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Abstract

Controlled assembly and disassembly of multi-protein complexes is central
to cellular signaling. Proteins of the widespread and functionally diverse
HORMA family nucleate assembly of signaling complexes by binding short
peptide motifs through a distinctive safety-belt mechanism. HORMA pro-
teins are now understood as key signaling proteins across kingdoms, serving
as infection sensors in a bacterial immune system and playing central roles
in eukaryotic cell cycle, genome stability, sexual reproduction, and cellular
homeostasis pathways. Here, we describe how HORMA proteins’ unique
ability to adopt multiple conformational states underlies their functions in
these diverse contexts.We also outline how a dedicated AAA+ATPase regu-
lator, Pch2/TRIP13, manipulates HORMA proteins’ conformational states
to activate or inactivate signaling in different cellular contexts. The emer-
gence of Pch2/TRIP13 as a lynchpin for HORMA protein action in multi-
ple genome-maintenance pathways accounts for its frequent misregulation
in human cancers and highlights TRIP13 as a novel therapeutic target.
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HORMA: a conserved
signaling domain
named for three
proteins (Hop1, Rev7,
and Mad2) originally
observed to share this
domain

Spindle assembly
checkpoint (SAC):
a checkpoint pathway
that produces the
mitotic checkpoint
complex at unattached
kinetochores to delay
mitotic exit

AAA+ ATPase:
a broad family of
hexameric motor
proteins (ATPases
associated with diverse
cellular activities)
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1. INTRODUCTION

The HORMA domain was first identified in 1998 by Aravind and Koonin (1), who showed that
three diverged proteins in Saccharomyces cerevisiae share a common fold: themeiotic recombination
regulator Hop1, the DNA repair factor Rev7, and the spindle assembly checkpoint (SAC) protein
Mad2 (the nameHORMA comes from the initial letters of Hop1,Rev7, andMad2). Between 2000
and 2008, foundational studies onMad2 revealed the HORMA domain’s unique capacity to adopt
two distinct folded states (Figure 1a) and showed how controlled assembly of Mad2-containing
complexes underlies SAC signaling (2–4). This paradigm has informed the functional analysis of
other HORMA proteins, including recently discovered bacterial family members.The developing
picture of HORMA domain function is that these proteins default to an inactive open conforma-
tion that is poised for conversion to an active, partner-bound closed conformation; the resulting
stable HORMA–partner complex initiates signaling, which is inactivated only upon disassembly
of the complex by a dedicated ATPase remodeler protein.

In this review, we begin by outlining the current understanding of HORMA protein evolution,
with an ancestral bacterial immunity factor giving rise to a diverse set of eukaryotic signaling pro-
teins. We next describe recent progress on diverse HORMA proteins that reveals striking mech-
anistic parallels among family members acting in distinct biological contexts. We pay particular
attention to the AAA+ ATPase remodeler Pch2/TRIP13, which is now appreciated as a universal
regulator of HORMA domains’ conformational equilibrium and partner-protein binding. Finally,
we discuss how the diverse functions of Pch2/TRIP13 in HORMA protein regulation complicate,
but also clarify, our understanding of its contributions to human cancer.

2. EVOLUTIONARY HISTORY OF THE HORMA DOMAIN

While the HORMA domain was first defined by sequence similarities between Hop1, Rev7, and
Mad2 (1), the full complement of eukaryotic HORMA proteins also includes a second SAC pro-
tein, p31comet (5), and two autophagy proteins, Atg13 and Atg101 (6–9) (Figure 1b,Supplemental
Table 1). In 2015, a comparative genomics study in bacteria—led by HORMA domain codiscov-
erer L. Aravind (10)—reported putative HORMA domain proteins outside eukaryotes, encoded
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Figure 1

Structure, function, and evolution of HORMA domain proteins. (a, left) Schematic of the HORMA domain with the flexible N-terminal
region colored blue and the C-terminal safety belt colored red. (Right) Schematic views of the two folded states of the HORMA domain.
In the closed (C) conformation, the safety belt is wrapped around a bound closure motif peptide (yellow). In the open (O) conformation,
the safety belt binds and blocks access to the closure motif binding site. (b, top) Evolutionary tree of HORMA domain proteins (adapted
from Reference 26). Bacterial HORMA proteins fall into two families, HORMA1 and HORMA2 (the diverged HORMA3 family is not
shown). Eukaryotic HORMA proteins form a monophyletic group within the HORMA2 family. (Middle) Structures of HORMA
domain proteins in the closed conformation (with bound closure motifs) or the open conformation, colored as in panel a. Noncanonical
structural states (open Rev7 and closed p31comet) are indicated with asterisks. The Protein Data Bank identifiers for these structures are
as follows: HORMA1, 6U7B (11); closed HORMA2–peptide 1, 6P8S (11); open HORMA2, 6P8O (11); closed Mad2–MBP1 peptide,
2V64 (27); open Mad2, 2V64 (27); closed Rev7–Rev3, 3ABE (142); open Rev7, 6KTO (29); closed meiotic HORMAD (HIM-3–HTP-3
motif #4), 4TZJ (97); Atg13, 5XV4 (28); Atg101, 5XV4 (28) –p31comet, 2QYF (5). (Bottom) Known closure motif–containing binding
partners for each HORMA protein family, dimerization binding partners (see Figure 2b), and current knowledge of each proteins’
regulation by Pch2/TRIP13. See Supplemental Table 1 for a catalog of HORMA domain proteins in eukaryotic model organisms.
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Closure motif: a short
protein sequence that
binds a closed
HORMA protein; also
called MIM (Mad2-
binding motif ) or
RBM (Rev7-binding
motif )

Mitotic checkpoint
complex (MCC):
a multiprotein
complex generated at
unattached
kinetochores that
binds and inhibits the
anaphase promoting
complex/cyclosome

Shieldin:
a multi-protein
complex that binds
broken DNA ends and
inhibits end resection,
thereby inhibiting
homologous
recombination and
promoting
nonhomologous end
joining

Kinetochore:
a megadalton-scale
protein complex that
mediates attachment
of mitotic
chromosomes to
microtubules and
signals attachment
status through the
spindle assembly
checkpoint

in bacterial operons of unknown function. These proteins were recently shown to be bona
fide HORMA proteins that play a key signaling role in a bacterial antiviral immunity pathway
(11). Moreover, these bacterial operons encode an ortholog of the AAA+ ATPase remodeler
Pch2/TRIP13, which in eukaryotes regulates signaling by multiple families of HORMA proteins
(12–25). Phylogenetic analysis shows that eukaryotic HORMA and Pch2/TRIP13 proteins likely
descended from their bacterial relatives (26), cementing the idea that HORMA proteins and
Pch2/TRIP13 constitute an evolutionarily conserved functional module (Figure 1b). Expansion
of the HORMA family in eukaryotes subsequently enabled these proteins’ integration into key
chromosome maintenance, cell cycle, and homeostatic signaling pathways.

3. CONSERVED MECHANISMS OF HORMA DOMAIN SIGNALING

3.1. Conformational Conversion and Closure Motif Binding

The HORMA domain is a compact domain of ∼200 amino acids whose core consists of a stable
three-stranded β-sheet backed by three α-helices. The two edges of the core β-sheet serve as
interaction sites for binding partners and for the domain’s flexible N- and C-terminal regions. In
the partner-bound closed conformation, a 6–10-amino-acid region of a binding partner, termed
a closure motif, forms a short β-strand and binds along the C-terminal edge of the HORMA
domain’s core β-sheet. This interaction is stabilized when the flexible C terminus of the HORMA
domain, termed the safety belt, wraps around the bound closure motif and associates with the
opposite (N-terminal) edge of the core β-sheet (Figure 2a). A HORMA domain–closure motif
complex is therefore topologically linked, such that disassembly requires at least partial unfolding
of the HORMA domain.

In nearly all HORMA-mediated signaling pathways, the closed HORMA domain–closure mo-
tif complex serves as the nucleus for assembly of larger signaling complexes like the mitotic check-
point complex (MCC) (nucleated by Mad2–Cdc20) or the shieldin complex (nucleated by Rev7–
SHLD3). A critical mechanistic puzzle, however, has been how these complexes initially assem-
ble. Because of their topologically linked structure, HORMA domain–closure motif complexes
cannot simply form through binding of a closure motif to a closed HORMA domain. Rather,
assembly requires that the HORMA domain adopt what we term an unbuckled state, in which
the C-terminal safety belt is disengaged from the HORMA domain core to allow access to the
closure motif binding site (Figure 2a). This unique requirement enables cells to tightly regu-
late assembly of HORMA domain–closure motif complexes in order to achieve highly specific
signaling. In addition to the canonical closed conformation and the transient, partially unfolded
unbuckled state, some HORMA proteins can also adopt a third, semistable conformation termed
open. In this state, the C-terminal safety belt is docked against the closure motif binding site,
and the HORMA domain N terminus—which is disordered in the closed conformation—docks
against and stabilizes the N-terminal edge of the core β-sheet. In the best-understood HORMA
protein, Mad2, the open state is critical for spindle checkpoint signaling: Open Mad2 (O-Mad2)
is recruited to kinetochores and then stimulated to undergo conformational conversion, first to
an unbuckled transition state and finally to the stable closed conformation bound to a closure
motif in its binding partner Cdc20. Thus, HORMA domain signaling revolves around a complex
energetic equilibrium between open, unbuckled, and closed conformations that is manipulated by
cells to achieve signal activation and inactivation in different contexts (Figure 2a).

3.2. HORMA Domain Dimerization

Another shared feature of HORMA domains is their ability to form homo- and heterodimers
through a canonical interface composed of the N-terminal edge of the domain’s β-sheet and a
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neighboring α-helix (helix αC) (Figure 2b). This interface has not been observed in bacterial
HORMA proteins but exists in nearly all eukaryotic HORMA proteins, including Mad2 (27),
p31comet (5), the autophagy proteins Atg13 and Atg101 (7, 9, 28), and with some modifications,
Rev7 (29). In all cases, the structure of theHORMAdomain dimerization surface changes between
these proteins’ open and closed conformations, and dimer formation is therefore conformation
specific. This property enables HORMA domain dimerization to serve as a conformational
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Figure 2 (Figure appears on preceding page)

Mechanisms of HORMA domain signaling. (a) Conformational states and conformational conversion of Mad2. Three conformations
are differentiated by the positions of the flexible N terminus (blue) and the C-terminal safety belt (red) with respect to the core β-sheet
(gray). A closure motif (yellow) can bind concomitantly with a transition from the unbuckled (U) to the closed (C) conformation. Open
and closed conformers of Mad2 [PDB ID: 2V64 (27)] are shown on either side. A close-up of C-Mad2 shows the conserved hydrogen
bonding network linking the safety belt β-strands β8′ and β8′′ to helix αA. (Bottom center) Relative thermodynamic stability of the open,
unbuckled, and closed conformations. The closed conformation, lacking a bound closure motif (−CM), is less stable than the closure
motif-bound form (+CM). (b) Overall and close-up views of the C-Mad2–O-Mad2 dimer [PDB ID: 2V64 (27)] with C-Mad2 colored
blue, the MBP1 closure motif peptide yellow, and O-Mad2 gray. Shown as sticks are two Mad2 residues, R133 and Q134, whose
mutation disrupts Mad2 dimer formation. Dimerization introduces strain in the O-Mad2 protomer, lowering the activation energy for
conformational conversion to the closed state. (c) Structure of the C-Mad2–p31comet dimer [PDB ID: 2QYF (5)] with C-Mad2 colored
blue, the MBP1 closure motif peptide yellow, and p31comet orange. (d) Schematic of Pch2/TRIP13-mediated HORMA domain
conformational conversion [adapted from (23)]. Pch2/TRIP13 binds the disordered N terminus of a closed HORMA domain and
unfolds a portion of helix αA, disrupting its interactions with the safety belt β-strands. Destabilization and disengagement of the safety
belt from the HORMA domain core leads to closure motif release. Conformational conversion is completed when the HORMA
domain relaxes into the open conformation. (e) Cryo-electron microscopy structure of the Homo sapiens TRIP13 hexamer (white) with
bound ATP-γS (yellow) bound to its substrate complex, p31comet–Mad2–Cdc20 closure motif (orange, blue, and yellow, respectively) [PDB
ID: 6F0X (33)]. The flexible N terminus of C-Mad2 drapes into the TRIP13 hexamer pore. See Supplemental Figure 1 for more
details on Pch2/TRIP13 substrate interactions. Abbreviations: C, closed; CM, closure motif; O, open; PDB ID, Protein Data Bank
identifier; U, unbuckled.

readout, providing a way for other binding partners to sense and respond to conformational
changes mediated by closure motif binding.

While the overall architecture of HORMA domain dimers is conserved across families, the
roles of these dimers vary. Both Rev7 homodimers and Atg13–Atg101 heterodimers appear to
serve as platforms for assembly of larger signaling complexes (see Section 4.5). In Mad2, how-
ever, dimerization plays two key roles to drive HORMA domain conformational changes and the
assembly and disassembly of Mad2-containing signaling complexes. Specifically, dimerization of
O-Mad2 with a closed Mad2 (C-Mad2)–Mad1 complex at unattached kinetochores introduces
strain within the O-Mad2 protomer, lowering the activation energy for an open-to-closed con-
formational change that is coupled to closure motif binding (Figures 2a and 4) (30). p31comet uses
an equivalent interaction to recognize C-Mad2 and recruit it to the Pch2/TRIP13 ATPase for
closed-to-open conformational conversion (Figure 2b) (5). Thus, HORMA domain dimerization
is critical for both assembly and disassembly of Mad2-containing signaling complexes, in addition
to serving as a general mode of conformation-specific HORMA domain assembly.

3.3. HORMA Domain Remodeling by Pch2/TRIP13

Assembly of HORMA domain–closure motif complexes is kinetically slow but ultimately energet-
ically favorable (Figure 2a). Disassembly of these complexes, however, generally requires energy
input to partially unfold the HORMA domain and release the bound closure motif.Disassembly is
mediated by Pch2/TRIP13, a member of the AAA+ATPase remodeler superfamily (Figure 2d,e).
AAA+ ATPase remodelers function as ATP-powered pumps, with ATP hydrolysis driving coor-
dinated conformational changes in the ring-shaped homohexameric complex that pull substrate
proteins through a central pore to unfold them (31, 32). Whereas most AAA+ ATPase remodel-
ers processively unfold their substrates from one terminus to the other, Pch2/TRIP13 recognizes
the disordered N terminus of its closed HORMA domain substrate and unfolds only a portion
of its N-terminal α-helix before disengaging (19, 23, 33). The molecular basis for disengagement
after only partial HORMA unfolding is not known but may involve the inherent instability of
the Pch2/TRIP13 hexamer and/or higher stability of the HORMA domain core relative to its
N-terminal region. Curiously, bacterial Trip13 appears exquisitely adapted to partial HORMA
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Meiotic HORMAD:
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and related HORMA
domain proteins that
function in meiotic
recombination

CBASS: a newly
described bacterial
antiviral immunity
pathway (cyclic
oligonucleotide-based
antiphage signaling
system)

unfolding: Bacterial HORMA1 proteins have a conserved pattern of serine/threonine residues in
their N-termini, and these residues are specifically engaged by conserved histidine residues in the
pore loops of their cognate Trip13 enzymes (11). In all cases, partial unfolding of the HORMA
protein’s N-terminal α-helix in turn destabilizes the C-terminal safety belt, driving the protein
into an unbuckled conformation while leaving the HORMA domain core intact (Figure 2d) (34).
In Mad2, and potentially other HORMA domain proteins, the resulting unbuckled intermediate
then relaxes into the open conformation, resetting the pathway.

While the overall mechanism of HORMA–closure motif complex disassembly by Pch2/
TRIP13 is conserved from bacteria to eukaryotes, the mode of substrate recognition varies
(Supplemental Figure 1). In bacteria,HORMAprotein recognition is mediated by a biosynthetic
enzyme that bindsTrip13 and positions theHORMAprotein for unfolding (11). In eukaryotes, the
HORMA protein p31comet serves as a Pch2/TRIP13 adapter for several HORMA proteins, dimer-
izing withMad2, Rev7, or a meiotic HORMAD protein in the closed conformation and recruiting
it to Pch2/TRIP13 (Figure 2e; for details, see Sections 4.2–4.4) (19, 23, 33, 35). In all cases, the
adapter proteins bind the top surface of the Pch2/TRIP13 ATPase domain directly, rather than
binding a family-specific N-terminal domain as with most other AAA+ ATPases (Supplemental
Figure 1).

4. BIOLOGICAL ROLES OF HORMA PROTEINS

To date, HORMA proteins have been implicated in mitotic regulation, meiotic recombination
control, DNA damage signaling, and autophagy in eukaryotes and in antiviral immunity in
prokaryotes. Mechanistic parallels in HORMA-based signaling, as well as specialization in spe-
cific contexts, are emerging from efforts targeted at understanding howHORMA-based signaling
acts in these diverse biological functions.

4.1. Bacterial Antiviral Immunity

While HORMA proteins and Pch2/TRIP13 are best understood in eukaryotic signaling, all eu-
karyotic HORMA proteins probably descended from a primordial bacterial protein that pro-
tects against infection by viruses (bacteriophages). Recent bioinformatics analyses have revealed
a startling number and variety of bacterial immunity systems in addition to the well-known
restriction-modification and CRISPR/Cas (clustered regularly interspaced short palindromic
repeats/CRISPR-associated protein) systems (36, 37). In 2015, one such analysis identified a family
of biosynthetic enzymes related to eukaryotic cyclic GMP–AMP synthase (cGAS), a mammalian
innate-immune sensor that synthesizes a cyclic GMP–AMP second messenger molecule (10, 38,
39). Later work showed that these enzymes function in bacteriophage immunity: Phage infection
is thought to activate synthesis of a cyclic di- or trinucleotide second messenger molecule, which
in turn activates an effector protein encoded in the same operon that kills the cell to curtail vi-
ral replication. Overall, ∼10% of bacteria encode such a system, now collectively termed CBASS
(cyclic oligonucleotide-based antiphage signaling system) (11, 40, 41).

Approximately 10% of CBASS operons encode one or two HORMA proteins and a TRIP13-
like ATPase alongside the cGAS-related enzyme and effector protein (10, 42). In these systems, the
HORMA proteins sense viral infection by binding a closure motif sequence in an unknown pro-
tein, either phage-derived or induced upon phage infection.The resultingHORMA–closuremotif
complex binds to its cognate cGAS-like enzyme, activating secondmessenger synthesis (Figure 3)
(11, 43). HORMA-encoding CBASS systems fall into two classes, one of which encodes a sin-
gle HORMA protein (termed HORMA1) and the other of which encodes two (HORMA2 and
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Roles of bacterial HORMA proteins in antiviral immunity. Functional schematic of a bacterial CBASS
antiviral immunity pathway, with infection sensing through binding of a HORMA protein to an as-yet
unidentified infection signal (yellow), followed by binding and activation of a cGAS-related enzyme to
produce a nucleotide-based second messenger molecule. Second messenger production activates an effector
enzyme to mediate immunity through a programmed-cell-death abortive infection mechanism (11, 40, 43).
The role of Trip13 is unknown but may be to disassemble active signaling complexes (as pictured) or to
maintain HORMA proteins in an open state poised for infection sensing (not shown) (11). Abbreviations: C,
closed; CBASS, cyclic oligonucleotide-based antiphage signaling system; cGAS, cyclic GMP–AMP synthase;
O, open.

HORMA3). In this second class, HORMA2 binds closure motif peptides and activates its cognate
cGAS-like enzyme, while the role of HORMA3 is unknown (11). Phylogenetic analysis shows
that eukaryotic HORMA and Pch2/TRIP13 proteins likely descended from bacterial HORMA2
proteins and their cognate Trip13 ATPases (26).

Many key questions remain with respect to the role of HORMA proteins and Trip13 in bac-
terial CBASS systems. First, what is the source of the activating closure motif? The HORMA
proteins may directly recognize a viral protein, but such a mechanism would limit each CBASS
system’s response to a narrow class of bacteriophages. Another possibility is that theHORMApro-
teins piggyback on existing stress responses in their host cells, recognizing a host protein that is
induced upon viral infection or sensing of a physiological change in the infected cell. Another open
question concerns what role Trip13 plays in viral immunity. CBASS systems encoding HORMA
proteins always also encode a Trip13-like ATPase, yet this protein is not required for antiviral im-
munity in a laboratory setting (11). In vitro, bacterial Trip13 recognizes the activated HORMA–
cGAS complex and suppresses secondmessenger synthesis, likely through disassembly of the com-
plex (Figure 3) (11). In cells, Trip13 may be required to maintain its cognate HORMA protein in
an open conformation, poised to bind a closure motif and activate antiviral signaling. Related to
this idea,Trip13 may also suppress spontaneous activation of CBASS signaling outside the context
of an infection, thereby minimizing the toxicity of this cell-killing, or abortive infection, system.
Ultimately, as described in Sections 4.2–4.4 for eukaryotic HORMA signaling pathways, optimal
function of HORMA-containing CBASS systems likely relies on a delicate balance of HORMA–
closure motif complex assembly and disassembly, closely monitored and regulated by Trip13.

4.2. Coordination of Mitotic Chromosome Segregation

In eukaryotes, proper genome segregation to daughter cells in mitosis requires that the kineto-
chores of replicated sister chromosomes each form bi-polar attachments to microtubules of the
mitotic spindle (Figure 4a). Chromosome segregation and mitotic exit are triggered by specific
degradation of several proteins,mediated by a ubiquitin E3 ligase termed the anaphase promoting
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Roles of Mad2 in chromosome segregation control. (a) Schematic of mitotic chromosome segregation. (Left) Prior to kinetochore–
microtubule attachment, unattached kinetochores generate a soluble MCC that binds and inhibits the APC/C (see panel b). Separase is
inhibited by two substrate-analog inhibitors in mitotic prophase. (Center) After kinetochore–microtubule attachment is complete, MCC
assembly ceases and the APC/C becomes activated to stimulate mitotic exit. (Right) Anaphase occurs upon cyclin B degradation (not
shown) and separase activation, which leads to cleavage of cohesin complexes. (b) Assembly of Mad2–Cdc20 complexes at unattached
kinetochores is the rate-limiting step of MCC assembly. After binding to kinetochore-localized Mad1–C-Mad2, O-Mad2 is converted
to an intermediate (I) state primed for conversion to the closed state. At the same time, Cdc20 is recruited, and its closure motif is
exposed for Mad2 binding followed by binding to BubR1–Bub3 (purple square) (59, 60). TRIP13 plays dual roles in Mad2 regulation:
first to counteract spontaneous conversion of soluble O-Mad2 to an inactive closed/empty state and second to disassemble the MCC
during spindle checkpoint silencing (22, 25). During mitosis, MCC disassembly is suppressed by Plk1-mediated phosphorylation of
p31comet (75, 76). (c) In checkpoint-active cells, separase is inhibited by two substrate mimics, including securin (orange) and a complex
of Sgo2 (purple) and C-Mad2 (64). After checkpoint silencing, separase is activated by APC/C-mediated securin degradation and by
TRIP13-mediated disassembly of Sgo2–Mad2 –separase complexes. Abbreviations: APC/C, anaphase promoting complex/cyclosome;
C, closed; I, intermediate; MCC, mitotic checkpoint complex; O, open; Plk1, Polo-like kinase; Sgo2, shugoshin 2.

complex/cyclosome (APC/C) (44–46). To prevent chromosome segregation errors caused by pre-
mature mitotic exit, the SAC pathway monitors the status of kinetochore–microtubule attachment
(47). Unattached kinetochores continually produce the MCC, which directly binds and inhibits
the APC/C (48–51). Once all kinetochores have attached to spindle microtubules, MCC assem-
bly ceases; subsequent degradation and active disassembly of the complex (described later in this
section) allow APC/C activation, coordinated sister chromatid separation, and mitotic exit.

The MCC is composed of four proteins: Mad2, Cdc20, BubR1, and Bub3 (48). A recent
biochemical reconstitution study showed that the rate-limiting step of MCC assembly is binding
of Mad2 to a closure motif (also called a Mad2-interacting motif or MIM) in Cdc20 and that
unattached kinetochores dramatically speed up Mad2–Cdc20 binding (51). The mechanistic
basis for this speed-up involves several elements. First, a heterotetrameric complex of Mad1 and
C-Mad2 is recruited to an unattached kinetochore (52–55). This Mad1–C-Mad2 complex in
turn recruits soluble O-Mad2, which forms an asymmetric dimer with the Mad1-bound C-Mad2
(Figure 2b) (27, 56). Dimerization with C-Mad2 introduces strain into the O-Mad2 protomer
and promotes its conversion to the unbuckled transition state, priming it for closure motif
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binding (30, 57, 58). In this manner,Mad2 acts as both a catalyst for MCC assembly (as part of the
Mad1–Mad2 complex) and as a substrate. At the same time, Cdc20 is recruited to the kinetochore
and unfurled to expose its Mad2-binding closure motif and position this motif precisely for Mad2
binding (59, 60). After binding, the resulting C-Mad2–Cdc20 complex spontaneously assembles
with BubR1 and Bub3 to complete MCC assembly (Figure 4b) (51, 59, 60).

In addition to promoting MCC formation as a means to coordinate chromosome segregation,
Mad2 is implicated in control of a second key event at anaphase onset: the activation of the protease
separase, which cleaves cohesin complexes holding sister chromatids together to initiate chromo-
some segregation (Figure 4a) (61). Separase is inhibited prior to anaphase onset by securin and
activated upon APC/C-mediated securin ubiquitination and degradation (62). Recently, a second,
functionally redundant separase inhibitor has been identified in vertebrates, consisting of Mad2
bound to a closure motif in the shugoshin 2 (Sgo2) protein (63, 64). Mad2–Sgo2 binds separase
as a substrate analog and prevents it from cleaving cohesin complexes, in a manner equivalent to
securin (Figure 4c). Assembly of Mad2–Sgo2 is proposed to occur at unattached kinetochores,
although evidence for this proposal awaits future work. Nevertheless, Mad2–Sgo2 provides a dis-
tinct means to control separase activation and chromosome segregation independently of securin
and the APC/C.Whether regulation of separase by Mad2 is as widely conserved as its role in the
SAC is not yet clear, and this is important to assess in future work.

Mad2’s dual roles inmitosis require a supply of soluble O-Mad2 that can be recruited to kineto-
chores and assembled with closure motifs on Cdc20 and Sgo2. Paradoxically, while cellular Mad2
exists mainly in the open conformation, purified O-Mad2 spontaneously converts to (empty) C-
Mad2 with a half-life of only 1–2 hours (25, 65). To maintain cellular Mad2 in the open confor-
mation, p31comet specifically recognizes and binds C-Mad2 (5, 66) then recruits it to TRIP13 for
conformational conversion (Figures 2d,e and 4b) (17–19, 23, 33, 67, 68). Without TRIP13 and
p31comet, cellular Mad2 rapidly converts to the closed conformation, making it impossible for cells
to maintain sufficient O-Mad2 for SAC activation (22, 24, 25).

In addition to playing a key role in SAC activation through the maintenance of O-Mad2,
p31comet and TRIP13 also mediate SAC silencing and Mad2–Sgo2 complex disassembly after
kinetochore–microtubule attachment (69–72). p31comet can recognize C-Mad2 in the MCC and
recruit it to TRIP13, where conformational conversion results in Cdc20 release and MCC dis-
assembly (Figure 4b) (19–21). Disassembly of Mad2–Sgo2 complexes through a similar mecha-
nism causes dissociation of Sgo2 from separase, which (along with degradation of securin through
APC/C-mediated ubiquitination) enables separase activation and cohesin cleavage to initiate chro-
mosome segregation (Figure 4c) (64). Thus, p31comet and TRIP13 perform a single biochemical
reaction that, depending on context, can contribute to either activation or silencing of HORMA-
based signaling in mitosis (22, 25). As noted in Sections 4.3 and 4.4,more recent work has revealed
that this functional paradigm also applies to Pch2/TRIP13’s roles in meiotic regulation and likely
also to Rev7-mediated DNA repair.

Given the dual roles of TRIP13 and p31comet in the SAC, one question is whether these pro-
teins are cell-cycle regulated. Both proteins are present and likely active throughout the cell cycle,
although TRIP13 is upregulated in mitosis along with a core set of centromere and kinetochore
proteins (17). p31comet has been reported to be regulated by phosphorylation, but this is not yet
well understood; in Xenopus, phosphorylation of p31comet by IKK-β (inhibitor of nuclear factor
κB kinase subunit β) appears to enhance Mad2 binding and promote SAC silencing (73). How-
ever, in human cells, p31comet is phosphorylated by Plk1 (polo-like kinase 1) during mitosis, and
this phosphorylation compromises p31comet–Mad2 binding (74–76). Together with biochemical
data showing that extracts from checkpoint-arrested cells show lower Mad2–Cdc20 disassem-
bly activity than extracts from cycling cells (despite equivalent levels of p31comet and TRIP13),
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these data suggest that p31comet phosphorylation suppresses p31comet/TRIP13 activity specifically
in mitosis (Figure 4b) (76). Thus, PLK1-mediated regulation of p31comet may enable cells to (a)
maintain high levels of O-Mad2 in G2 as they approach mitosis, (b) inactivate p31comet during
checkpoint-mediatedmitotic arrest tominimizeMCCdisassembly, and then (c) reactivate p31comet

upon checkpoint silencing to enable TRIP13-mediated MCC disassembly.
While Mad2’s roles in coordinating chromosome segregation are well understood, Mad2 has

also been reported to regulate key cell-cycle transitions in two other contexts. First,Mad2–Cdc20
complexes suppress APC/C activity inG2 to enable buildup of cyclin B,which is needed for cells to
enter mitosis (77). Later, successful cytokinesis depends onMad2 binding to a closure motif in the
kinesinMKLP2, thus inhibitingMKLP2’s associationwith themitotic spindle (78). Independently
of cell division,Mad2 and p31comet have also been linked to control of insulin signaling; specifically,
insulin receptor endocytosis was shown to be regulated by Mad2 binding to a closure motif in the
insulin receptor’s cytoplasmic C terminus (79, 80). Thus, Mad2 acts in several contexts outside
of its canonical roles in chromosome segregation through its ability to undergo conformational
conversion and engage closure motifs.

4.3. Meiotic Recombination

Meiotic HORMA domain–containing proteins (HORMADs), including S. cerevisiae Hop1 and
mammalian HORMAD1 and HORMAD2, are critical across eukaryotes for interhomolog re-
combination in meiosis. Meiosis is a specialized two-stage cell division program that produces
haploid gametes from a diploid precursor cell and is therefore crucial for sexual reproduction
in eukaryotes (81). Key to ploidy reduction is the recognition, physical association, and segre-
gation of homologous chromosome pairs during meiosis I division, which is driven by a modi-
fied homologous recombination (HR) pathway between highly organized and linearly compacted
chromosomes (Figure 5a) (82–85). Early in meiotic prophase, HORMADs are recruited along
the entire lengths of chromosomes by closure motifs in the filamentous chromosome axis core
proteins (fungal Red1, plant ASY3, mammalian SYCP2) (Figure 5b) (86–89), which in turn asso-
ciate with meiosis-specific cohesin complexes to organize meiotic chromosomes as linear arrays
of loops (82, 90–95). In mammals, HORMAD1 and HORMAD2 may be recruited through dif-
ferent mechanisms, with HORMAD2 binding the axis core protein SYCP2 (87) and HORMAD1
binding directly to meiotic cohesin complexes (96). Similarly,Caenorhabditis elegans lacks axis core
proteins, and its four HORMADs form a hierarchical complex that likely binds directly to cohesin
complexes (97–99). Once localized, HORMADs promote the formation of DNA breaks along
each chromosome (100–104), likely by recruiting a conserved adapter complex termed RMM
(Rec114, Mei4, Mer2/IHO1) (105–108), which in turn recruits the conserved DNA endonucle-
ase Spo11 (Figure 5c) (103, 108–110). Meiotic HORMADs also enforce a bias toward the use of
the homolog—instead of the usually preferred sister chromosome—as a repair template, thereby
promoting interhomolog interactions and recombination (111–114). In S. cerevisiae, this homolog
bias is enforced through the activity of a kinase, Mek1, that is recruited to chromosomes through
a direct interaction with phosphorylated Hop1 and locally inhibits the activity of recombination
machinery, thereby suppressing sister-directed DNA repair (115–120).

Unique among HORMA proteins, meiotic HORMADs encode closure motifs in their own C
termini. These motifs were first discovered in C. elegans, whose four meiotic HORMADs form
a hierarchical assembly through specific HORMA domain–closure motif interactions (97). Dis-
covery of similar motifs in the C termini of fungal, plant, and mammalian HORMADs suggested
that they could also assemble head-to-tail oligomers at the chromosome axis, but experimental
data supporting this model are lacking. More recent work has shown that meiotic HORMADs

www.annualreviews.org • HORMA Domain Protein Signaling 551



Synaptonemal
complex: a ladder-like
protein complex with
properties of
biomolecular
condensates that
assembles between
paired homologous
chromosomes in
meiotic prophase

b
C U

Pch2/TRIP13

HORMADs

Chromosome axis core

CU

Pch2/TRIP13

Feedback regulation through HORMAD removal

Rec114/Mer2/Mei4

Spo11

DSBs Crossovers

Spontaneous

a  Feedback control of meiotic recombination

Sisters Synaptonemal
complex

Chromosome
axis Two divisions

++ +

c d

c
Crossover

d
Homologs b

Meiotic prophase

Leptonema Zygonema Pachynema

Synaptonemal
complex

DSB

Figure 5

Feedback control of meiotic recombination by meiotic HORMAD proteins. (a) Schematic of eukaryotic meiosis. In early meiotic
prophase (leptonema), replicated sister chromosome pairs (dark/light brown and dark/light blue) are organized and compacted by the
chromosome axis (yellow) (see panel b). In leptonema/zygonema, axis-localized meiotic HORMAD proteins recruit Spo11 to generate
DNA DSBs (see panel c). In zygonema/pachynema, invasion of the homologous chromosome and repair as an interhomolog crossover
is coupled to assembly of the synaptonemal complex (pink) and removal of HORMADs from the axis (see panel d). Interhomolog
crossovers enable alignment and segregation of homologs in meiosis I, followed by segregation of sister chromosomes in meiosis II to
generate haploid gametes. (b) Early in meiotic prophase, soluble Pch2/TRIP13 catalyzes conversion of soluble self-closed HORMADs
to the unbuckled (U) state, promoting their recruitment to closure motifs on meiotic chromosome axis core proteins (e.g., S. cerevisiae
Red1,M. musculus SYCP2–SYCP3) (87, 121, 122). (c) Axis-localized HORMADs promote DNA DSB formation by recruiting the
RMM (Rec114/Mei4/Mer2) complex (105), which in turn recruits the endonuclease Spo11. DSBs and recombination-mediated
homologous chromosome engagement stimulates assembly of the synaptonemal complex between paired homologs. (d) Late in meiotic
prophase, the assembled synaptonemal complex (pink) recruits Pch2/TRIP13, which catalyzes release of meiotic HORMADs to
downregulate DNA breaks and crossovers (14, 16). Self-closure of the solubilized HORMADs likely prevents reassociation with the
axis (86, 122). Abbreviations: C, closed; DSB, double-strand break; U, unbuckled.

can adopt a self-closed state with their HORMA domain bound to their own C-terminal closure
motif (86). This state may be functionally analogous to O-Mad2, in that it represents a soluble,
signaling-inactive state of the protein. In both fungi and plants, recruitment of HORMADs to
the chromosome axis in early meiotic prophase is promoted by Pch2/TRIP13, suggesting that
axis binding first requires conversion of the self-closed HORMAD protein to an unbuckled state
(Figure 5b) (86, 121–124). Not all organisms require Pch2/TRIP13 for HORMADs’ initial re-
cruitment to the axis; in these organisms, HORMADs’ conformational equilibrium likely results
in sufficient soluble, unbuckledHORMADs that are competent for axis association, such that early
Pch2/TRIP13 activity is not needed (16, 125).

In most species, meiotic recombination drives the physical alignment and engagement of
homologous chromosomes and is coupled to assembly of the synaptonemal complex, a ladder-like
structure that physically links paired homologs’ chromosome axes (82, 126, 127). Concomi-
tant with synaptonemal complex assembly, the bulk of HORMADs are removed from the
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chromosome axis through the action of Pch2/TRIP13, thereby downregulating further recombi-
nation on chromosomes that have successfully identified their homologs and formed crossovers
(Figure 5d) (14–16, 128–130). Thus, depending on meiotic prophase progression and its own
localization, Pch2/TRIP13 can promote either assembly of meiotic HORMADs onto the chro-
mosome axis or their removal from the axis. Further, self-closure of meiotic HORMADs likely
serves an important regulatory role in preventing excess double-strand break (DSB) formation
by preventing promiscuous binding of HORMADs to the chromosome axis either before or after
their activity is required.

How meiotic HORMADs are recognized by Pch2/TRIP13 remains an important unresolved
question. In plants, there is compelling evidence that the Mad2 adapter p31comet is associated with
the synaptonemal complex in late meiotic prophase and that it plays a role in PCH2-mediated
remodeling of the meiotic HORMAD protein ASY1 (131, 132). P31comet’s involvement in mei-
otic HORMAD regulation is not, however, universal. Comparative genomics has shown that or-
ganisms tend to encode Pch2/TRIP13 if either p31comet or meiotic HORMADs are also present
(cooccurrence value 0.766, with 1.0 representing perfect cooccurrence), which is unsurprising
given Pch2/TRIP13’s role in regulation of both Mad2 and meiotic HORMADs (133). At the
same time, p31comet and meiotic HORMADs show low evolutionary correlation (cooccurrence
value 0.162), suggesting that they are functionally uncoupled in most organisms. Indeed, p31comet

is absent in the budding yeast S. cerevisiae, in which Pch2’s role in meiotic HORMAD regulation
was discovered (13, 14). How, then, are meiotic HORMADs recognized by Pch2/TRIP13? One
possibility is that HORMADs are recognized directly, perhaps forming a homodimer analogous
to the Mad2–p31comet heterodimer, in which one protomer mediates Pch2/TRIP13 binding, and
the other serves as the substrate. This idea is supported by reports that in S. cerevisiae, which lacks
p31comet, Pch2 binds directly to Hop1 (134, 135). Alternatively, an as-yet-unidentified protein may
serve as an adapter in this pathway. Finally, Pch2/TRIP13 may engage the disordered N terminus
of meiotic HORMADs directly, bypassing the need for an adapter protein. Resolving this question
remains an important area for future study.

4.4. Regulation of DNA Repair by Rev7

Rev7 (also called MAD2B or MAD2L2) acts as a key scaffolding factor in two important DNA
damage repair pathways. Rev7 was initially described as a component of the DNA polymerase
zeta (Polζ ) complex, which cooperates with other repair polymerases to bypass DNA lesions that
stall replicative polymerases (Figure 6a) (136–140). The Polζ catalytic subunit Rev3 contains
a large insertion in its polymerase domain that encodes two closure motifs, also termed Rev7-
binding motifs (RBMs) (141–143). Biochemical studies and structures of subcomplexes suggested
that these RBMs bind two copies of Rev7, which form a homodimer in the Polζ complex (142,
144). This model was recently confirmed by high-resolution structures of the Polζ holoenzyme
from the budding yeast S. cerevisiae (145, 146). These structures confirmed that Rev3 binds two
copies of Rev7 through its two RBMs and revealed that the two Rev7 protomers form a head-to-
tail homodimer distinct from other HORMA domain dimer structures (Figure 6b). Rev7 is not
directly involved in catalysis but rather coordinates translesion DNA synthesis (TLS) by assem-
bling multi-polymerase complexes. Rev3-bound Rev7 can bind directly to the C-terminal domain
of the Y-family polymerase Rev1, which in turn binds other Y-family polymerases including Polη,
Polι, and Polκ (147–150). In translesion synthesis, these Y-family inserter polymerases can intro-
duce a nucleotide opposite a lesion in the template strand. Rev3/Polζ extends this nascent strand
and eventually hands off to a replicative polymerase to continue DNA synthesis (Figure 6a) (151,
152).
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Architecture and function of Rev7 DNA repair complexes. (a) Schematic of translesion DNA synthesis mediated by coordinated
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Conformation of the noncanonical C-Rev7–C-Rev7 dimer bound to Rev3 RBM1 and RBM2. (c) Schematic of DNA double-strand
break repair pathway choice. Shieldin is recruited to broken DNA ends by 53BP1/Rif1 and then inhibits end resection to suppress
homologous recombination and promote nonhomologous end joining. (d) Structure of the shieldin core complex, containing a
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In 2015,Rev7 was reported to regulate pathway choice in the repair of DNADSBs (153).DSBs
present a huge threat to genome stability and are repaired either through the high-fidelity HR
pathway or the error-prone nonhomologous end joining (NHEJ) pathway. In vertebrates, Rev7
nucleates a complex named shieldin that is recruited to DSB sites by 53BP1–RIF1 and inhibits
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resection of broken DNA ends, thereby suppressing repair by HR and promoting NHEJ
(Figure 6c) (154–157). Rev7 is the central scaffold that brings together SHLD3, which mediates
binding to 53BP1–RIF1, and SHLD2, whose single-stranded DNA–binding activity is required
for inhibition of DSB resection (158). A recent structure of the Rev7–SHLD2 –SHDL3 complex
(29) revealed a Rev7 dimer similar to the C-Mad2–O-Mad2 dimer, with one protomer adopting
the closed state around an RBM in SHLD3 and the other adopting a noncanonical open state sta-
bilized by SHLD2 and SHLD3 (Figure 6d). Thus, an asymmetric Rev7 dimer acts as a bridge to
connect shieldin’s recruitment subunit, SHLD3, to its DNA-binding subunit, SHLD2. The Rev7
dimers found in Polζ and shieldin are strikingly different, illustrating the structural plasticity of
the HORMA domain, and Rev7 in particular, for scaffolding assembly of multi-protein signaling
complexes.

Rev7 is the closest eukaryotic relative of Mad2, and in keeping with this relationship, recent
findings have revealed that the Mad2 regulators p31comet and TRIP13 also regulate Rev7. Purified
Rev7 adopts two different conformations in solution, paralleling earlier findings with Mad2, and
TRIP13 can disassemble Rev7–SHLD3 complexes in vitro and control the relative levels of com-
plexed versus monomeric Rev7 in cells (12). In an additional parallel with Mad2, p31comet is also
involved in TRIP13-dependent Rev7 regulation (159).Moreover, both TRIP13 and p31comet pro-
mote HR-mediated DSB repair, presumably by disassembling and inactivating Rev7-containing
shieldin complexes (12, 159). These findings further cement the mechanistic parallels between the
three major families of eukaryotic HORMA proteins and raise interesting questions about how
TRIP13 and p31comet regulate the levels of translesion polymerase and shieldin complexes, for
example, during cell-cycle progression or in response to DNA-damaging agents.

Outside of DNA repair, Rev7 has been reported to interact with a number of additional pro-
teins including the cell-cycle regulator Cdh1/FZR1 (160–162); the small GTPase Ran (163, 164);
chromosome alignment maintaining phosphoprotein (165); and a Shigella invasin protein, IpaB
(164, 166). These data imply that Rev7 may have additional important signaling roles in cells;
however, these roles are not yet well defined.

4.5. Autophagy

In addition to their diverse roles in genome maintenance, HORMA proteins play key roles in
the initiation of autophagy, the cellular process that removes superfluous or damaged cytoplas-
mic contents in eukaryotic cells (167). During autophagy, cytoplasmic contents are engulfed by
a double-membrane-bound autophagosome, which eventually fuses with the lysosome for diges-
tion (Figure 7a). Autophagy is initiated when the kinase activity of the TOR complex (mTORC1)
is suppressed by starvation, leading to dephosphorylation of the HORMA protein Atg13 (168–
170). Atg13 possesses an N-terminal HORMA domain and an extended C-terminal region that
binds the ULK1 kinase (Atg1 in budding yeast) (171); the molecular scaffold FIP200 (Atg17–
29–31 in budding yeast) (171–173); and in budding yeast, the vacuolar protein Vac8 (174, 175).
Multivalent interactions between Atg13 and FIP200/Atg17 are triggered by Atg13 dephospho-
rylation and have been shown to induce liquid–liquid phase separation to drive assembly of the
PAS (phagophore assembly site) (Figure 7b) (172, 176, 177). The PAS then recruits additional
proteins and lipid vesicles to assemble the phagophore, which expands around the cell contents to
be degraded and seals into a double membrane-bound compartment, completing autophagosome
assembly.

In Schizosaccharomyces pombe andmammals, Atg13 forms a canonical HORMA–HORMAdimer
with Atg13 in the closed conformation and Atg101 in a modified open conformation (Figures 1b
and 7c) (7, 9). The Atg13–Atg101 dimer is thought to mediate recruitment of additional down-
stream autophagy factors to the PAS, at least in part through unique structural elements like the
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Role of Atg13 in autophagy initiation. (a) Autophagy is initiated when starvation suppresses TORC1 kinase activity, leading to
dephosphorylation of Atg13. Dephosphorylated Atg13 serves as an assembly hub for the PAS, by binding multiple partners including
ULK1 (Atg1) (orange) (171), FIP200 (Atg17) (gray) (171–173), and Vac8 (budding-yeast specific; not shown) (174). The Atg13 HORMA
domain binds Atg101 (missing in budding yeast) and additional downstream factors including Atg9 and Atg14 (6, 7, 9, 181).
(b) Structure of the budding yeast Atg17–Atg29–Atg31 complex (gray, purple, and pink, respectively) with Atg13’s Atg17-linking region
(residues 359–389) and Atg17-binding region (residues 424–436) (green) [PDB ID: 5JHF (172)]. Dotted lines schematize multivalent
binding of Atg17 complexes and Atg13, which leads to phase separation (176). (c) Structure of the Homo sapiens Atg13–Atg101 HORMA
domain dimer, with Atg13 shown in blue and Atg101 in gray. The WF finger, a loop encoding conserved tryptophan (W) and
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Abbreviations: PAS, phagophore assembly site; PDB ID, Protein Data Bank identifier.

WF finger in Atg101 (6, 7, 9, 172, 178–180). Budding yeast lack Atg101, and in these organisms,
Atg13’s closed conformation appears to be stabilized by an insertion in the HORMA domain
termed the cap (Figure 7d) (6). The HORMA domain of budding yeast Atg13 has been impli-
cated in binding the cytoplasmic vesicle-associated protein Atg9 (181, 182) and also recruits Atg14,
a subunit of the phosphatidylinositol 3-kinase complex (6). The structural basis of these interac-
tions has not been determined, leaving open the question of whether Atg13 recruits downstream
factors through canonical HORMA–closure motif interactions.

Both Atg13 and Atg101 show high divergence from the more closely related Mad2, Rev7, and
meiotic HORMAD proteins.Whether Atg13 and Atg101 share their relatives’ ability to undergo
dynamic conformational changes and form complexes in response to cellular signals is currently
unknown (180). It is also unknown whether Atg13 and/or Atg101 are regulated by Pch2/TRIP13.
Given the importance of autophagy for homeostasis in all eukaryotic cells, and the central organiz-
ing role for Atg13 and Atg101 in autophagy initiation, addressing how these proteins’ HORMA
domains contribute to autophagy initiation and regulation is an important area for future study.
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5. HORMA PROTEINS AND TRIP13 IN CANCER

Cancer is characterized by uncontrolled cell growth and proliferation. While the disease is
highly heterogeneous, many cancers display misregulation of particular DNA repair pathways
and increased chromosomal instability and aneuploidy (183). HORMA proteins, and especially
their regulators TRIP13 and p31comet, stand at the crossroads of chromosome segregation and
DNA repair, and as such, they have become increasingly recognized as key players in many
cancers.

A major feature of cancer genomes is aneuploidy, which can arise through chromosome seg-
regation errors in cells with a dysfunctional SAC. Many cancers show altered expression of SAC
proteins including Mad2 (184) and TRIP13, but it remains unclear whether defects in Mad2 or
other SAC proteins contribute to cancer onset or progression. Many cancers also show high ex-
pression of meiotic HORMAD proteins, whose expression is normally restricted to the germline
(185–195). HORMAD1 overexpression in cancer cells is correlated with genome instability (191)
and altered responses to DNA-damaging agents and inhibitors of the DNA repair protein poly-
ADP ribose polymerase (PARP) (187, 188, 191, 193), suggesting a direct link betweenHORMAD1
expression and dysregulation of DNA DSB repair. Other studies have found that HORMAD1
overexpression compromises additional DNA repair pathways, including DNA mismatch repair
(196). The mechanistic basis for these effects, and their ultimate contribution to the onset and
progression of cancer, remains poorly understood.

In contrast to Mad2 and the meiotic HORMADs, the mechanistic linkage of Rev7 and the
shieldin complex to cancer is clearer. The first studies hinting at the existence of the shieldin
complex found that loss of Rev7 restores HR in tumors that have lost the ability to perform HR
due to mutation or loss of BRCA1 (153, 197). This observation was explained by the realization
that loss of Rev7 in these tumors compromised the activity of the shieldin complex, reactivat-
ing HR-mediated DNA break repair independently of BRCA1. These findings have provided an
explanation for why loss of Rev7 confers resistance to a class of anticancer drugs called PARP
inhibitors that target BRCA1-deficient cancer cells (153–157, 198). Rev7’s role in TLS also in-
fluences the progression of cancers and their response to therapeutic agents: Loss of Rev7 or
inhibition of TLS suppresses tumor growth and increases sensitivity to the DNA-damaging agent
cisplatin (143, 199–201). Thus, by regulating the balance between HR and NHEJ via shieldin and
acting in TLS via scaffolding of Polζ , Rev7 plays an important role in cancer progression and
dictates how tumors respond to therapeutic agents that target specific DNA repair pathways in
cancer cells.

While Rev7 plays a role in specific cancer contexts, it is becoming increasingly clear that mis-
regulation of the HORMA regulator TRIP13 is a much more common feature of cancers. Long
before its function as a universal HORMA regulator was clarified, TRIP13 was identified as a
highly expressed gene in undifferentiated cancers (202) whose overexpression strongly correlates
with chromosomal instability and aneuploidy (203). More recently, individual studies have linked
TRIP13 overexpression and/or copy number amplification to cancers of the liver (204–207),
breast (204, 208–210), lung (204, 211–213), colon (214–216), and many other tissues (217–229).
Data from The Cancer Genome Atlas show that, in some cancer types, up to 40% of patients
show genomic copy number amplification of TRIP13 or p31comet (Supplemental Figure 2a). In-
creased copy number and expression of TRIP13 are both strongly correlated with poor prognosis
across cancers (Supplemental Figure 2b,c). Consistent with these correlations, experiments in
cancer cells have shown that TRIP13 overexpression increases proliferation and metastasis phe-
notypes, and knockdown or inhibition of TRIP13 inhibits these phenotypes, increases apoptosis,
and reduces tumor load (205, 212, 213, 215, 219, 220, 228, 230). Recently, the first reported
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Consequences of TRIP13 misregulation in cancer. (a) Generalized schematic of HORMA protein signaling in healthy cells, with
balanced assembly and disassembly kinetics. (b) Schematic of unbalanced HORMA protein signaling upon TRIP13/p31comet

overexpression, as observed in a large fraction of cancers (Supplemental Figure 2). TRIP13-mediated mitotic checkpoint complex
disassembly can weaken the spindle assembly checkpoint and increase cell proliferation (234). Similarly, TRIP13-mediated disassembly
of Rev7 complexes affects cancer cells in multiple ways: Reduced shieldin complex levels promote homologous recombination and can
lead to PARP inhibitor resistance, while reduced Polymerase ξ levels may impair translesion DNA synthesis and promote sensitivity to
DNA-damaging agents like cisplatin. Abbreviations: C, closed; O, open; PARP, poly-ADP ribose polymerase; Pol, polymerase.

small-molecule inhibitor of TRIP13 was shown to reduce proliferation in multiple myeloma,
highlighting the potential for TRIP13 inhibition as a broadly applicable cancer treatment (229).

How does TRIP13 overexpression drive cancer? Proper function of Mad2 in coordinating
chromosome segregation and Rev7 in DNA repair each depend on a balance between assem-
bly and disassembly of HORMA protein–closure motif complexes mediated by TRIP13 and its
adapter p31comet (Figure 8a). Overexpression of one or both of these proteins in cancers may
disrupt this balance, driving disassembly of signaling complexes and compromising chromosome
segregation and DNA repair fidelity (Figure 8b). Indeed, TRIP13 overexpression mediates re-
sistance to the PARP inhibitor Olaparib in BRCA1-deficient cancer cells, likely because TRIP13
overexpression inhibits the shieldin complex, enabling these previously HR-deficient cells to re-
activate HR (12). At the same time, lower levels of active Polξ in cells overexpressing TRIP13may
lead to a defect in translesion DNA repair and sensitivity to cisplatin and other DNA-damaging
agents, as seen in cells lacking Rev7 (143, 199–201). Finally, complete loss of TRIP13 is also harm-
ful, predisposing patients to Wilms Tumor, mosaic aneuploidies, and high levels of chromosome
mis-segregation (231). These findings are reminiscent of the fairy-tale situation of Goldilocks,
since either too much or too little TRIP13 activity is harmful and avoiding cancer onset and pro-
gression requires that TRIP13 levels be just right.

6. CONCLUSION

In the two decades since their discovery in 1998, our understanding of HORMA domains and
their roles in cellular signaling across kingdoms has grown remarkably. We now understand the
HORMA domain as a general-purpose protein complex scaffold, whose closure motif–bound
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closed conformation serves as a platform for assembly of larger signaling and enzymatic com-
plexes. The topologically linked nature of a HORMA domain–closure motif complex lends it un-
common stability, which is likely advantageous in the diverse pathways in which proteins with this
domain act. The unique energy landscape of the HORMA domain explains why it has evolved
alongside a dedicated AAA+ ATPase regulator, Pch2/TRIP13, which is required to disassem-
ble HORMA–closure motif complexes and maintain the high-energy open conformation that
is poised for closure motif binding. Our deep mechanistic knowledge of the HORMA domain–
Pch2/TRIP13 signaling module now sets the stage for interventions, notably including the devel-
opment of TRIP13-targeting therapeutics that may be useful in the fight against cancer.

SUMMARY POINTS

1. HORMA domain proteins are a conserved family of signaling proteins that originated
in bacteria, and in eukaryotes has expanded to play key roles in several chromosome
maintenance, cell cycle, sexual reproduction, and cellular homeostasis pathways.

2. The HORMA domain assembles signaling complexes by binding closure motif se-
quences to binding partners through a distinctive safety belt mechanism.

3. HORMA domain–closure motif binding is regulated by conformational switching be-
tween an unbound open state and a closed state that forms a topologically linked complex
with a closure motif.

4. HORMA domain–closure motif complexes scaffold important signaling complexes in
the spindle assembly checkpoint, DNA repair, meiotic recombination, and autophagy
pathways.

5. The AAA+ ATPase Pch2/TRIP13 is a near-universal regulator of HORMA proteins
whose conformational conversion activity is required for both activation and inactivation
of signaling.

6. The multiple roles of TRIP13 in genome maintenance explain its high frequency of
overexpression in cancer and highlight it as a novel therapeutic target.
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