continued to be controversial until it was rediscovered almost a decade later by low-resolution
cryo–electron microscopy (cryo-EM) and identified in the high-resolution crystal structures.

It took 15 years to prove the feasibility of ribosomal crystallography. Then, a few leading
scientific groups joined her “running wagon” by repeating her procedures and even using the
same ribosomal sources that she identified. Hence, she was not anymore the only “crazy” or
“dreamer,” and some of her credibility was restored. Consequently, and with the progress of
high-resolution single-particle cryo-EM, more than two dozen structures of the ribosome have
recently been determined. Thus, the previously ridiculed studies, led by a “treeless” scientist (5),
became the center of active, fascinating, and relevant research. Ironically, owing to the dramatic
improvement of single-particle three-dimensional (3D) cryo-EM, which can now be performed
at high resolution, structural biology is undergoing a technical and conceptual revolution. Hence,
detailed structures, showing protein side chains and nucleic acid bases as well as their methylations,
can be obtained even from eukaryotic ribosomes (6) in a relatively short timeframe, because crystals
are not needed. In fact, ribosomes became the object of choice for this method, as their size and
density are ideal for detection by cryo-EM, and their overall structure, which has been determined
crystallographically, is being used as the starting model. Consequently, within her own history
as a structural biologist she has gone through a major transformation: from challenging the most
difficult objects, to investigating the most suitable entities.

Throughout she collaborated intensively with the Max Planck Institute for Molecular Genetics
in Berlin and directed two research groups with wonderful young researchers and students in two
locations: the Weizmann Institute of Science in Rehovot, Israel, and the Max Planck Research
Unit in the Deutsches Elektronen-Synchrotron (DESY) in Hamburg, Germany. The first German
student, Dr. Klaus von Bohlen, lost his life in an accident. The first Israeli student, Dr. Anat Bashan,
who is currently the senior scientist of the Ribosome Group at the Weizmann Institute, and Ms.
Donna Matzov, one of the most recent Israeli students, are coauthors of this article.

2. INTRODUCTION: PIONEERING STRUCTURAL STUDIES
ON CURRENT RIBOSOMAL ANTIBIOTICS

The increasing appearance of multidrug-resistant strains, together with the minimal (actually
negligible) number of new antibiotic drugs that are presently undergoing development and/or
clinical trials, is becoming a colossal health threat. Thus, it seems that we will soon revert back
to the pre-antibiotic era, during which diseases caused by parasites or by simple as well as severe
infections (such as tuberculosis, pneumonia, wounds, etc.) were almost untreatable and resulted
in frequent deaths.

Ribosomes are complex ribonucleoproteins that translate the genetic code into proteins in
all living cells. They comprise two structurally independent subunits of unequal sizes. When
functional, the two subunits associate to form the active ribosome, in which the small subunit
binds messenger RNAs (mRNAs) and provides three sites for decoding by the association of the
anticodons of the aminoacyl, peptidyl, and exiting transfer RNA (A-tRNA, P-tRNA, and E-tRNA)
molecules. The large subunit contains the ribosomal catalytic site, namely the peptidyl transferase
center (PTC), which catalyzes the formation of peptide bonds between the amino acid of the
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Figure 1
The structure of a bacterial ribosome. The small and large subunits are shown in light yellow and light pink,
respectively. Several functional sites (PTC, tunnel, decoding region) as well as the positions of the three
transfer RNA molecules are depicted. Abbreviations: A-tRNA, aminoacyl transfer RNA; E-tRNA, exiting
transfer RNA; LSU, large subunit; mRNA, messenger RNA; PTC, peptidyl transferase center; P-tRNA,
peptidyl transfer RNA; SSU, small subunit.

A-tRNA and the growing protein on P-tRNA, thereby acting as a polymerase. The nascent proteins
progress through a tunnel in the large subunit until exiting from the ribosome (Figure 1).

Sixteen years of increasingly available high-resolution structures of ribosomal particles from
various sources, including prokaryotes, archaea, and eukaryotes, have revolutionized our insights
into translation and their inhibition. Furthermore, owing to their key role in life, ribosomes are
targeted by many antimicrobial drugs. The high-resolution crystal structures of ribosomes, from
bacteria suitable to serve as pathogen models in complex with antibiotics and their semisynthetic
derivatives, provide matchless insights into common properties of antibiotic action (6, 7–51).
Thus, almost all of the structural elements involved in antibiotic binding and of the mechanisms
underlying the inhibition action of antimicrobial therapeutics have been identified.

Currently, almost all of the clinically useful ribosomal antibiotic therapeutics are derived from
natural compounds produced by microorganisms for inhibiting the growth of other bacteria types,
thus defending themselves. Many of these natural antibiotics that were shown to be medically useful
have undergone subsequent chemical modifications to improve their effectiveness. In addition to
the natural and semisynthetic substances, a few synthetic drugs are currently in use. Among these
are the oxazolidinone linezolid and several selective aminoglycoside variants capable of “fixing”
damaged genes during the translation process and thus may provide a general tool for the treatment
of genetic diseases caused by nonsense mutations (52, 53) as well as inhibit protein biosynthesis
in parasites such as Leishmania spp. (6, 54).

Resistance to antibiotics is a basic process for the survival of many microorganisms, regardless
of their exposure to modern clinical treatment and/or nutrition (55–59). Resistance is generally
acquired by molecular mechanisms, some of which, such as activation of cellular efflux pumps,
are common to almost all antibiotics (60). In addition, in some cases, such as ribosomal antibi-
otics, bacteria developed specific molecular pathways that cause resistance. Prominent processes
acquiring resistance include modifications of the antibiotic binding pockets by mutations (e.g.,
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macrolide resistance by modification of a component crucial for their binding, A2058G). Other
frequently used mechanisms include activation of key enzymatic processes (e.g., methylation of
the binding components of macrolide and aminoglycosides by methylases); enzymatic inactiva-
tion of the drug, such as the macrolide molecule by esterases (61); removal of the antibiotic drug
from its target (i.e., resistance to tetracycline by disturbing the ribosomal protection proteins)
(62–65); and modification of ribosomal proteins essential for ribosomal functionality at the PTC
and tunnel entrance, such as rpL3, which is associated with resistance to linezolid, tiamulin, and
anisomycin (66, 67), or disruption of the interactions between proteins that play key roles in protein
biosynthesis (68).

Cross-resistance occurs when each of a chemically heterogeneous group of antibiotics (e.g.,
macrolides, lincosamides, streptogramins B, and ketolides, termed MLSBK) that bind to ribosomes
in close proximity trigger resistance to all other members of the group. Importantly, in several
cases resistant mechanisms are involved in cellular regulation, such as translation arrest, that
can be triggered by the activation of antibiotic-resistance genes (69). Also, alterations in the
locations of ribosomal components may cause resistance by reshaping antibiotic binding pockets
or their environments (e.g., 69–72). Importantly, macrolide binding seems to be involved in cellular
processes. Thus, stalling by specific nascent peptides, a cellular mechanism used for regulation of
expression of several bacterial and eukaryotic genes, is sensitive to signals connected with macrolide
binding (73–83).

Staphylococcus aureus possess capabilities to respond rapidly to many antibiotics by acquiring
resistance. Recent additions to the long list of its resistant mutants have been described in several
review articles (84–86). The methicillin-resistant S. aureus (MRSA) strain is considered to be one
of the most common and problematic bacteria associated with increasing antimicrobial resistance.
Consequently, continuous efforts are required to discover lead compounds for antistaphylococ-
cal therapy (87). Popular among these efforts are attempts to create libraries of potential drugs
by mining underexplored microbial niches or designing chemical probes for improving known
molecular scaffolds. Hence, most clinically used antibiotics originate from a small set of molecular
scaffolds (88–99).

Extensive efforts are also being made for the development of practical systems for production
of new antibiotics. An interesting example is the fully synthetic platform for the discovery and
manufacture of new macrolide antibiotics by the convergent assembly of simple chemical building
blocks, which has already yielded more than 300 new macrolide antibiotic candidates, some of
which showed antibiotic activity even in strains resistant to commonly used macrolides (90). Like-
wise, extensive efforts are being made for establishing molecular genetic tools for manipulation
of biosynthetic pathways that are expected to yield state-of-the-art targeted methods for under-
standing and manipulating antibiotic binding sites (91–92) and for exploiting different segments,
such as polyketides in conjugates with peptides (e.g., bactobolin) (49).

A crucial environmental issue, which is linked to antibiotic resistance, results from the chemical
nature of the molecular scaffolds of most ribosomal antibiotics, which are composed of organic
metabolites that cannot be fully digested by humans or animals. These nondigestible, rather toxic
compounds are also nonbiodegradable and thus contaminate the environment (93). Furthermore,
by penetrating into agricultural irrigation systems (e.g., milk via the cows that eat the grass),
these compounds are increasingly being consumed by humans and thereby spreading antibiotic
resistance (94).

As most of the studies on ribosomal antimicrobial drugs (e.g., macrolides, ketolides, pleuoro-
mutilins, streptogramins, lincosamides, aminoglycosides, orthosomycins, etc.) and the resistance
to them have been critically described in several recent comprehensive reviews (84, 89, 95–103),
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in this article we relate mainly to species specificity in susceptibility to antimicrobial drugs of
multidrug-resistant bacteria alongside vicious parasites. We elaborate on directions that could be
suitable for the design and the creation of future antimicrobial therapeutics with better distinc-
tion between pathogens and useful bacterial species in the microbiome, on ecological aspects of
antibiotic resistance, and on the pros and cons of species-specific drugs. We also underline our
views on future experimental methods that should be suitable for future exploitation.

3. RECENT STUDIES FOCUSING ON RIBOSOMES FROM PATHOGENS

Careful interpretations of the structures of the above discussed complexes alongside the recently
determined structures of ribosomes from pathogenic bacteria and the ongoing structural studies
on ribosomes from resistant strains have led to a deeper understanding of the main problems in
contemporary medicine. Thus, the high-resolution structures of ribosomes shed light on their
specific structural elements and on the mechanisms underlying the action of the antimicrobial
therapeutics that paralyze them.

Recent years have been very fruitful in terms of research on the structure and function of
ribosomes as well as on their inhibitors. However, much less was done in terms of manufacturing
new clinically useful antibiotic drugs. Here we describe some of the current studies, their outcomes,
and the lessons learned from crystal structures of the large ribosomal subunit from the problematic
pathogen S. aureus and its complexes with various antibiotics.

3.1. Increasing the Potency of Existing Antibiotics

The pleuoromutilins, a family of antibiotics that bind to the PTC, include several potent com-
pounds, among them retapamulin, which was developed for treatment of skin infections and
demonstrates activity against clinical isolates Streptococcus pyogenes, Streptococcus agalactiae, β-
hemolytic streptococci, viridans streptococci, S. aureus, coagulase-negative staphylococci (includ-
ing Staphylococcus epidermidis), Propionibacterium spp. (including Propionibacterium acnes), Prevotella
spp., Porphyromonas spp., and Fusobacterium spp. (104). New, more potent lead molecules, belong-
ing to a series of pleuoromutilins, have been recently produced by Nabriva Therapeutics (47).
Structural studies have showed that the increase in the antibiotic potency of BC-3205 by a fac-
tor of 16 was achieved by the addition of a single hydrogen bond to the interactions between
the pleuoromutilins with the PTC (47, 104). Moreover, recent crystallographic and biochemical
studies indicated that a more sophisticated chemical design yielded a potential antibiotic drug with
even higher potency (105).

3.2. Better Discrimination and Specificity

Comparison between the structures of complexes of erythromycin with the large ribosomal subunit
from the nonpathogenic bacteria D. radiodurans and T. thermophilus and those of the pathogens
Escherichia coli and S. aureus indicated clearly available free space adjacent to several antibiotic
binding sites. Among them is a reasonable large space at the rims of the erythromycin binding
pockets of both pathogenic bacteria, due to the length of the chain of protein rpL32 of the
S. aureus and E. coli ribosome (shorter compared with its length in the other ribosomes) (47, 103).
This special arrangement provides space for extending erythromycin in a fashion that should allow
binding specifically to the pathogenic species studied so far, namely S. aureus and E. coli, and not
to many nonpathogens, represented by D. radiodurans and T. thermophilus (Figure 2).
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Figure 2
Erythromycin (dark red ) binding pocket and its proximity. Protein uL32 is shorter in the pathogens
Staphylococcus aureus (orange) and Escherichia coli ( purple) compared with its length in the ribosomes of the
nonpathogenic bacteria Deinococcus radiodurans ( green) and Thermus thermophilus (teal ). Hence, an extra
region is available for extension design only in the ribosomes from those pathogens. Light pink covers the
total space for the future design of extended erythromycin. Figure 2 modified from Reference 47.

3.3. Meaningful Core Alterations and Binding Pocket Extensions Benefiting
from Multiple Binding Sites

The findings described above encouraged revisiting previous studies on tetracycline binding to
the small ribosomal subunit that revealed six binding sites (Figure 3) of various occupancies (14).
Among those, actual interference of protein biosynthesis could be assigned to only two sites with
the highest occupancies (namely the strongest binding). One of these sites is located in the vicinity
of the decoding center, and the second is at a strategic location for the mobility required for
ribosomal functionality. The other sites seem to be somewhat remote from any ribosomal centers
of action but in positions that in principle can be chemically connected to the ribosomal functional
sites while increasing their binding strength. As accurate structural information is available, the
chemical nature of the extensions, as well as the alterations of the tetracycline cores required for
increasing their binding strengths, can also be optimized in terms of toxicity and degradability,
benefiting from considerations similar to those shown to be suitable for the peripheral novel sites
(see below). It should be mentioned that multiple binding sites were also observed recently in
other systems. An appropriate example is the broad-spectrum antibacterial activity of negamycin
that interferes with decoding and translocation by simultaneous interaction with ribosomal RNA
(rRNA) and transfer RNA (tRNA) (44, 45).

3.4. Novel Potential Binding Sites

Potential antibiotic binding sites, of diverse nature, have been identified. Some of them are com-
mon to eubacteria, others seem to be species specific. Many are located in the periphery, whereas
a few are in the ribosomal core.

The binding sites and the modes of action of most known antibiotics are common to all eu-
bacteria, including those comprising the microbiome (106). Thus, an unintentional consequence
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Figure 3
The six tetracycline binding pockets in the small subunit of Thermus thermophilus (17). The main site, at the
decoding center (to which there is resistance), is shown in blue. Sites 4 and 6, which are distal to the main
active site (14), can in principle be extended toward the decoding center, utilizing channels within the region
covered by light blue, approximately along the black arrows.

of the use of currently preferred broad-spectrum antibiotics is the alteration of the delicate com-
position of the microbiome, which may cause several symptoms or disease, such as diabetics cases
linked to the usage of antibiotics. Furthermore, it is conceivable that responsiveness to the species-
specific differences in drug action should minimize uncontrolled microbiome alterations. Indeed,
careful comparisons between the structures of ribosomes from the genuine pathogen, S. aureus
(47), and from nonpathogenic species, identified unique structural motifs that may be exploited
for the design of innovative species-specific antibiotics (47).

Considerable differences between the 3D structures of ribosomes from nonpathogenic bacteria
and that of S. aureus were detected. These differences are located mainly, but not exclusively, within
the particle’s periphery, particularly in stem loops of rRNA helices (Figure 4). Some of these
features seem to be involved in various ribosomal interactions with diverse cellular components.
Hence, these extended and exposed rRNA helices can, in principle, be exploited for the design of
species-specific potent antibiotics.

In fact, surface-exposed rRNA features that seem to be involved in ribosomal functions have
also been identified in a model system, namely the ribosome of D. radiodurans (107). Most of
these regions contain unpaired single helices or stem loops, a feature that should be exploited for
binding potential base-pairing donors by antisense technology. Preliminary studies showed that
ribosomal function can be hampered in vitro by attaching compounds such as complementary
DNA to the exposed rRNA regions. Thus, in vitro targeting of 16 among the 25 such exposed
rRNA regions hampered protein biosynthesis.

Notably, oligonucleotides were used as ribosomal inhibitors and as tools for structural and
functional studies, even before the 3D structures of the ribosomes were determined. Short DNA
oligonucleotides were used as in vitro antisense DNA to probe rRNA accessibility (108) and
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Figure 4
Part of the backbone of the large ribosomal subunit of Staphylococcus aureus ( gray). The ribosomal RNA
regions with fold variability compared with all other known structures on the large subunit surface are shown
in different colors. The light green crescent adjacent to helix H68 in S. aureus (shown in orange) symbolizes a
possible location for antisense technology.

to locate specific functional regions (109). Furthermore, antisense peptide nucleic acid (PNA)
conjugates were used for sensitization of MRSA and methicillin-resistant Staphylococcus pseudin-
termedius, indicating that even antibiotic-resistance species can be targeted by antisense agents
(110).

The oligonucleotides that were used as inhibitors can potentially serve as bases for future
antibacterial drugs alone and in conjunction with other components, such as the DNA analog
PNA, amino acids, or short peptides. Examples are those used recently to target Helix 69
(111), the first 16 residues of the proline-rich antimicrobial peptide mammalian Bac7 (112), the
thiazolyl peptide antibiotics (113), and the small peptides that were shown to inhibit translation
in prokaryotes (75, 114).

In short, some of the exposed rRNA chains and the species-specific protein loop regions
(47) can become binding sites to a new generation of antibiotics, built of sophisticated antisense
compounds designed from molecules containing various combinations of organic molecules, such
as nucleic acids, PNA, short peptides, aliphatic chain, etc. These can be optimized in terms of their
chemical properties, length, toxicity, and degradability; hence, they should cause very little eco-
logical or environmental contamination, which contributes to the increase of antibiotic resistance.

3.5. CTC, a Multidomain Protein Containing a Domain Typical to Many
Pathogenic Bacteria

Avilamycin (avi) and evernimicin (evn), of the orthosomycins family, were discovered in the 1960s
and are active against gram-positive bacteria, including vancomycin-resistant enterococci, MRSA,
and penicillin-resistant pneumococci (115, 116). Both were shown by biochemical methods to bind
to a unique site at the large subunit and to affect translation (117, 118).

Two recent structural studies shed more light on their mechanism of inhibitory action. One was
performed by 3D cryo-EM using two complexes of E. coli ribosome each with one of them (119),
which indicated binding to the large ribosomal subunit at the entrance of the A-site tRNA corridor.
The second (50) was performed by X-ray crystallography at somewhat higher resolution and
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Figure 5
Avilamycin (avi) and evernimicin (evn) binding sites to the 50S ribosomal subunit of Deinococcus radiodurans
and their interactions with protein CTC. (a) The domain structures of the three domains of CTC and their
binding sites are shown at the entrance to the A-site transfer RNA (tRNA) accommodation corridor. (b) The
detailed three-dimensional structure of the environment of CTC is shown. (c) An enlarged view showing the
actual interactions of avi (red ) and evn ( green) with CTC domain 2.

showed a similar binding location at higher details, thus revealing a network of additional, crucial
interactions with a ribosomal component, namely the CTC middle domain. This domain is a major
component in many gram-positive pathogenic bacteria [e.g., S. aureus (47), Enterococcus faecium
(120), Enterococcus faecalis (121), and Streptococcus pneumoniae (122)] but does not exist in E. coli.

Protein CTC is of particular interest because of its various molecular versions (see below
and in Figure 5) and because it fills a gap between the central protuberance (CP) and the uL1
stalk, which is located adjacent to the A-site tRNA entrance corridor (12, 123). The molecular
compositions of the CTC protein (named after a general shock protein), as in D. radiodurans,
exhibit evolutionary adaptation to environmental conditions. In its full-size version, 253 amino
acids, it comprises three globular domains (12) (Figure 5). The C-terminal domain (also known as
domain 1) is homologous to protein L25 in E. coli, namely the 5S rRNA-binding protein. Domains
1 + 2 (namely the C-terminal + the middle domains) are homologous to protein TL5 in the T.
thermophilus ribosome (124). Domain 3 (the N-terminal domain) is bound to the middle domain
(domain 2) by a single strand, presumably facilitating the extreme (unusual) flexibility in its position
within the ribosome, as indicated by the lower quality of its electron density map. This flexibility
allows it to swing out of the ribosome upon binding of A-site tRNA (17) or of the orthosomycins
antibiotics that occupy its space. Thus, the relative orientation of the N-terminal and the middle
CTC domains differs from that determined for the two domains of TL5 in isolation. The third
domain of CTC, the C-terminal domain, bears some resemblance to the structural motif seen in
some ribosomal proteins.
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Domain 1 of CTC is located on the solvent side, at the rim of the large ribosomal subunit,
and thus may protect the intersubunit bridge B1a. The middle domain fills the space between the
5S rRNA and the uL11 arm and interacts with H38, the helix that forms the intersubunit bridge
B1a. These interactions and the partial wrapping of the large subunit CP are likely to provide
the additional stability that pathogens, as well as thermopiles, require to function well at higher
temperatures (Figure 5). The inherent flexibility of domain 3 may indicate that it serves as an
A-site regulator and also somewhat influences the progression of the mRNA. Its interactions with
the A-finger (A-site tRNA corridor), its capability to manipulate the binding of the A-site tRNA
corridor, and the enhanced stability of the CP seem to provide a mechanism for survival under
extremely stressful conditions, including hunger or minimal resources (123).

The middle domain, which frequently exists in pathogens and other gram-positive bacteria
but not in common eubacteria, is extensively interacting with antibiotics from the orthosomycins
family, namely avi and evn, which block the A-site tRNA-binding corridor and prevent IF2 from
binding to the large ribosomal subunit. The various unique and pathogen-specific interactions of
this feature (namely, with bridge B1a, the CP, IF2, and A-site tRNA-binding sites) may provide
a basis for future targets for innovative species-specific antibiotics. Thus, the pathogenic-specific
structural motifs of protein CTC seem to be potential antibiotic-binding sites in several pathogens.

4. CONCLUSIONS AND THOUGHTS ABOUT THE FUTURE

As can be concluded from the above observations, resistance to antibiotics, which is currently a
severe global medical problem, may be partially dealt with by the implication of new concepts,
such as biodegradable compounds; by exploring unconventional research paths; and by searching
for compounds (e.g., advanced antisense) that can paralyze the ribosome by binding to peripheral
ribosomal target sites.

Among the directions that may yield new strategies are (a) focusing on species-specific an-
tibiotics (despite the economic limitations of this narrow-spectrum suggestion) and (b) benefiting
from presently known or future discoveries of multiple binding sites that should lead to the cre-
ation of new relevant sites by chemical extension of seemingly insignificant, partially occupied
binding sites. As no genes that may modify the above-mentioned unique regions have currently
been identified, resistance is expected to appear very slowly.

Additional and less conventional, albeit rather promising, approaches that may yield some relief
in the seemingly hopeless resistance scene are based on exploiting biofilms (125); on data emerging
from genomic studies, like genome-wide ribosome profiling (126); on whole-genome analysis of
mutations leading to resistance to specific antibiotics (127); on whole-genome sequencing in
search for indications of in vivo evolution of multidrug resistance (128); and on the finding of
abundant ribo-regulation switches of antibiotic-responsive features that control resistance genes
in pathogens and in the microbiome (129).
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