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Abstract

Knowledge-based biomedical data science involves the design and imple-
mentation of computer systems that act as if they knew about biomedicine.
Such systems depend on formally represented knowledge in computer sys-
tems, often in the form of knowledge graphs.Here we survey recent progress
in systems that use formally represented knowledge to address data science
problems in both clinical and biological domains, as well as progress on ap-
proaches for creating knowledge graphs.Major themes include the relation-
ships between knowledge graphs and machine learning, the use of natural
language processing to construct knowledge graphs, and the expansion of
novel knowledge-based approaches to clinical and biological domains.
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INTRODUCTION

What Is Knowledge-Based Biomedical Data Science?

Knowledge-based biomedical data science (KBDS) involves the design and implementation of
computer systems that act as if they knew about biomedicine.1 There are many ways in which a
systemmight act as if it knew something: For example, it might use existing knowledge to generate,
rank, or evaluate hypotheses about a dataset, or it might answer a natural language question about
a biomedical topic.

Knowledge-based systems have long been a theme in artificial intelligence research.
Knowledge-based systems specify a knowledge representation—how a computer system repre-
sents knowledge internally—and one or more methods of inference or reasoning—how compu-
tations over those representations (perhaps combined with other inputs) are used to produce out-
puts. Classical descriptions of knowledge representation and reasoning systems [e.g., see Davis
et al. (2)] characterize them by the ontological commitments a knowledge representation makes
(i.e., what it can or cannot describe), which inferences are possible within it, and, sometimes,which
of those inferences can be made efficiently. These issues remain useful in thinking about how
knowledge representation and reasoning play a role in today’s data science environment.

This review provides some useful background knowledge on important KBDS concepts like
ontologies, SemanticWeb standards, and the distinction between knowledge bases and knowledge
graphs (KGs). To provide context, we then describe some high-level applications of KBDS that
were published prior to January 2020.Then,we describe our approach to reviewing the last year of
KBDS research and present our findings. Finally, we conclude the review by discussing perceived
barriers to and offering recommendations for conducting KBDS.

Ontologies

Ontologies are a vital component of knowledge representations. Knowledge representations are
said to be grounded in a set of primitive terms, hereafter termed “primitives,” that specify those
ontological commitments: the entities and processes that can be referred to by that knowledge
representation. Computational ontologies are, then, collections of primitives relevant to a do-
main, often related to each other by explicit subsumption (subclass of ) and meronomy (part of )
statements.

Within the biomedical domain, ontologies [e.g., the Gene Ontology (GO) (3)] are community
consensus views of the entities involved in biology, medicine, and biomedical research, analogous
to how nomenclature committees systematize naming conventions. Knowledge bases created us-
ing primitives from community-curated ontologies, rather than idiosyncratic or single-use sets of
primitives, provide significant advantages for reproducibility in scientific research, for interoper-
ability, and for avoiding pitfalls in the modeling of knowledge. Primitives can be combined into
assertions that express facts about the world. In the simplest case, an assertion links two primitives
with a specific relationship. Consider, for example, that the Protein Ontology contains a primitive
human p53 protein, the GO contains a primitive DNA strand renaturation, and the Relation
Ontology contains a primitive participation that can link a physical entity to a process in which
it participates. Those three primitives can be composed into an assertion that could be part of
a knowledge base: Human p53 protein participates in DNA strand renaturation. Some
KGs are grounded in terminological resources, such as UMLS (Unified Medical Language Sys-
tem), SNOMEDCT (SystematizedNomenclature ofMedicine,Clinical Terms), and theNational
Cancer Institute Thesaurus, that lack some aspects of a computational ontology.

1This is a revised and extended version of the introduction to Reference 1.
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Semantic Web Standards

While ontologies provide the primitive elements from which a knowledge representation is con-
structed, they are agnostic about the mechanisms by which entities are assembled into assertions.
In 2011, the World Wide Web Consortium promulgated a collection of international standards
for linking entities with shared meaning into assertions and managing collections of asser-
tions, together termed the Semantic Web (https://www.w3.org/standards/semanticweb/).
The Semantic Web builds on the standard Resource Description Framework (RDF)
(https://www.w3.org/standards/techs/rdf ), which provides a way to link three uniform re-
source identifiers (4) to specify a relationship between a pair of entities (forming an RDF triple).
Collections of triples form a graph, where the entities are nodes and the relationships are edges
connecting them.A computationalmechanism formanaging such collections is called a triplestore.

The Semantic Web standards also define RDF Schemas and a Web Ontology Language
(OWL), which provide additional expressivity; SPARQL [SPARQL Protocol and RDF Query
Language (5)], which provides a query language for interrogating RDF graphs or triplestores;
and the Simple Knowledge Organization System, which provides a basic ontology. The OWL (6)
is used to specify two important types of entities: instances and classes. Instances are particular
entities or processes in the world (e.g., a particular molecule of p53) and classes are groupings
of instances that meet a defined set of individually necessary and collectively sufficient criteria
(e.g., human p53 proteins). As it lacks variables and quantification, OWL cannot express all log-
ical statements about primitives; the subset of first-order logic that OWL can express is inspired
by description logics (7).

Knowledge Base Versus Knowledge Graph

Collections of assertions, generally called knowledge bases, can be created, queried, and shared,
and then in turn used by other systems that apply various inference methods to fulfill particular
application needs. Knowledge bases that can be represented as graphs are often called “knowledge
graphs.”While not all knowledge bases are implemented as graphs (e.g., some are databases where
a table structure is used to make implicit assertions), in recent years, it has become very common
to represent knowledge bases using Semantic Web standards, or at least to use knowledge bases
that can produce and consume Semantic Web–compatible versions (8). For that reason, the terms
“knowledge base” and “knowledge graph” are often used interchangeably. In 2012, Google an-
nounced its proprietary Knowledge Graph, which also popularized the use of the term (9). The
literature sometimes contains terminological imprecision about the differences between knowl-
edge bases, KGs, and ontologies; readers are referred to Reference 10 for a recent review and
analysis of various published definitions.

In this review, we use the term “knowledge graph” (“KG”) and say that a KG is grounded in
the set of primitives from which it is constructed. Some KGs also include a set of logical rules
called axioms that relate assertions to each other (e.g., the human p53 protein is a subclass of the
p53 protein class that is found in the organism human). Figure 1 shows a simple example of a
biomedical KG.

Biomedical Applications of Knowledge Graphs

KBDS does computation over KGs (and perhaps other inputs) to make inferences about
biomedicine. While each of the works surveyed below addresses a different problem using a dif-
ferent technique, there are some common themes in the computational approaches to using KGs,
including improving information retrieval, inferring new knowledge, and creating alternative rep-
resentations of KGs. Each of these themes is discussed further below.
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Figure 1

An example of a knowledge representation for building a biomedical knowledge graph. Boxes represent different types of data, which
are drawn from ontologies and other sources of linked open data. Boxes are connected by directed edges and represent semantically and
biologically meaningful relationships.

Information retrieval. A major use of KGs is simply to organize knowledge for information re-
trieval. Such systems are designed to make it possible to find facts or evidence regarding a wide
variety of topics, ranging in this review from cataloging traditional Chinese medical practices to
decision support for pharmacovigilance. KGs have also been used to improve other forms of in-
formation retrieval, such as finding relevant publications in the literature.

Inferring new knowledge.There are two primary ways that new information in KGs is auto-
matically inferred: graph algorithms and logical reasoning.

Edge (or link) prediction is one class of graph algorithm that is widely used in KBDS. Edge
prediction methods generally use the structure of a graph to identify edges that are likely but
missing in the graph (11). InKGs, these are predictions of assertions about theworld.This is a form
of hypothesis generation and often includes an estimate of the confidence in the prediction.Many
approaches to drug repurposing use edge prediction algorithms over KGs of drugs and diseases
to identify new indications. Another broad class of graph algorithms does community finding,
or identification of groups of entities in a KG that are similar or highly related to each other.
For example, some approaches to disease subphenotyping apply community-finding approaches
to KGs encoding information about patients.

The second way new information is inferred from KGs is through the use of logical reasoners.
The Semantic Web OWL standard was designed to facilitate two important classes of reasoning
over KGs: satisfiability and subsumption inference. Satisfiability inference checks to see if a class
definition is logically satisfiable; it is possible for a KG to define a class that has no members
(e.g., human p53 protein homologs in bacteria). Subsumption inference uses class definitions to
identify all classes that are fully contained within some other class (e.g., all proteins are nitrogen-
containing compounds). Specific reasoners, such as ELK (12) orHermiT (13), can be used tomake
these inferences with particular computational performance guarantees, which can be important
in large KGs. Subsumption inference in particular is useful in KBDS because it makes explicit
many edges that are otherwise implicit in KGs, and therefore it can improve the results of other
algorithms that depend on the structure of the graph, such as link prediction or embeddings.
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Alternative representations.Machine learning, particularly in the form of artificial neural net-
works, is widely used in the KG context (14). One frequent application of neural networks to KGs
is to create embeddings of entities or assertions by training autoencoder networks with inputs
constructed from the KG.These embeddings can then be used to compute knowledge-based sim-
ilarities between, e.g., drugs, proteins, and diseases. Neural network methods have also been used
to identify parts of a KG relevant to question and answering (Q&A) for a given input question.

Known Challenges

Many challenges to designing, constructing, and utilizing KGs within the biomedical domain have
been identified. Some of the more difficult challenges include (a) computational performance,
(b) constructing KGs using expert curation or information extraction methods, and (c) meaning-
fully integrating disparate data sources. Each of these challenges is discussed further below.

Computational performance.Computational performance is always a challenge when applying
algorithmically complex methods to large volumes of data. Biomedical knowledge is very exten-
sive, and broad biomedical KGs can contain billions of assertions. A wide variety of schemes have
been proposed to address the computational complexity of both querying and inference over KGs
(15).

Knowledge graph construction. A few KGs, such as GO annotations (16), GO Causal Activ-
ity Models (GO-CAMs) (17), or Reactome (18), are constructed through intense expert curation
efforts. However, several algorithmic approaches have been proposed to either augment these
efforts or fully automate them. Automated approaches to KG construction fall into two broad
classes: natural language processing (NLP) methods and data-driven construction. Data-driven
KG construction can involve the integration of previously disparate resources or the direct anal-
ysis of large-scale datasets.

NLP methods propose to extract information from a set of documents to create KGs, for ex-
ample, the SemanticMEDLINEDatabase (SemMedDB) (19). As NLPmethods are all imperfect,
these approaches are often focused on assessing the reliability of the information extracted, or on
techniques to manage missing or erroneous assertions and other sources of noise.

Data integration. Some data-driven approaches simply transform existing databases [e.g.,
DrugBank (20)] into KGs, which can be useful for tasks like facilitating adherence to FAIR (find-
able, accessible, interoperable, and reusable) research principles (21).More frequently, data-driven
KG construction aims to integrate multiple sources of data into a single KG. If an integrated KG
can ground the different sources in one set of primitives (ideally, from a community-curated on-
tology), then inference over the combined information can be facilitated. There are thousands
of public, biomedically important databases (22); hence, integration approaches that support se-
mantic compatibility are important and can lead to improved data quality, as incompatibilities
sometimes signal errors (23).

METHODS OF REVIEW PROCESS

For this review, relevant literature was surveyed by searching PubMed and Google Scholar us-
ing the following phrases: “knowledge graph,” “biomedicine”; “knowledge graph,” “medicine”;
“knowledge graph,” “medical”; and “knowledge graph,” “biology.”These terms were also searched
by replacing “graph” with “base.” All paper types were eligible for inclusion (i.e., conference
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Figure 2

Paper selection process outline. Combining the results from PubMed and Google Scholar queries, we
narrowed down the list of papers using a two-step process. First, we performed a quick review to reduce the
initial number of papers. Then, we closely inspected each paper, which helped us to arrive at the final set of
83 papers.

proceedings, dissertations, book chapters, peer-reviewed archived manuscripts, and published
peer-reviewed manuscripts).

Results

The search phrases above returned 52 papers from PubMed and 7,752 papers from Google
Scholar. Manual review of these papers was performed to identify those that were focused on
the use or construction of KGs within the biomedical domain, which resulted in a reduced set of
174 papers. This set of papers was then further reduced to only include papers published or posted
to public manuscript archives between January 2018 and December 2019 whose full-text version
was publicly available at the time of writing, resulting in a final set of 83 papers. For additional
details, please see Figure 2.

The final set of papers was further broken down by year of publication or presentation/
submission, the manuscript type, and the journal or archive name. Among the 83 papers, 41 were
published or posted online in 2018. The majority of 2018/2019 papers were published in confer-
ence proceedings (n= 38) or in peer-reviewed journals/books (n= 26), with the remaining papers
posted as online preprints (n = 19). Among these, the majority of the 2018 and 2019 papers were
published as conference proceedings (48.8% and 42.9%, respectively). The number of conference
submissions decreased by 9.1% between 2018 and 2019; 2018 papers were primarily submitted
to IEEE (Institute of Electrical and Electronics Engineers) (n = 10), whereas 2019 papers were
submitted to ACM (Association for Computing Machinery) (n = 5), AAAI (Association for the
Advancement of Artificial Intelligence) (n = 3), and IEEE (n = 3).
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Organization and Presentation of Findings

The final set of papers fall into two broad categories, which are used to organize the remainder
of this review: application of KGs (n = 53) versus construction of KGs (n = 30). This review
then concludes by considering some nascent projects likely to be important in the near future,
characterizing current barriers to building and using biomedical KGs, and making some recom-
mendations. Information about each paper included in the final set is presented in Supplemental
Tables 1 and 2, and broad themes spanning multiple papers are described below.

APPLICATIONS OF KNOWLEDGE GRAPHS IN BIOMEDICAL
DATA SCIENCE

Applications of KGs are noted in a wide variety of biomedical domains, ranging from analysis
of genomic data to clinical decision support. There is also a close relationship between KGs and
biomedical NLP: KGs can be used to improve the quality of NLP, and NLP can be used to gen-
erate KGs from the literature. Thus, the application of KGs is further divided into three pri-
mary themes: (a) clinical, (b) biological, and (c) NLP. Supplemental Table 1 provides a high-level
summary of the reviewed papers that used KGs to help solve a biomedical data science problem
(References 24–79).

Clinical Applications

There were three primary themes identified within this domain in the papers surveyed, including
the use of KGs to improve the retrieval of information from the literature or from large sources
of clinical data, the use of KGs to provide confidence either by adding evidence to support phe-
nomena observed in data or by completing missing information and deriving new hypotheses,
and the use of KGs to improve the representation and presentation of complicated patient data
or personal health information.

The first observed theme was the use of KGs to refine user queries and otherwise improve
information retrieval from the literature or from an electronic health record (EHR) system. One
study demonstrated that using KGs with traditional rule-based approaches for information re-
trieval performed better than using either KGs or rule-based approaches alone (24). Liu et al.
(25) proposed a novel graph-based representation of patient data where entities were linked to
concepts in a biomedical KG in order to enable querying based on domain knowledge. Other
clinical applications of KGs in information retrieval included the finding that a KG-based com-
ponent added to a larger system improved the ability of doctors to identify meaningful informa-
tion from an EHR (26), a KG-based method for users to formulate queries within the context of
relevant domain knowledge (27), and a system to rewrite user queries using domain knowledge
(28).

The second observed theme was the use of KGs to address uncertainty by identifying relevant
evidence. KGs have been leveraged to provide evidence for diagnostic assistance, clinical decision
support machinery, or surveillance (29). For example, Bakal et al. (30) used SemMedDB and a
subset of theUMLS to better predict treatments for and causes of different diseases, and Reumann
et al. (31) found that using a KG was helpful for correctly identifying rare disease patients when
examined using over 100 different queries. There were two papers that focused on surveillance. In
the first paper, Bobed et al. (32) built a KG from an adverse drug reaction ontology and SNOMED
CT as a means to improve pharmacovigilance. In the second paper, Kamdar et al. (33) built a KG
using drug classes from the Anatomical Therapeutic Chemical Classification System and active
ingredients in RxNorm to better understand opioid use patterns across the United States.
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Also part of the second observed theme was the use of link prediction algorithms to discover
missing knowledge or generate hypotheses (e.g., 25). To improve the identification of comorbid
diseases, Biswas et al. (34) built a KG using the approach outlined by Alshahrani et al. (35) and then
performed link prediction using an inductive inference method. Also using inductive inference
methods, Callahan et al. (36) described a method for transforming OWL-encoded knowledge
to create representations that were better suited to inductive inference tasks; the results were
evaluated using queries against the Knowledge Base of Biomedicine (KaBOB) (37). Neil et al.
(38) described a method for transforming KGs into graph convolutional neural networks and an
attention model using independent learnable weights to measure each edge’s usefulness.

The final observed theme was the use of KGs to capture complex patient information for
further processing. Xie and colleagues (39) created patient-specific traditional Chinese medicine
KGs by mapping patient data to a general traditional Chinese medicine–specific KG. Shang et al.
(40) described a method for creating visit-level representations of patients from EHR data and
mapping to a drug–drug interaction KG to provide personalized medication combination recom-
mendations. Three papers focused on how to improve the presentations of complex information
or results. Huang et al. (41) developed a novel tool to enrich and visualize patient data by incorpo-
rating KG embeddings. Singh et al. (42) developed an interactive tool built on Cytoscape (43) to
help users interact with their network data. And Queralt-Rosinach et al. (44) introduced a novel
approach to create custom systematic literature reviews by formulating the review as a biomedical
KG that contains information relevant to specific hypotheses provided by a user.

Biological Applications

Inmore basic research applications, broad themes included the use of KGs to produce embeddings
for prediction or visualization in low-dimensional spaces (15, 45, 46), the use of link prediction
methods over KGs to hypothesize previously unobserved relationships (36, 40, 45, 47–56), and
the use of KGs to generate complex mechanistic accounts of experimental data. Several efforts
combined these themes, particularly the use of edge embeddings to improve link prediction (34,
48, 53, 57, 58).

Node and edge embeddings provide a powerful method to suggest relationships among entities
via similarity functions, in ways that complement path traversal through the graph. Many of the
reviewed papers leveraged semantic similarity–inspired hypotheses to identify valuable drug–drug
(40, 47, 51), drug–target (51), or protein–protein interactions (46, 48), many of which were in turn
applied to drug repurposing. Additionally, some of the papers converted KG-based embeddings
into low-dimensional spaces in order to visualize clusters in two- or three-dimensional projections
(41) to better display entities of interest.

In a particularly innovative approach, Tripodi et al. (45) combined gene expression time series
andKG-based embeddings from a human-centric KG (59) to create specific and detailed hypothe-
ses regarding mechanisms of toxicity. The resulting KG subgraphs that made up the hypothesized
mechanisms were far richer than the black box toxicity predictions that would have been other-
wise presented. Further, these subgraphs were also used to generate natural language narratives
describing the mechanisms and their sources of evidence.

Natural Language Processing Applications

KGs have been used to improve NLP performance in a wide variety of genres, including sum-
marization or information extraction from EHRs and Q&A systems (15, 26, 27, 29, 40, 60, 61).
We observed that KG-derived embeddings used alone or in combination with other text-derived
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features (46) improved the performance of a variety of NLP tasks, including named entity recog-
nition (62), coreference resolution (63), and relation extraction (64).

Additionally, several papers demonstrated the utility of KGs in information extractionmethods.
Ontologies can serve as formal dictionaries allowing for rapid indexing in named entity recogni-
tion and word sense disambiguation tasks (65, 66). Compared to lexicons, KGs offer far richer
semantic context, identifying not only similar concepts but also rich collections of relationships
that can be used to disambiguate or otherwise improve concept recognition in texts (65–68).

CONSTRUCTING KNOWLEDGE GRAPHS

Researchers have made substantial efforts in methods development and generated new results in
the construction of KGs, as well as in extending, integrating, and evaluating them. Supplemen-
tal Table 2 provides a high-level summary of the papers surveyed on the construction of KGs
(References 80–124).

Efforts to produce domain-specific KGs have been made in a variety of areas, including biodi-
versity (80–82) and the microbiome (https://ncats.nih.gov/translator), as well as for the purpose
of enriching clinical data (83, 84). The papers surveyed on biodiversity focused specifically on how
a KG could be created and linked to identifiers in the literature (80, 81) or other important biodi-
versity resources (82). In contrast, papers using KGs for clinical enrichment aimed to use them as a
way to link clinical data to sources of evidence to provide support for clinical observations (84–86)
or to help make the data more interpretable with respect to underlying biological mechanism(s)
(83) for improved diagnosis (87).

Historically, NLP information extraction efforts have often been used to construct KGs; two
novel methods to do so were published last year. One proposed a minimum supervision-based ap-
proach that combined traditional NLP pipelines for information extraction and biomedical con-
text embeddings (88). The other focused on improving the extraction of biomedical facts from the
literature by leveraging and refining specific seed patterns (80).

Although not a construction method per se, SemMedDB, one of the most widely used NLP-
constructed KGs, was recently evaluated by Cong et al. (81). They found many contradictory
assertions in a variety of fundamental relationship categories, underscoring the need to be cautious
regarding noise in NLP-derived KGs. Finally, an ontology called BioKNO and a set of associated
tools leveraging OWL were presented to assist scientists attempting to share data according to
FAIR principles (82).

ORGANIZATIONAL EFFORTS IN KNOWLEDGE-BASED BIOMEDICAL
DATA SCIENCE

Both US and European scientific institutions support KG efforts. Perhaps the most ambitious
of these is the National Institutes of Health’s National Center for Advancing Translational Sci-
ences’ Biomedical Data Translator project (https://ncats.nih.gov/translator). The goal of the
Translator is a computational system that integrates sources of existing biomedical knowledge in
order to translate clinical inquiries into relevant biomedical research results that synthesize ele-
ments of the integrated knowledge to directly answer the inquiry or generate testable hypotheses
(83). A recent funding call targets $13.5 million per year for up to five years toward the con-
struction of what they call “knowledge providers and autonomous relay agents” (89). Knowledge
providers are systems that seek out, integrate, and provide high-value data sources within a spe-
cific scope of Translator-relevant knowledge, and presumably they would primarily use KGs to do
so. Relay agents are to take clinical queries in a standardized format, dispatch subtasks to appro-
priate knowledge providers, receive responses back from knowledge sources (presumably also as
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subgraphs of a KG), and process responses using scoring metrics in order to return the most rel-
evant and highest quality potential responses.

Investigators at the University of California San Francisco (UCSF), Google, the Lawrence
Livermore National Laboratory, and the Institute for Systems Biology were recently awarded
the National Science Foundation’s Convergence Accelerator Award (84). A total of 21 awards
were given out, but the UCSF project was the only one that focused on solving biomedical and
health-related problems. The awarded project, titled “A Multi-Scale Open Knowledge Network
for Precision Medicine,” aims to integrate several sources of publicly available data in order to
build what they term a “biomedical knowledge engine.” The long-term goal of this project is to
create a resource that will help clinicians gain better insight into patient care, as well as provide
a tool to aid biomedical research. The project will be developed using UCSF’s Scalable Preci-
sion Medicine Knowledge Engine (SPOKE) (85, 86). By incorporating additional data from the
UCSF Information Commons (https://informationcommons.ucsf.edu/), SPOKE will extend
Hetionet (87), which currently contains information from over 25 databases and links millions of
drugs, diseases, and biological molecules. In collaboration with Google, SPOKE will eventually
be made available to the public through Data Commons (90).

Elixir Europe (https://elixir-europe.org/) is a large multinational (and European Commis-
sion) project with the goal of managing and safeguarding the data generated by publicly funded
life science research and integrating bioinformatics resources. In pursuit of those goals, Elixir’s
interoperability platform promotes efforts in the European life science community to adopt
standardized file formats, metadata, vocabulary, and identifiers, including work on the Seman-
tic Web and the adoption of community-curated ontologies. The Elixir Core Data Resources
(https://elixir-europe.org/services/tag/core-data-resources) are leaders in the production of
interoperable knowledge resources and are widely used components of biomedical KGs.

Last year saw the announcement of GO-CAMs, a new approach to GO annotation (17). Al-
though GO annotations are perhaps the most widely used knowledge representations in biomed-
ical research, until GO-CAMs were introduced, the annotations could not be assembled into a
coherent KG.While individual annotations implicitly linkedGO classes to gene products, contex-
tual information was lost: For example, the annotation process could not capture that cytochrome
C participated in apoptosis only when it was in the cytoplasm. GO-CAM models and associ-
ated tooling are gradually replacing the traditional GO annotation process within the Alliance for
Genomic Resources (81), meaning that future GO annotation will produce an increasingly rich,
manually curated KG.

CONCLUSIONS AND RECOMMENDATIONS

As demonstrated by this review, the last year has seen tremendous amounts of new developments
in both the construction and application of biomedical KGs. A significant number of the reviewed
papers focused on the construction or application of KGs to solve problems within the clinical
domain (e.g., providing evidence for traditional Chinese medicine, improving Q&A systems, and
developing patient-level KGs). Another popular area observed in both biological and NLP-based
applications of KGs was the development of novel methods to better utilize KGs (e.g., embedding
algorithms to create alternative representations of data extracted from aKG and graph-based algo-
rithms to improve information and relation extraction). Finally, we observed across all applications
of KGs that while KGs provide an efficient way to present complex information (e.g., scientific
and medical knowledge, biological interactions, and experimental results), user-friendly tools are
still needed to help visualize and present this information. We also identified several challenges
and barriers to construct and use KGs that emerged from these papers (and also from our shared
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research experiences) that have helped us to brainstorm solutions and recommendations. Each of
these areas is further detailed below.

Barriers

Current barriers to constructing and using KGs include KG and data availability, data licensing
issues (sometimes there are different licenses for each data source), a lack of agreed upon standards
for constructing KGs, and dependency upon resources (i.e., software languages or applications)
that may be obsolete, deprecated, or outside of users’ skill sets or areas of expertise.

The first barrier to using KGs is that building a KG is challenging, so the reuse of existing
resources is highly desirable. Table 1 provides a list of currently available KGs. While each of
these KGs is a valuable resource, each was developed to solve a specific problem and thus there
may be challenges in applying it to new tasks. GO-CAMs have great promise, but currently only
a relatively small number have been curated (17). Reactome (18) provides a very high quality and
extensive KG grounded in community-curated ontologies, but it is limited in scope to biochemical
reactions and pathways. KGs derived from manual or automatic data integration, such as KaBOB
(37), PheKnowLator (59), Hetionet (87), SPOKE (85), Bio2RDF (91, 92), DisGeNET (93),
BioGrakn (94), and the Data Commons Graph (90), all require different amounts of domain
knowledge or technical expertise to utilize. KaBOB is grounded in community-curated ontolo-
gies, but licensing restrictions mean that users must download software and build the KG them-
selves, which requires expertise and computational resources. PheKnowLator is also grounded in
community-curated ontologies, is deductively closed using ELK, and is publicly available, but it
does not yet have a user interface. Bio2RDF, BioGrakn, the Data Commons Graph, DisGeNET,
Hetionet, and SPOKE are constructed by combining several different types of data without a
consistent set of primitives and are not fully grounded in ontologies. Finally, NLP-derived sys-
tems such as SemMedDB are noisy, making trustworthiness an issue. This review does not discuss
all of the currently available biomedical KGs identified during our literature survey. Readers are
referred to Table 1 for additional information.

KGs constructed from automatic methods also present significant barriers. KG construction
from literature sources is usually framed as a relation extraction problem, where semantic triples
are inferred from the text and then assembled into a KG. The correctness of this approach to KG
construction can be determined either before the KG is constructed by evaluating the relation
extraction process itself (a more traditional approach) or by evaluating the quality of the resulting
KG itself.Evaluating the quality of the constructedKGallows for the use of the reasoningmethods
described above.

The final barrier is the lack of agreed upon standards for evaluating KGs. In fact, the lack of
standards for constructing KGs within the biomedical domain may be one of the reasons why they
are challenging to evaluate. Of the 25 reviewed papers on constructing KGs that evaluated their
KGs, 4 provided qualitative evaluation (e.g., case studies, domain expert or focus group review
of results, conceptual models, or prototypes), 5 provided quantitative evaluation (e.g., by applying
machine learning to a specific holdout dataset or to a new dataset, by performing a KG completion
task like edge prediction), and 16 provided both types of evaluation. One of the reviewed papers
that provided both types of evaluation utilized crowdsourcing as a means to validate triples from
their KG (95).

Recommendations

Based on the articles surveyed, we provide a brief list of recommendations below. Two of the most
significant areas that deserve attention are the use of dense vector representations (embeddings)
of concepts and the integration of KGs in NLP applications.
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Table 1 Currently available biomedical knowledge graphs

Name
(Reference) Primitivesa Domain Backend Last updated

Construction
methodb

Bio2RDF (91) Mixed concepts Biomedical Virtuoso 09/25/14 Mixed integration
BioGrakn (95) Mixed concepts Biomedical Grakn.ai 09/27/19 Identifier-based

integration
Data Commons

Graph (90)
Concepts Demographics,

health, economics,
crime, education,
employment,
housing

GO, Python 2019 Identifier-based
integration

DisGeNET (94) Ontology concepts
(URIs)

Biomedical RDF 01/01/19 Mixed integration

Hetionet (87) Mixed concepts Biomedical Neo4j 07/08/19 Mixed integration
KaBOB (37) Ontology concepts

(URIs)
Biomedical AllegroGraph 06/23/19 Semantic integration

of OBOs
NGLY1

deficiency (44)
Mixed concepts NGLY1 deficiency Neo4j 08/08/19 Mixed integration

Ozymandias
(101)

Ontology concepts
(URIs)

Biodiversity Blazegraph 2019 Linked data from
ALA and ALD
using CrossRef

PheKnowLator
(59)

Mixed concepts Biomedical RDF, Python 09/25/19 Mixed integration

ROBOKOP (61) Mixed concepts Biomedical GreenT, Neo4j 09/20/19 Mixed integration
SemMedDB (19) UMLS concepts Biomedical Relational

database
06/2018 Mixed integration;

Semantic
Knowledge
Representation
program and the
UMLS

Sparklis (32) Ontology concepts
(URIs)

Pharmacovigilance Neo4j, JSON
API

01/2019 Semantic integration
of OBOs

SPOKE (86) Mixed concepts Biomedical Neo4j 2019 Mixed integration;
extends Hetionet
with other data in
UCSF Information
Commons

aMixed concepts are constructed from ontology concepts and other nonontology concepts found in sources of biomedical data.
bCreated using semantic integration (i.e., ontology-based) methods and methods that integrate data by matching up sets of identifiers (i.e., using other data
sources like linked data, with standardized concept identifiers).
Abbreviations: ALA, Atlas of Living Australia; ALD, Australian Faunal Directory; API, application programming interface; GO, Gene Ontology; JSON,
JavaScript Object Notation; NGLY1,N-glycanase 1; OBO, Open Biomedical and Biological Ontology; RDF, Resource Description Framework; UMLS,
Unified Medical Language System; URI, uniform resource identifier.

Knowledge graph embeddings.Given the high volume of papers covering KG embeddings and
NLP-based KGs, we felt it necessary to share recommendations gleaned from these works. A very
active area of research is the use of KGs to create knowledge-based embeddings. Good embed-
dings are important to the performance of machine learning systems and therefore have wide
applicability. KGs have been used to create embeddings for entities of many kinds (from genes to
patients), as well as for relations, assertions, and more complex representations. Applications of
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these embeddings include prediction of drug–drug interactions, drug–target interactions, target
discovery, and finding clinically relevant evidence. In addition to reusing embeddings from the sur-
veyed papers, we recommend considering the tools described in the BioKEEN paper (96), which
describes a Python-based library for training and tuning models to produce new knowledge-based
embeddings.

Natural language processing–based knowledge graphs. As previously described, a major
theme of the reviewed literature is the use of text mining and NLP techniques to generate KGs.
While this approach offers the potential for breadth missing from most manually curated KGs, it
comes at the cost of a relatively large number of errors.Cong et al.’s (81) evaluation of SemMedDB,
a widely used KG produced by the US National Library of Medicine, found nearly 500,000 in-
consistent assertions, as well as a wide variety of apparently missing relationships.While they sug-
gested methods that could be used to improve the quality of SemMedDB, our recommendation is
to recognize that NLP-generated KGs are likely to be very noisy and need to be used with caution.

Future Work

The trends we observed in last year’s work are likely to continue. Applications of KGs will likely
continue to involve generations of embeddings and other uses of KGs in machine learning. The
close relationships between the development of NLP methods and KGs are likely to persist. The
expansion of KGs to areas beyond molecular biology (e.g., biodiversity and traditional Chinese
medicine this year) is also likely to continue. Some previous areas of research (e.g., KG-based
enrichment analysis for gene sets) that did not see new results this year may also continue to be
fruitful.

Newmethods applyingKGs to analyze different sorts of experimental data such as images seem
ripe for development.Robust and biologicallymeaningful ways to incorporate or add experimental
data to biomedical KGs would help to improve the precision of predictions when used to generate
novel hypotheses or as a means to interpret experimental results. Similarly, for clinical KGs, it
will be important to find clinically meaningful ways to incorporate quantitative measures (e.g.,
laboratory test results and biomarker measurements) and outcomes from EHR data.

Other thanTable 1 of this review, there is no central reference site or repository where one can
access or identify a current list of available biomedical KGs. Researchers need a more systematic
approach to the development,maintenance, and interoperability of biomedical KGs that facilitates
sharing and the use of clear documentation. Existing efforts on general frameworks and tools like
BioKEEN (96), Protégé (97), and BlazeGraph (98), in addition to open biomedical ontologies
(99), are important and could be further extended toward standardized tool development. As KG
evaluation remains challenging, new methods or benchmarks will be valuable.

A final area for future work is the development of tools for interacting with KGs. Protégé
(97) and SPARQL are two of the most commonly utilized tools within the field, but both have
limitations that make them unable to serve as comprehensive tool suites. While Protégé is use-
ful for constructing and editing ontologies and for performing logical reasoning, it was not de-
signed to efficiently handle very large KGs and has limited support for visualizing ontologies and
KGs. SPARQL’s limitations in pathway search (100) and ease of use make its broader adoption
challenging. Recently developed applications like the Data Commons Graph web browser (90),
ROBOKOP (61), and Grakn Enterprise’s Knowledge Graph Management System andWorkbase
(https://grakn.ai/grakn-kgms) provide promising examples of well-crafted, sustainable user in-
terfaces, but all of these applications are written in different programming languages and their
proper use requires differing levels of programming expertise.
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